
Adaptive Distributed Virtual Computing

Environment (ADViCE)�

Salim Hariri1 Dongmin Kim2 Yoonhee Kim2 Ilkyeun Ra2

Baoqing Ye2 Xue Bing2 Haluk Topcuoglu2 Jon Valente3

1Department of Electrical and Computer Engineering

The University of Arizona

Tucson, Arizona 85721-0104

E-mail: hariri@ece.arizona.edu

2Department of Electrical Engineering and Computer Science

HPDC Laboratory

Syracuse University

Syracuse, NY 13244-4100

3U.S. Air Force Research Laboratory (Rome Research Site)

Rome, NY 13441

The next generation of network-centric applications will utilize a large number

of computing and storage systems that are connected by global high speed net-

works. We refer to the environment that provides transparent computing and

communication services for large scale parallel and distributed applications as

Metacomputing environment. In this paper, we present the design and the exper-

imental results with the Adaptive Distributed Virtual Computing Environment

(ADViCE) being developed at The University of Arizona and Syracuse Univer-

sity. The ADViCE provides an e�cient web-based approach for developing, run-

ning, evaluating and visualizing large-scale parallel and distributed applications

that utilize computing resources connected by local and/or wide area networks.

ADViCE supports a transparent access to the development, computing and com-

munication services that are o�ered regardless whether the users are connected

through �xed or mobile networks. In addition, the ADViCE resources can also be

connected through mobile as well as �xed networks. The ADViCE architecture

consists of two independent servers: Visualization and Editing Server (VES) and

Control and Management Server (CMS). These two servers provide all the services

required in an e�cient parallel and distributed programming environment. The

ADViCE services include Application Editing Service, Application Visualization

Service, Application Resource Service, Application Management Service, Appli-

cation Control Service and Application Data Service. We also present the exper-

imental results to evaluate the performance and e�ectiveness of the the ADViCE

prototype to provide three important functions: 1) Evaluation Tool: to analyze

the the performance of parallel applications with di�erent machine and network

con�gurations; 2) Problem-Solving Environment: to assist in the development of

large scale parallel and distributed applications, and 3) Application-Transparent

Adaptivity: to allow parallel and distributed applications to run in a transparent

manner when their clients and resources are �xed or mobile.

�This research is supported by Rome Laboratory contract number F30602-95-C-0104.

S. Hariri et al. / Adaptive Distributed Virtual Computing Environment(ADViCE) 2

1 Introduction

High performance distributed computing environments capitalize on the emerging high

speed network technology, parallel and distributed programming tools and environments,

and the proliferation of high performance desktop computers. Recently, there has been an

increased interest in building large scale high performance distributed computing (Meta-

computing) such as Globus [9], Legion [16], VDCE[2, 4]. These metacomputing projects

provide large scale applications with computing and storage power that was once available

only in traditional supercomputers. With the proliferation of wireless networks, meta-

computing services can be extended to include mobile users and resources. A mobile

metacomputing environment allows users not only access to information servers from mo-

bile computers, but also enables them to develop, run, and visualize large scale parallel

and distributed applications running on heterogeneous computers that are connected by

wired and wireless networks.

The main goal of the ADViCE project is to extend the current VDCE [2, 4] to support

mobile users and resources. ADViCE provides a parallel and distributed programming

environment; it provides an e�cient web-based user interface that allows users to develop,

run and visualize parallel/distributed applications running on heterogeneous computing

resources connected by wired and wireless networks. Consequently, the fact that some of

the resources are mobile such as users, computers, storage devices and networks become

transparent to the users and the application developers.

2 Related Work

In this section we provide a brief overview of the issues related to parallel and distributed

programming environments and mobile computing.

2.1 Parallel and Distributed Software Development Issues

The software development process of parallel and distributed applications can broadly be

described in terms of three phases: a) Application design and speci�cation, b) Application

scheduling and resource con�guration, and c) Application execution and runtime.

� Application Design and Speci�cation: In a well-integrated execution envi-

ronment it is important to provide: a) an easy-to-use interactive user-interface to

design and specify parallel distributed applications and, b) well-developed graphical

utilities for the visualization of results and program behavior. Generally, writing

parallel and distributed programs overwhelms users due to the di�culty of explic-

itly expressing communication and synchronization among the computations [1].

A graph-based programming environment, in which a program is de�ned as a di-

rected graph where nodes denote computations and links denote communication and

synchronization between nodes, may be used to decrease the work of programmers.

Currently, there are a few visual parallel programming languages and environments,

such as Computationally Oriented Display Environment (Code) [5], Heterogeneous

S. Hariri et al. / Adaptive Distributed Virtual Computing Environment(ADViCE) 3

Network Computing Environment (HeNCE) [6], and Zoom [7]. To develop a Code

or HeNCE application, a programmer �rst expresses the sequential computations in

a standard language and then speci�es how they are to be composed into a parallel

program. Zoom is a hierarchical abstraction for describing heterogeneous appli-

cations. Zoom representation of an application can be translated into a HeNCE

program for execution [6]. Currently, there is an increased interest in developing

web-based application development tools and environments because of the explosive

use of internet applications [17].

ADViCE graphical user interface is web-based GUI and has been developed using

JAVA programming language and JAVA servers.

� Application Scheduling and Resource Con�guration After the is speci�ed

and developed, the application tasks need to be assigned to the available computing

and storage resources. In the literature, although the task scheduling (or resource

allocation) problem has been investigated extensively, most of the algorithms and

systems are valid only for speci�c architectures and/or certain class of applications.

One interesting general scheduling framework is the APPLeS [8]. The APPLeS

proposes application-level scheduling in which all system aspects are evaluated with

respect to application performance. APPLeS develops a customized schedule for

each application by including user-speci�c, application-speci�c, system-speci�c, and

dynamic information in its scheduling decision. There are resource management

systems to provide load sharing and resource allocation such as the Condor project

that has been developed at the University of Wisconsin [19]. Condor is a distributed

batch system for sharing the workload of compute-intensive jobs in a pool of UNIX

workstations connected by a network. In ADViCE, we follow similar approach to

APPLeS, where for each parallel and distributed application, the system generates

at runtime an adaptive schedule that can optimize the requirements of an application

such as performance, fault-tolerance, or security.

� Application Execution and Runtime: The application execution and runtime

phase executes the developed and con�gured application. This stage integrates the

assigned resources that have been assigned to run the application tasks. The soft-

ware tools used for the execution of the application can be either based on message-

passing tools such as PVM [11], P4 [13], MPI [12], and NCS [14] or based on dis-

tributed shared memory (DSM) [23, 24, 25, 26]. In addition, there are a few projects

targeted toward providing a metacomputing environment on diverse resources. The

earliest metacomputer, the NCSA Metacomputer [15], was an integration of several

MPPs, mass storage units, visualization and I/O devices. Globus [9], Legion [16],

and VDCE [2, 4] targeted toward the development of metacomputing environments.

Additionally, there are several web-based metacomputing projects [17], that either

use the JAVA programming language as the main computation language or provide

a coordination medium based on WWW technologies or the JAVA language. There

may be some drawbacks to these methods. First, they may not support the pro-

grams written in other languages such as C and Fortran. Second, they may support

communication only between a server and a client, which restricts the execution

of the candidate applications. The ADViCE runtime system is based on message

passing tools and is implemented using P4 and NCS. We also using JAVA and web-

servers to perform all the control, management and visualization functions, while

S. Hariri et al. / Adaptive Distributed Virtual Computing Environment(ADViCE) 4

we use C, C++, Fortran, and any other language to program the application tasks.

In other words, our approach is open and can support any language to implement

the application tasks.

2.2 Mobile Computing Issues

Mobile computing is increasingly becoming an important programming environment and

there has been very little research to address the programming issues in such an envi-

ronment and how to integrate it into the current parallel distributed programming envi-

ronments with stationary resources. The main characteristics and constrains of mobile

computing are [22, 21]: 1) The use of wireless networks make mobile resources resource-

poor relative to stationary resources and the communication performance and reliability

varies widely, 2) Mobile resources complicates the issues related to resource locations and

portability, and 3) Mobile resources rely on a �nite energy resource. The main limita-

tions of developing mobile parallel and distributed programming environments include

the following:

� The use of wireless networks implies that applications will experience low trans-

fer rate and unreliable communication links. We expect this limitation to ease in

the future as the use of wireless technology expand and more progress is made in

increasing the transfer rate over wireless networks.

� The current techniques to support dynamic task migrations and adaptive resource

con�gurations are rigid and can not run e�ciently when the computing and storage

resources are �xed and/or mobile. For example, it is possible that some of the tasks

associated with a parallel and distributed application could be running on several

high performance computers that are connected by a �ber-optic high speed network

while other tasks are running on computers that are connected by a low speed,

unreliable wireless network. The performance of this application will drastically

a�ected by the performance of the communication services o�ered by the wireless

network.

The main goal of the ADViCE prototype is to integrate stationary parallel and dis-

tributed computing environment with mobile computing. We developed an e�cient ap-

proach to support adaptive programming and services for both mobile and stationary

resources. In general, there are two extremes for supporting adaptation [22]: 1) Make

the adaptation is entirely the responsibility of individual applications, and 2) Make the

adaptation is completely transparent to the application and thus must be supported by

the system. The �rst approach avoids the need for system support, but it lacks the ability

to resolve incompatible resource demands of di�erent applications and to enforce limits

on resource usage. The second approach since it can support adaptivity to existing appli-

cations so they can run on mobile resources without any modi�cations. The adaptivity

approach supported in ADViCE is a combination of these two schemes. The user can

specify during the application development the application adaptivity requirements. The

ADViCE runtime system is responsible for maintaining the adaptivity requirements of

the application during its execution.

S. Hariri et al. / Adaptive Distributed Virtual Computing Environment(ADViCE) 5

3 Overview of ADViCE Architecture

The ADViCE can be viewed as a collection of geographically dispersed computational

sites or domains, each of which has its own set of ADViCE servers as shown in Figure 1.

In any ADViCE, the users, �xed or mobile, access the ADViCE servers (Visualization and

Editing Server (VES) and Control and Management Server (CMS)) to develop parallel

and distributed applications that can run on �xed or mobile computing resources (see

Figure 1). In ADViCE, the users are provided with a seamless parallel and distributed

computing environment that provides all the software tools to develop, schedule, run

and visualize large scale parallel and distributed applications. In other words, ADViCE

supports the following types of transparency:

� Access Transparency: The users can login and access all the ADViCE resources

(mobile and/or �xed) regardless of their locations.

� Mobile Transparency: ADViCE supports in a transparent manner mobile and �xed

users and resources.

� Con�guration Transparency: The resources allocated to run a parallel and dis-

tributed application can be dynamically changed in a transparent manner; that is

the applications or users do not need to make any adjustment to re
ect the changes

in the resources allocated to them.

� Fault-Tolerance Transparency: The execution of a parallel and distributed appli-

cation can tolerate failures in the resources allocated to run that application. The

number of faults that can be tolerated depends on the redundancy level used to run

the application.

� Performance Transparency: The resources allocated to run a given parallel and

distributed application might change dynamically and in a transparent manner to

improve the application performance.

Due to some changes in the network tra�c or failures, it might be necessary to move

the execution environment of one application from one ADViCE domain to another as

shown in Figure 1. During the switching from one ADViCE environment to another,

one or more ADViCE servers as well as the resources allocated to run a given ADViCE

application might be switched. In Figure 1, when the application execution environment

is switched from ADViCE1 to ADViCE2, the VES is changed while the CMS is kept the

same in both environments.

Our approach to implement the ADViCE architecture is based on identifying a set

of servers that are essential to provide the required tools for any parallel and distributed

programming environment. The current prototype is built using two web-based servers as

shown in Figure 2: Visualization and Editing Server (VES) and Control and Management

Server (CMS). The ADViCE architecture can be generalized to more than two servers.

However, in our implementation, we used only two servers to simplify the implementation

of the required ADViCE services. The VES provides all the editing and visualization ser-

vices essential for the application development, while the CMS provides all the services

required to schedule, control and manage the execution of the application so it can dy-

namically adapt its execution environment to maintain its quality of service requirements.

In what follow, we brie
y describe the basic services o�ered by the ADViCE servers.

S. Hariri et al. / Adaptive Distributed Virtual Computing Environment(ADViCE) 6

Figure 1: Adaptive Changes in the ADViCE environment.

3.1 Visualization and Editing Server (VES)

This server provides two main application development services: Application Editing

Service (AES) and Application Visualization Service (AVS).

3.1.1 Application Editing Service (AES)

The AES is a web-based graphical user interface for developing parallel and distributed

applications. The AES provides users with commands to develop and run a new or an

existing parallel and distributed application. The main functions o�ered by the AES are

connection establishment and application editor.

� Connection Establishment: Before the end-user connects to the appropriate

VES, a default server is initially used to ful�ll the logical-physical mapping. The

default VES will determine the appropriate VES server based on user's location and

current system performance parameters. Once the appropriate VES is identi�ed,

then the authorization and authentication procedures are invoked by the selected

VES server before the user is allowed to use the ADViCE services. After the user

passes successfully all the security procedures, the AES invokes the Application

Editor window to support the user with the tools required to develop parallel and

distributed applications.

� Application Editor: The application editor provides menu-driven task libraries

that are grouped in terms of their functionality, such as matrix algebra library, com-

mand and control task library, etc. A selected task is represented as a clickable and

draggable graphical icon in the active editor area. Using the application editor, the

S. Hariri et al. / Adaptive Distributed Virtual Computing Environment(ADViCE) 7

Figure 2: The Main Components of the ADViCE Architecture.

user can develop an Application Flow Graph (AFG) which is a directed graph where

the nodes denote library tasks and links denote the communication/synchronization

between the nodes. The application editor provides also users with the capability

to specify task con�guration; that is whether to run each task in sequential or in

parallel, and if in parallel how many nodes to execute that task (see Figure 3).

3.1.2 Application Visualization Service (AVS)

This service enables the user to visualize the application execution time and system

runtime parameters. For example, Figure 4 shows the execution time for each task in the

application shown in Figure 3. In addition, the AVS shows the total execution time of

the application and the setup time of the application execution environment.

3.2 Control and Management Server (CMS)

The main services of the CMS include Application Resource Service (ARS), Application

Management Service (AMS), Application Control Service (ACS), and Application Data

Service (ADS). In addition, the CMS maintains two databases (see Figure 2): one to store

the con�guration and status information about the resources available in an ADViCE do-

main (a domain is a distributed computing environment controlled by one organization

or an administration), and one database to store the task performance information (e.g.

execution times of each ADViCE library task on di�erent computing platforms). The task

performance database is used to estimate the task execution time on di�erent computing

platforms and is used by the ARS to optimize the allocation of resources to application

tasks.

S. Hariri et al. / Adaptive Distributed Virtual Computing Environment(ADViCE) 8

Figure 3: An Application Flow Graph Example.

3.2.1 Application Resource Service (ARS)

The main functions of the ARS is to interpret the application
ow graph generated by the

AES and then allocates resources to the application tasks to optimize certain criterion

such as performance, fault-tolerance, or any other requirements speci�ed by the user.

The main functions of the ARS include Performance-based Scheduling, Security-based

Scheduling, and Fault Tolerance-based Scheduling. The performance-based scheduling

determines the mapping of tasks to resources that will maximize the application perfor-

mance, while the security-based scheduling allocates to the application tasks only the

resources that meet that application security requirements. Similarly, the fault tolerance

based scheduling allocates redundant resources to run each application task such that the

application execution can tolerate certain number of failures in the resources allocated

to execute the application. In addition, the ARS provides application rescheduling ca-

pability in order to reallocate some of the application tasks whose executions have been

interrupted due to some changes in network and system resources; these changes could

be triggered because of the mobility of resources or software/hardware failures in the

ADViCE resources.

3.2.2 Application Management Service(AMS)

The AMS utilizes standard management functions to control and manage the execution

of parallel and distributed applications. The AMS provides ARS with management in-

formation about ADViCE resources to optimize the allocation of application tasks to the

currently available ADViCE resources. The AMS also provides a well de�ned interface

S. Hariri et al. / Adaptive Distributed Virtual Computing Environment(ADViCE) 9

Figure 4: The Performance of each Application Task.

that enables other software modules (e.g. ARS, ACS, ADS) to access any management

information required to achieve real-time adaptive services.

3.2.3 Application Control Service (ACS)

The ACS provides applications with the required services to setup, run, control and man-

age their execution within the ADViCE. The main ACS functions include setting up the

application execution environment, monitoring the application execution, and collecting

the task performance information required for the visualization of the application exe-

cution. In setting up the application execution environment, the ACS launches a proxy

process (we refer to as the local-ACS) at each machine selected for the application ex-

ecution according to the Allocation Channel Table (ACT) generated by the ARS. This

involves setting up socket connections between the CMS and the client machines. The

local-ACS periodically updates the task performance database and noti�es the CMS of

any runtime errors.

3.2.4 Application Data Service (ADS)

The ADS provides services to establish high speed communication data paths between the

application tasks. In addition, ADS supports limited task management functions such

as data conversion, task migration, handling user request exception, and periodically

monitoring the task performance.

S. Hariri et al. / Adaptive Distributed Virtual Computing Environment(ADViCE) 10

4 ADViCE Adaptation Approach

One important goal of the ADViCE is to deliver an adaptive parallel and distributed com-

puting environment that can automatically modify its con�guration based on the changes

in the environment. These changes could be due to failures in hardware, software failure,

mobility of resources, or bursty network tra�c. The ADViCE adaptation approach fol-

lows three important phases or steps: 1) Change Detection, 2) Analysis and Veri�cation,

and 3) Adaptation Plan. This approach is similar to the adaptation approach proposed

to achieve fault tolerance distributed computing [20]. For each ADViCE service (AES,

AVS, ARS, ACS, ADS), we develop the appropriate algorithms to detect the changes in

the service once it occurs, to analyze and verify the detected changes in the service, and

�nally carry out the steps de�ned in the adaptation plan associated with that service.

Figures 5, 6, 7, and 8 show the ADViCE Adaptation Algorithm and procedures.

The Application Execution Environment (AE(Appi)) denotes all the resources allo-

cated to run application Appi. While the application is running (Step 1 in the ADViCE

Adaptation Algorithm of Figure 5), the ACS monitors all the ADViCE services (Steps 2

through 26 in the ADViCE Adaptation Algorithm of Figure 5) associated with that ap-

plication to detect any possible changes or deterioration in the application performance.

Once any change is detected, the change detection procedure associated with the service

that has experienced the changes is invoked (Steps 4, 10, 16, and 22 in the ADViCE

Adaptation Algorithm of Figure 5). For example, assume during the application devel-

opment, the mobile user has experienced an excessive delay because the AES service is

running on a VES server that is outside the current location of the mobile user. This

is detected when the AES monitoring routine discovers that the communication delay

to the VES server is larger than the acceptable Dmax (Step 1 in Change Detection AES

of Figure 6). Once that delay is detected, the Veri�cation and Analysis procedure for

that service is invoked (Step 6 in the ADViCE Adaptation Algorithm of Figure 5). In a

similar manner, we device detection algorithms for each service o�ered by the ADViCE

servers (VES and CMS) as shown in Figure 7.

The Veri�cation and Analysis procedures shown in Figure 7 involves analyzing the

current state of the system resources by using the AMS services to validate and identify

accurately the event(s) that contributed to the changes if they were proven to be true

and not false or transient. For example, if the change detection procedure of the ADS

has determined the EventType to be \link failure" (Step 4 in Change Detection ADS

of Figure 6). This event could be caused by the machine being down or task failure

(Step 11 through 18 in Veri�cation Analysis ADS of Figure 7). The veri�cation and

analysis could be simply reading the OperStatus in the interface MIB associated with

each communication link used for the inter-task communications. If the status of is found

to be caused by machine failure, then the EventCause is assigned as \machine down" and

then the Adaptation Plan associated with ADS is invoked as shown in Figure 5 (Step 25).

The Adaptation Plan procedures involves taking the appropriate actions to enable

the ADViCE to adapt to the changes that have been detected and veri�ed. The adapta-

tion plan procedure invoke the appropriate operations associated with the adaptation of

each service. For example, the adaptation plan for the ADS associated with \task down"

could be to restart the application execution from the beginning (Step 17 in Adapta-

tion Plan ADS of Figure 8).

S. Hariri et al. / Adaptive Distributed Virtual Computing Environment(ADViCE) 11

procedure ADViCE Adaptation Algorithm
1 while (AE(Appi) is running) do f
2 monitor ADV iCE Services

3 monitor AES
4 EventType Change Detection AES()
5 if EventType 6= Normal

6 EventCause Veri�cation Analysis AES(EventType, AE(Appi))
7 Adaptation Plan AES(EventCause, AE(Appi))
8 endif

9 monitor AV S
10 EventType Change Detection AVS()
11 if EventType 6= Normal

12 EventCause Veri�cation Analysis AVS(EventType, AE(Appi))
13 Adaptation Plan AVS(EventCause, AE(Appi))
14 endif

15 monitor ACS
16 EventType Change Detection ACS()
17 if EventType 6= Normal

18 EventCause Veri�cation Analysis ACS(EventType, AE(Appi))
19 Adaptation Plan ACS(EventCause, AE(Appi))
20 endif

21 monitor ADS
22 EventType Change Detection ADS()
23 if EventType 6= Normal

24 EventCause Veri�cation Analysis ADS(EventType, AE(Appi))
25 Adaptation Plan ADS(EventCause, AE(Appi))
26 endif

27 g endwhile

end of ADViCE Adaptation Algorithm

Figure 5: ADViCE Adaptation Algorithm

S. Hariri et al. / Adaptive Distributed Virtual Computing Environment(ADViCE) 12

procedure Change Detection AES()
1 if tconnect(V ES) > Dmax

2 EventType = unacceptable delay to V ES
3 else if unable to locate V ES
4 EventType = V ES down
5 else if unable to locate the database server
6 EventType = database down

.

.

.
7 else

8 EventType = Normal
9 endif

10 return(EventType)
end of Change Detection AES

.

.

.

procedure Change Detection ADS()
1 if inter task communication delay > Dmax

2 EventType = inter task communication delay
3 else if broken pipe detected
4 EventType = link failure

.

.

.
5 else

6 EventType = Normal
7 endif

8 return(EventType)
end of Change Detection ADS

Figure 6: ADViCE Change Detection Procedures

S. Hariri et al. / Adaptive Distributed Virtual Computing Environment(ADViCE) 13

procedure Veri�cation Analysis AES(EventType;AE(Appi))
1 case EventType = unacceptable delay to V ES
2 verify delay to V ES
3 if measure the delay to V ES > Dmax

4 check if the delay is caused by the location of V ES
5 EventCause = location change of V ES
6 check if the delay is caused by the location of the user
7 EventCause = user's location change
8 check if the delay is caused by heavy load V ES

9 EventCause = heavily loaded V ES

10 endif

11 case EventType = V ES down
12 verify V ES down by AMS MIB
13 if true

14 check if V ES down is caused by the V ES machine failure
15 EventCause = V ES machine down
16 endif

17 case EventType = database down
18 verify database down by AMS MIB
19 if true

20 check if database down is caused by database machine down
21 EventCause = Application Repository database machine down
22 check if database down is caused by database server down
23 EventCause = Application Repository database server down
24 endif

.

.

.
25 return(EventCause)

end of Veri�cation Analysis AES

.

.

.

procedure Veri�cation Analysis ADS(EventType;AE(Appi))
1 case EventType = inter task communication delay
2 verify the communication delay
3 if measure inter task delay > Dmax

4 check if the delay is caused by heavy network tra�c
5 EventCause = heavy tra�c
6 check if the delay is caused by heavy load
7 EventCause = heavy CPU load
8 endif

9 case EventType = link failure
10 verify link failure by AMS MIB
11 if true

12 check if link failure is caused by machine down
13 EventCause = machine down
14 check if link failure is caused by task down
15 EventCause = task down
16 endif

.

.

.
17 return(EventCause)

end of Veri�cation Analysis ADS

Figure 7: Veri�cation and Analysis Procedures

S. Hariri et al. / Adaptive Distributed Virtual Computing Environment(ADViCE) 14

procedure Adaptation Plan AES(EventCause;AE(Appi))
1 case EventCause = location change of V ES or
2 EventCause = user's location change or
2 EventCause = heavily loaded V ES or
3 EventCause = V ES machine down
4 j access the default V ES
5 j locate a new V ES

6 j transfer the information from current V ES to a new V ES

7 case EventCause = Application Repository database machine down
8 j choose alternative Application Repository database
9 case EventCause = Application Repository database server down
10 j start the database

.

.

.
end of Adaptation Plan AES

.

.

.

procedure Adaptation Plan ADS(EventCause;AE(Appi))
1 case EventCause = heavy tra�c or
2 EventCause = heavy load or
3 EventCause = machine down
4 j invoke ARS to assign a new machine
5 j if migration required
6 j task migration
7 j endif
8 j if partial recovery is possible
9 j resume from the stopped task
10 j else
11 j resume from the task check pointed state
12 j endif
13 case EventCause = task down
14 j if partial recovery is possible
15 j resume from the task check pointed state
16 j else
17 j start the application from the beginning
18 j endif

.

.

.
end of Adaptation Plan ADS

Figure 8: Adaptation Plan Procedures

S. Hariri et al. / Adaptive Distributed Virtual Computing Environment(ADViCE) 15

5 ADViCE Testbed: Experimental Results and Discussion

The current ADViCE prototype consists of two sites, one at Syracuse University and the

other at Rome Laboratory, that are connected by the OC3 ATM Wide Area Network, as

shown in Figure 9. We are currently setting up a new site at the University of Arizona.

Each site or domain has two ADViCE servers that manage the computing and network

resources available in their site. At the Syracuse University site there are three computing

clusters: HPDC, CAT, and TOP. The HPDC cluster consists of several ATM switches

and ATM concentrators that connect high-performance workstations and PCs at a rate

of 155 and 25 Mbps, respectively (URL:http//www.atm.syr.edu). The TOP and CAT

clusters have SUN SPARCs, SUN IPXs and IBM RS6000s that are connected to the ATM

cluster through an Ethernet network. The Rome Lab site consists of three clusters that

include SUN, Digital, and HP workstations.

Figure 9: The con�guration of the current ADViCE Testbed.

In this section we discuss and evaluate the performance of three important functions

supported by the ADViCE prototype: 1) Task Performance Evaluation Tool, 2) Problem-

Solving Environment, and 3) Adaptation Support.

5.1 Experiment 1: Using ADViCE as a Parallel Evaluation Tool

In this experiment we used the matrix-vector multiplication (MULT V) task as a running

example to evaluate the use of the ADViCE prototype as an evaluation tool to analyze the

performance of di�erent con�gurations when the number of computers, network types,

S. Hariri et al. / Adaptive Distributed Virtual Computing Environment(ADViCE) 16

and problem sizes are changed. We compared the time and e�ort required to perform such

tasks with and without using the ADViCE prototype. We benchmarked the sequential

and parallel algorithms of matrix-vector multiplication(MULT V) based on various ma-

chine and network con�gurations and problem sizes. The parallel implementation of the

MULT V (A �B = C) task is based on the host-node programming model. The master

process distributes the rows of matrix A evenly among the processes (where each process

runs on one workstation) while all the slave processes receive the entire B matrix. Each

slave process computes its part of the result matrix C and sends it back to the host process.

The ADViCE provides a web-based, user-friendly interface that allows a novice pro-

grammer to experiment with and evaluate di�erent parallel con�gurations of each AD-

ViCE task in a few minutes. We argue that performing similar evaluation tasks is almost

impossible for novice programmers and requires hours and even days to be performed

by an expert programmer in parallel processing, message passing and visualization tools.

Using ADViCE prototype, once a task is registered in the ADViCE task library, the user

can use that task or any other library tasks by just clicking on the task name in the

Application Editor window. Once the task is selected, the user can specify the desirable

con�guration to run the selected task; specify the number of computers to be involved in

the computation, and the network to be used to connect them if the task is going to run

in parallel. Selecting the ADViCE task and specifying how it will be implemented can be

done in a few minutes. Once that is done, the task con�guration can be executed and its

execution time can be visualized immediately without any e�ort other than clicking on

the execute and visualize buttons in the Application Editor window.

Figure 10 shows the execution times of a matrix multiplication algorithm for two

problem sizes, 512� 512 and 1024� 1024. The result for a p4-based implementation of

the same multiplication algorithm is given in Figure 11. The experiments were done for

one, two and four Sun SPARCs that are connected by an IP/ATM network. We also

evaluated the performance of the MULT V task on a heterogeneous cluster of four SUN

SPARCs and four IBM RS6000 workstations. The objective of such an evaluation is to

provide users with a better understanding of the performance of parallel algorithms when

there is a change in problem size, number of nodes, or network type. As an example,

for the p4-based implementation of the matrix-vector multiplication algorithm, we can

determine from Figure 11 that eight nodes provide the best performance among the test

cases.

Table 1 compares the times required to develop, compile, execute, and visualize the

Matrix-Vector Multiplication task using p4 and the ADViCE prototype for a 1024�1024

problem size with four nodes. In the design and implementation phase, it takes around

862 minutes for a parallel programming expert to develop a p4-based multiplication pro-

gram from scratch if we assume that programming speed is two minutes per line. If the

programmer has no experience with p4, he/she will spend more time to learn the tool and

then implement the parallel algorithm. For the ADViCE, even if the user does not have

any knowledge in parallel programming, but wants to run the application in parallel, the

only thing he/she needs to do is to choose the parallel option in the task con�guration

window of the Application Editor. The total time for developing the ADViCE MULT V

application is 2.10 minutes rather than 862 minutes if one needs to develop the application

S. Hariri et al. / Adaptive Distributed Virtual Computing Environment(ADViCE) 17

Figure 10: The Performance of the ADViCE Implementation of the Matrix-Vector Mul-

tiplication.

Figure 11: The Performance of the P4 Implementation of the Matrix-Vector Multiplica-

tion.

S. Hariri et al. / Adaptive Distributed Virtual Computing Environment(ADViCE) 18

Table 1

The performance comparison of the matrix-vector multiplication task for each software development phase

Phase p4 ADViCE

Design and development 862 min. 2.10 min.

(431 lines)

Compilation 7.01 sec. 0 sec.

Runtime setup 0.980 sec. 0.015 sec.

Task execution 0.194 sec. 0.136 sec.

Visualization and evaluation1890sec. 0.095 sec.

from a scratch.

The location of the executable for the MULT V task on the selected resource is pro-

vided in the resource allocation information, which is retrieved from the task constraints

table. The executable is then linked to the I/O module. In the p4 version the MULT V

program, it takes 7.01 seconds for compilation. The runtime setup time for the ADViCE

prototype consists of the time it takes the ACS to transfer the activation and resource

allocation information to the ADS and the time for the acknowledgment. This setup time

takes 0.015 seconds for the MULT V task on the selected resource. For a p4 application,

the user creates a con�guration �le, i.e., the procgroup �le, and manually links it to the

p4 application which takes 0.98 seconds. ADViCE runs the application automatically

with the \Execute Application" button and generates the results in the selected output

�le. The execution time of the MULT V task is 0.136 seconds when it is executed on four

nodes over the ATM. The execution time is 0.194 seconds using a p4 program with the

same con�guration.

In addition, ADViCE provides dynamic and post-mortem visualization of the applica-

tion. The user can visualize the loads of all the machines in one domain and can even focus

on the load information for the machines selected to run a given application. Further-

more, the execution time of each module within an application is visualized in ADViCE.

It takes 0.095 seconds to invoke the ADViCE visualization window for the MULT V task.

If a p4 user wants to visualize the execution time to compare its performance with others,

it is necessary to use another graphic tool. The visualization and evaluation time depends

on which tool is used; as an example, \gnuplot" takes 1890 seconds.

5.2 Experiment 2: Using ADViCE as a Problem Solving Environment

In this experiment we demonstrate how the ADViCE can enable a novice programmer

to develop large-scale parallel and distributed applications running on geographically

distributed heterogeneous resources. Implementing such applications is currently a chal-

lenging programming problem and time consuming for even experts in parallel and dis-

tributed programming tools. A distributed application can be viewed as an Application

Flow Graph (AFG), where its nodes denote computational tasks and its links denote

the communications and synchronization between these nodes. Without an application

development tool, a developer or development team must apply much e�ort and time

to develop a distributed application from a scratch. To solve these di�culties, ADViCE

S. Hariri et al. / Adaptive Distributed Virtual Computing Environment(ADViCE) 19

Table 2

Performance comparison of the linear equation solver application for each software development phase 1

p4 ADViCE

Phase LU INV MULT V LU INV MULT V

Design and development 838 min. 1314 min. 862 min. 2.10 min.1.57 min.2.30 min.

(419 lines)(657 lines)(431 lines)

Compilation 6.45 sec. 8.10 sec. 7.01 sec. 0 sec. 0 sec. 0 sec.

Runtime setup 1.200 sec. 1.580 sec. 0.980 sec. 0.043 sec 2

Task execution 0.386 sec. 0.556 sec. 0.194 sec. 0.801 sec.1.360 sec.0.140 sec

Application execution 1.691 sec. 1.451 sec.

Application visualization 3200 sec. 0.140 sec.

provides an integrated problem solving environment to enable novice users to develop

large-scale, complex, distributed applications using ADViCE tasks. The Linear Equation

Solver (LES) application has been selected as a running example. Figure 3 shows the AFG

of the Linear Equation Solver, which consists of an LU Decomposition (LU) task, two

Matrix Inversion (INV) tasks and Matrix-Vector Multiplication (MULT V) tasks. The

problem size for this experiment is 1024� 1024 and its execution environment consists of

four nodes, which are SUN SPARCs and IBM RS6000 machines that are connected by

an ATM network.

Table 2 compares the timing of several software phases for the Linear Equation Solver

application using p4 and ADViCE. When a user has enough knowledge about parallel pro-

gramming and the p4 tool, he/she will spend 838 minutes for an LU task, 1314 minutes

for an INV task, and 862 minutes for MULT V task. The total time to develop this appli-

cation is approximately 3014 minutes, (i.e., around 50 hours). Using ADViCE, a novice

user spends around six minutes to develop such an application. There is no compile time

in ADViCE, but a p4 application needs 21 seconds for compilation. The ADViCE setup

time for a Linear Equation Solver application is 0.043 seconds. The p4 user should create

all procgroup �les and launch them in order, which takes around eight seconds.

Since the ADViCE is based on the data
ow model and executes the application tasks

concurrently, the application execution time, including the setup time, is less than the

summation of all the individual task execution times. In our experiment with the Linear

Equation Solver application, the total execution time of the p4 implementation using four

nodes is 1.691 seconds. The ADViCE implementation of the same application with the

same con�guration is approximately 1.451 seconds.

5.3 Experiment 3: Evaluation of the ADViCE Adaptation Approach

One of the main features of the ADViCE prototype is its transparent adaptation support.

In this experiment, we evaluate the performance of the ADViCE prototype to develop a

1The last two rows of the table are for the total time of the application.
2It is the total setup time for a ADViCE-based linear equation solver application.

S. Hariri et al. / Adaptive Distributed Virtual Computing Environment(ADViCE) 20

fault tolerant distributed application that is shown in (Figure 12).

Figure 12: A Fault Tolerant Distributed Application Example.

After a user develops an application using the ADViCE Application Editor window

(AES) and speci�es that the application tasks should tolerate link and machine failures.

During the application execution, we manually kill the process running one of the applica-

tion tasks, say the INV task, as shown in Figure 12. The INV task failure is immediately

detected by the Local ACS that continuously monitoring the execution of the of the INV

task (Step 1 in Detection and Analysis Phase of Figure 13). The error message is reported

to the Server ACS running on the CMS (Step 1' and Step 2). The next step is to invoke

the Veri�cation Analysis ADS procedure that is running on the Server ACS of the CMS

(Step 3) that determines that the EventCause is \Task down" (Step 15 in the Veri�-

cation Analysis ADS of Figure 7. Once that is determined, the Adaptation Plan ADS

procedure is invoked. A simple recovery procedure could be to restart all the application

tasks (LU, INV, and MULT V). This recovery procedure involves invoking the ARS to

reschedule resources to the application (see step 1 in Adaptation Phase of Figure 13).

Once the ARS schedules the application tasks and passes it to the Server ACS (Step 2),

the Server ACS setups the new application execution environment by starting the Local

ACS on each machine selected to run the application (Step 3). Once that is done, the

Local ACS starts the task execution on its machine (Step 4).

The performance of the adaptation algorithm depends on the the Change Detection

Time (CDT), Veri�cation and Analysis Time (V AT), and Adaptation Plan Time (APT).

The CDT measures the time it takes ADViCE to detect the change event in any of

ADViCE services. The V AT measures the time it takes ADViCE to verify the change

event and determine its cause type. The APT measures the time it takes ADViCE

S. Hariri et al. / Adaptive Distributed Virtual Computing Environment(ADViCE) 21

ACS
Local

ACS
Local

ACS
Server

MULT

ACS
Local

INV

ACS
Local

ACS
Local

ACS
Local

ACS
Server

LU INV MULT

3

1

22

ARS
1

2

3 3

3

1

’1

4 4

5

Adaptation

Detection and Analysis

Resend

Figure 13: an Example on the ADViCE Adaptation Algorithm.

to perform the operations speci�ed in the adaptation plan associated with the a�ected

service. For the example shown in Figure 13, the CDT is 7.675 seconds, V AT is 5.328

seconds and APT is 18.451 seconds. We are currently evaluating di�erent techniques to

achieve e�cient implementations of all the procedures identi�ed in the three phases of

the ADViCE adaptation algorithm.

6 Conclusion

In this paper, we presented an overview of the Adaptive Distributed Computing Environ-

ment(ADViCE) being developed at the University of Arizona and Syracuse University.

The ADViCE consists of two main servers: Visualization and Editing Server (VES) and

Control and Management Server (CMS). These two servers provide all the services re-

quired to develop parallel and distributed applications, run, control, manage, and visualize

the execution of these applications. We have successfully implemented a proof-of-concept

prototype of the ADViCE architecture that provides most of the ADViCE services. We

also presented our experimental results and evaluation of the utility of the services sup-

ported by the ADViCE prototype to achieve e�cient and seamless parallel and distributed

programming environment. We are currently extending the capabilities of ADViCE to

provide e�cient adaptive scheduling algorithms and proactive management services.

S. Hariri et al. / Adaptive Distributed Virtual Computing Environment(ADViCE) 22

References

[1] J. C. Browne, S. Hyder, J. Dongarra, K. Moore, P. Newton, Visual programming and

debugging for parallel computing, IEEE Parallel and Distributed Technology, 3(1) (1995)

75{83.

[2] H. Topcuoglu, S. Hariri, W. Furmanski, J. Valente, I. Ra, D. Kim, Y. Kim, X. Bing, B. Ye,

The software architecture of a virtual distributed computing environment, in Proceedings of

Sixth IEEE International Symposium on High Performance Distributed Computing, 1997,

pp. 40{49.

[3] H. Topcuoglu and S. Hariri, A global computing environment for networked resources, in

Proceedings of International Conference on Parallel Processing, 1997, pp. 493{496.

[4] H. Topcuoglu, S. Hariri, D. Kim, Y. Kim, X. Bing, B. Ye, I. Ra and J. Valente, The Design

and Evaluation of a Virtual Distributed Computing Environment, J. of Networks, Software

Tools and Applications (Cluster Computing), 1998.

[5] P. Newton, J. C. Browne, The CODE 2.0 graphical parallel programming language, in

Proceedings of ACM International Conference on Supercomputing, 1992.

[6] R. Wolski, C. Anglano, J. Schopf, F. Berman, Developing heterogeneous applications Using

Zoom and HeNCE, in Proceedings of the Forth Heterogeneous Computing Workshop, 1995.

[7] C. Angalano, J. Schopf, R. Wolski, F. Berman, Zoom: a hierarchical representation for

heterogeneous applications, technical report cs95-451, Computer Science Department, Uni-

versity of California at San Diego, 1995.

[8] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao, Application-level scheduling on

distributed heterogeneous networks, in Proceedings of Supercomputing 96, 1996.

[9] I. Foster and C. Kesselman, Globus: a metacomputing infrastructure toolkit, in Proceedings

of the Workshop on Environment and Tools for Parallel Scienti�c Computing, 1996.

[10] H. Casanova and J. Dongarra, Netsolve: a network server for solving computational science

problems, in Proceedings of Supercomputing 96, 1996.

[11] A. Beguelin, J. Dongara, A. Geist, R. Manchek, and V. Sunderam, User Guide to PVM,

Oak Ridge National Laboratory and Department of Mathematics and Computer Science,

Emory University, 1993.

[12] Message Passing Interface Forum, MPI: A message-passing interface standard, version 1.0

May 1994.

[13] R. Butler and E. Lusk, User's guide to the p4 programming system, Mathematics and

Computer Science Division, Argonne National Laboratory.

[14] S. Park, S. Hariri, Y. Kim, J.S. Harris, and R. Yadav, NYNET communication system

(NCS): a multithreaded message passing tool over ATM network, Proceedings of the Fifth

IEEE International Symposium on High Performance Distributed Computing, 1996, pp.

460{469.

[15] L. Smarr and C. Catlett, Metacomputing, Communications of the ACM, 35, 6, (June 1992)

44{52.

[16] A. Grimshaw and W. Wulf, Legion - A View from 50,000 Feet, Proceedings of Fifth IEEE

International Symposium on High Performance Distributed Computing, 1996, pp. 89{99.

[17] K. Dincer, World-Wide Virtual Machine: A Metacomputing Environment Integrating

World-Wide Web and High Performance Computing and Communication Technologies,

Ph.D. Thesis, Syracuse University, 1997.

[18] J. Gehring and A. Reinefeld, MARS - A framework for minimizing the job execution time

in a metacomputing environment, Future Generation Computing Systems, (1996).

[19] Mike Litzkow, Miron Livny Experience with the condor distributed batch system, in IEEE

Workshop on Experimental Distributed Systems, 1990.

[20] M. A. Hiltunen and R. D. Schlichting, Adaptive Distributed and Fault-Tolerant Systems,

International Journal of Computer Systems Science and Engineering, vol. 11, nbr. 5, pp.

S. Hariri et al. / Adaptive Distributed Virtual Computing Environment(ADViCE) 23

125-133, September 1996.

[21] George H. Forman, John Zahorjan, The Challenges of Mobile Computing, IEEE Computer,

Vol. 27, pp. 33-47, April, 1994.

[22] M. Satyanarayanan, Fundamental Challenges in Mobile Computing, Fifteenth ACM Sym-

posium on Principles of Distributed Computing, Philadelphia, May, 1996.

[23] S. Ahuja, N. Carriero, and D. Gelernter, Linda and Friends, IEEE Computer, vol. 18, No.

8 , pp. 26-34, August, 1986.

[24] P. Keleher, S. Dwarkadas, A. Cox and W. Zwaenepoel, Treadmarks: Distributed shared

memory on standard workstations and operating systems, Proceedigns of the 1994 Winter

Usenix Conference, pp. 115-131, January, 1994.

[25] K. Johnson, M. Kasshoek and D. Wallach, CRL: High-Performance All-Software Distributed

Shared Memory, Proceedings of the Fifteenth Symposium on Operating Systems Principles,

December, 1995.

[26] W. Liang, C. King and E. Lai, Adsmith:An e�cient object-oriented DSM environment on

PVM, Proceedings of the 1996 International Symposium on Parallel Architecture, Algorithms

and Networks, pp. 173-179, June 1996.

