

Experimental Results and Evaluation of the Proactive Application Management
System (PAMS)

Yoonhee Kim*, Salim Hariri **, and Muhamad Djunaedi**

* EECS Dept. Syracuse University ** HPDC Laboratory
Syracuse, NY 13244 Dept.of Electrical and Computer Engineering,
yhkim@top.cis.syr.edu University of Arizona

Tucson, AZ 85721
{Hariri,djunaedi}@ece.arizona.edu

ABSTRACT
Management of large-scale Network-Centric Systems
(NCS) and their applications is an extremely complex and
challenging task due to factors such as centralized
management architectures, lack of coordination and
compatibility among heterogeneous network management
systems, and the dynamic characteristics of networks and
application bandwidth requirements, just to name a few.
The goal of our research is to develop a hierarchical
framework to achieve end-to-end intelligent proactive
network management system that can be used to manage
large scale network centric systems and their applications.
This framework will provide the appropriate tools to write
management programs to control and manage any
function or property (performance, high assurance, fault,
quality of service, etc.) of the network-centric systems
and their applications during all the phases of their
operations. In this paper, we present a framework to
develop proactive and adaptive management services and
an implementation of a Proactive Application
Management System (PAMS) based on that framework.
Our implementation approach utilizes delegated mobile
agents to implement the management functions required
by any network-centric system and/or application. We
also present experimental results and evaluation of the
management services offered by the PAMS prototype.

1. Introduction

Most of the current network management technologies
focus on collecting management information and
providing a graphical-user interface to assist network
managers in visualizing the collected management
information and carrying out their management tasks
(passive management). Furthermore, the type of
information collected is not appropriate to achieve end-to-
end proactive management functions. There has been little

work done to make network management systems
proactive and intelligent. By making network
management systems proactive, all management functions
will be improved and the network can respond in a timely
manner to any changes in application requirements and
available resources. The development of programmable
application management schemes has not been
investigated thoroughly and is not well understood. The
main goal of our research is to remedy this problem and
to develop a management framework to achieve end-end
proactive application centric management.

Network management products have taken a long
road to the current state. They started with the Simple
Network Management Protocol (SNMP) version 1 and
then version 2 [Case90, Case93], followed by the
Management Information Base (MIB) version I and then
version II, and Remote Monitoring (RMON) version I and
version II[Mccl90a, Mccl90b,Mccl91,Wald95]. Recently,
there has been an intensive effort to use web-based
technologies (JMAPI and WBEM) to build network
management tools [Sun96, micr97a, micr97b]. The
limitations and problems with network management are:
• Most of the commercial network management

systems collect management information about
packet throughput, delay, and packet errors at input
and output of network interfaces. For end-to-end
proactive application and network management, we
need to collect management information relevant to
applications and computing resources such as the
current loads on computers, the types of processes
accessing the file systems, types of users and their
access pattern profiles, security information, and so
on. Furthermore, we need to have the ability to
program the type of information to be collected and
for what period of time. This approach enables us to
dynamically collect any required management
information and for the required period of time rather

mailto:yhkim@top.cis.syr.edu
mailto:Hariri@ece.arizona.edu

being running all the time and consuming
unnecessary computing and storage resources.

• The amount of information collected for large
networks (enterprise networks) is huge. It is very
difficult for network managers to efficiently utilize
the overwhelming amount of management
information to improve network performance,
utilization and applications. This problem becomes
extremely complex when the size of the network
increases to hundreds or thousands of nodes spanning
several organization domains or countries. We need
to develop techniques that can process raw
management information and produce concise
management information filters. These management
filters can then be used to achieve efficient and robust
analysis of large-scale networks and their
applications.

• The literature is rich with algorithms and techniques
to dynamically route packets, automatic
reconfiguration, adaptive scheduling of resources,
dynamic fault tolerance, etc. However, very little is
done to apply these algorithms/techniques to achieve
proactive real-time management of networks and
their applications.

• Most of the management functions such as
configuration, resource allocations and scheduling
are done manually by network managers. This makes
the management process slow, not scalable, and not
cost-effective. Furthermore, this manual management
scheme can not meet the stringent real-time
requirements of some critical applications.
We do need to develop novel management techniques

that eliminate these problems and provide scalable
management capabilities to efficiently, intelligently, and
cost-effectively manage any network application running
on any network of any size and at any time. In this paper,
we present a framework for a network management
system that provides management services to bridge the
gap between application development and network
management as well as build management ready
applications. Our approach for the implementation of the
network management framework is hierarchical and
consists of three layers: Network and Protocol
Management (NPM), Management Computing System
(MCS), and Application Centric Management (ACM).
The NPM is responsible for the collection of management
information not only about the network devices, but also
information related to computer processes, file systems,
user access information and patterns, and protocols. The
NPM will also perform tasks to manage the network
devices, protocol functions, computer processes and file
systems. The MCS provides the core management
functions to manage system-wide resources from a system
perspective rather than component perspective as is done
in NPM. The ACM provides the capability to program
MCS functions to control and proactively manage a given

network application during all the life cycles of any
network application. We present also the architecture of a
Proactive Application Management System (PAMS) and
evaluate the performance of some of the management
services offered by the PAMS prototype.

The organization of the paper is as follows. In
Section 2, we overview the current research of intelligent
mobile agents. In Section 3, we describe our network
management framework and the main software modules
to implement this framework. In Section 4, we present the
architecture of a proactive application management
system implemented based on our management
framework. In Section 6, we evaluate the performance of
some of the management functions offered by PAMS
prototype. In Section 6, we present a summary and
concluding remarks.

2. Framework for Application Centric

Management

Figure 1 A framework for end-to-end proactive network
management system.

The management framework we are developing can

be viewed in terms of three systems: Network and
Protocol Management (NPM), Management Computing
System (MCS), and Application-Centric Management
(ACM). The NPM is responsible to collect management
information not only about the network devices, but also
information related to computer processes, file systems,
user access information and patterns, and protocols. The
NPM will also perform tasks to manage the network
devices, protocol functions, computer processes and file
systems. The MCS provides the core management
functions to manage the whole system resources from
system perspective rather than component level
perspective. In order to achieve that, the management
information collected at the lower level (NPM) will be
analyzed and abstracted into suitable data structures or
format to perform efficient system level management
functions. The MCS design concept is analogous to the
operating system in computing systems. The operating
system manages the computing system resources

Application Centric Management (ACM)

Management Computing System (MCS)

Network and Protocol Management (NPM)

(memory, I/O, CPU, and processes). Similarly, the MCS
acts as an automatic system manager that provides
management functions to achieve application centric
management tasks.

Application
Specification

Application
Development

Application Deployment

Application Operations

Application Maintenace

 Specification
Management

Development
Management

Deployment
Management

Operations
Management

Maintenance
Management

Figure 2. Software Development cycle with Management

Activity

The ACM provides two main functions: Assist in the

development of application management routines, and
provide intelligent proactive management for a wide
range of network applications. The number and type of
network applications become increasingly large and their
computing, storage, and network requirements differ
widely. In addition to the difficulty that can be
contributed to the complexity, heterogeneity, and size of
the emerging network applications, the development of
such applications do not take into consideration the
management issues and requirements. Currently, the
management of such applications follows force-fitting
approach that utilizes the commercial network
management services that are based on SNMP or CMIP
standards.

Our approach is to develop system management
functions (provided by the MCS) that can be programmed
by applications to meet their requirements during all the
life cycles associated with any application (e.g.,
specification, development, deployment, operations, and
maintenance). Figure 2 shows how we can integrate the
software development life cycle of an application with the
management activities of that application [Hari98].

3. Architecture of the Proactive Application
Management System (PAMS)

In this section, we first overview the architecture of a
Proactive Application Management System (PAMS)
being implemented at the HPDC Laboratory at the

University of Arizona. Then, we benchmark the use of
mobile agent technologies to control and management of
several distributed applications. The architecture of
PAMS is shown in Figure 3. The main key components of
PAMS can be described in term of three services: ACM
Service, MCS Service, and NPM Service.

ACM Layer

MCS Layer

NPM Layer

Application Managment Editing Service (AMES)

Management Computing System Service (ACMS)

ADM

TA1

Task
1

TIB

TAn

Task
n

TIB
TA2

Task
2

TIB

Application
Execution

Environement(Api)

SA
S SA

A

ADM: Application Delegated Manager
TA1..n: Task Agent1..n

TIB: Task Information Base
S: Sensor

A: Actuator

Network

Abstract NEtwork Infromation Service

Performa
nce Fault Security Configura

tion

Delegated Management Agent Templates

SNMP ���������
CMIS/P WBEM

Figure 3. The architecture of PAMS

The ACM Service provides the user with the tools

required to describe and characterize the management
requirements of any network-centric system or
application. The MCS provides the management services
to automatically configure the application or system
resources, monitor and control the execution of an NCS
application. The NPM service provides the appropriate
interface to existing network management systems and
utilize their services in order to proactively manage and
control the operations of the NCS or its applications. The
management service categories are classified in the paper
as ADMs, Sensors and Actuators [Hari20].

When a user develops an application using PAMS

user interface subsystem, the application requirements are

described and characterized by an application graph as
shown in Figure 3. This application graph is then
interpreted by the application generator and fed into the
MCS server. The MCS server checks the Management
Agent (MA) templates and generates the appropriate
Application Delegated Manager (ADM) appropriate for
application configuration, monitoring and to manage and
control the application execution during runtime. Once
the application ADMs required to execute and manage the
application are identified, the next step is to download the
Task Agents (TAs) and the appropriate execution codes
into the selected computing resources. On each machine
selected, an Task Agent (TA) is activated in order to start
the execution of the monitored task on that machine.

4. Proactive Application Management
Algorithms

Figure 4. The Runtime Architecture of the Proactive

Application Management System

In this section, we present a general approach to

actively manage any desired property of an application
and/or a system. The Management Computing System
Service (MCS) services include the management of
application performance, fault, security, accounting,
resource configuration and application configuration (see
Figure 4.). For each management service, there is a
Delegated Management Agent (ADM) that will be
responsible for the deploying the appropriate Task Agents
(TAs) on the machines selected to run the application
tasks under consideration. The TAs are responsible to
start, monitor and control the application’s tasks and
communicate with the ADM. The ADM needs to interact
with MCS to obtain global states of the system and
allocate new resources to run the application tasks
whenever it is required to maintain the quality of service
requirements of the managed application. To monitor the
execution of the application’s tasks, we use sensors to
periodically monitor the task’s execution and the state of

the machine running the application task, and then store
this information in an Task Information Base (TIB). We
also use actuators to provide the TA with the capability to
control the execution of the application task (suspend,
resume, migrate, etc.) and migrate the task to run on
another machine. The main management activities of an
TA can be abstracted into three procedures or functions:
Change_Detection, Analsis_Verification, and
Adaptation_Plan. The Change_Detection procedure is
responsible for detecting the conditions in which the
monitored tasks deviates from the acceptable behavior or
operation (e.g., the task performance degrades severely,
the task or the machine running the task encounters
software or hardware failures). The Analysis_Verification
algorithm is invoked whenever a change is detected in the
operation of application tasks to make sure that these
changes are real and not false alarms. Once the alarming
event is verified and its type is identified, the Adaptation
Plan procedure is invoked to execute the appropriate
adaptation scheme to basically fix the problems detected
during the application execution. Figure 5 shows the
general Proactive Application Management Algorithm for
the PAMS prototype.

Proactive_Application_Management Algorithm

1 While (AE(Api) is running) do
2 For each Service Si∈ MCS(Api),
3 Si ∈ {Sft, Sperf, Ssecurity, Sconfig, Saccount}
4 Start Service Si(Api),
5 Monitor Si(Api)
6 EndFor
7 EndWhile
End Proactive_Application_Management_Algorithm

Figure 5 Proactive Application Management Algorithm

The application Execution Environment (AE(Api))

refers to all the resources allocated to run a give
application ApI . While the application is running (step 1 in
the Proactive Application Management Algorithm of
Figure 5), the MCS starts all the PAMS services (Step 2,3
in the algorithm of Figure 5) associated with that
application and then monitor the execution of that
application to detect any changes or deterioration while it
is running.

Figures 6, 7, 8 and 9 show procedures required to
achieve proactive performance management (Sperf). While
the application is running, the application’s tasks are
monitored by the TAs (step 3 through 14 in Figure 6). In
the current implementation, we use the CPU utilization
metric to predict the expected task performance. Once any
unacceptable change in the CPU load is detected as in the
Change_Detection procedure (Figure 7), the
Analysis_Verification procedure (Figure 8) evaluates and
predicts the total application execution time. If the
predicted application execution time is not acceptable to
meet the application requirements (e.g., the application
can not meet it is own deadline requirements), the

MCS: Managment Computing
System
ADM: Application Delegated
Manager
TA: Task Agent
TIB: Task Information Base

Perfermance

TA

T1

ADM

 fault

TA

TAT2

MCS
 security

Candidates

TA

TA
Change_Detection

Analysis_Verification
Adaptation_Plan

TIB

Change_Detection
Analysis_Verification

Adaptation_Plan

TIB

Sensor

TIB

Configuration

Sensor

Sensor

T3

Actuator

Actuator

procedure recommends certain actions (e.g., migrate the
task to another machine). In the Adaptation_plan
procedure (Figure 9), the adaptation plan is executed (step
10 in Figure 6).
Procedure Sperf
1 While AEE(Api) is runnning do
2 Set up Monitoring Environment
3 For each Task Ti ∈ Api do
4 Start Sensor (TIB(Ti))
5 While (Ti is running) do
6 CPU_load =
Change_Detection(CPU_load)
7 If (CPU_load > Threshold)
then
8 EventType =
Analysis_Verification (CPU_load)
9 If (eventType =
migration) then
10
 Adaptation_plan (EventType, Candidate)
11 Endif
12 Endif
13 EndWhile
14 EndFor
15 EndWhile
Endof Procedure Sperf

Figure 6 Performance Management Service Algorithm

Procedure Change_Detection(TIB)
1 monitor CPU_load from TIB
2 If CPU_load change then
3 Retrun CPU_load
4 Else return No_Event
5 Endif
End of Procedure Change_Detection

Figure 7 Change Detection Algorithm

Procedure Analysis_Verification (Eventload)
 /* Perform Application Performance Prediction */
1 Remaining_time ! Base_time – Elapsed_time

2 Remaining_deadline ! Deadline – Elapsed_time
4 If Predicted_remaining_time > Remaining_deadline then

/*Ask ADM to get migration and candidiate K */
5 Migration !Get_Candidate (Remaining_time,

Predicted_remaining_time, Remaining_deadline)
6 If Migration then return (migration)
7 Else return (noaction)
8 Endif
End of Verification_Analysis

Figure 8 Analysis and Verification Algorithm

Procedure Adaptation_Plan(event,candidate)
 If event= migration then
 A.suspend(Ti)
 state ! Restore_state(Ti);
 A.migrate(Ti, Candidate, state)
 endif
End of Adaptation_plan

Figure 9 Adaptation Plan Algorithm

The Analysis_Verification procedure shown in

Figure 8 involves analyzing the current state of the system
resources and predict the performance of its task

execution. The task performance analysis takes into
consideration the current load conditions in the network
and the computing resources and how much time has been
spent in the application execution. Once we obtain the
CPU utilization(Eventload(t)), we could estimate the
remaining execution time for the task as,

where Remaining_time is the average execution time
under Baseload. In step 3 of the algorithm, we use the
Predicted_remaing_time equation to predict the
remaining execution time. In Step 4, we check to see if
the task can meet its deadline requirements. In this case,
there are three possible scenarios: 1) Task Meets its QOS
requirements (line 7); 2) Task Can not meet its QOS
requirements (step 6), but can be met by migration to a
backup resource (line 5); and 3) The system fails to meet
the task QOS requirements (line 6) if there is no
candidate.
4.1 Benchmarking of PAMS Performance
Management Service

In this experiment, we benchmarked an application
with three tasks running on a cluster of workstations (e.g.,
SUN SPARCstations). We measured the overhead
associated with implementing PAMS performance
management service for two application types: small
application with an average execution time of 30 seconds
and a large application with an average execution time of
450 seconds. Figure 10 shows the PAMS overhead for the
small application when the system loads are under 5% for
two machines and 24% for the third machine. If during
the application execution, the load on two machines has
suddenly increased to 99% CPU utilization, PAMS will
detect this change and eventually decides on migrating the
tasks running on the loaded machines to less loaded
machines. If the migration is performed, PAMS was able
to improve the performance by 25% as shown in Figure
11. For large-scale applications (350 ~500 seconds),
PAMS is more efficient in maintaining the performance
of the application. Figure 12 shows that by using PAMS
to manage the performance, we can achieve a 75%
performance gain when the load on the machine running
task 1 is increased to a 99% CPU utilization.

0
10,000
20,000
30,000
40,000
50,000
60,000

T1(<5%) T2(<5%) T3(<24%) Total
Tasks

m
se

c

W/O PAMS

W/ PAMS

Total PAMS
Overhead:17%

Figure 10 Scenario 1:Application Execution with 3 Tasks
(Size : Small Status : Normal)

)(*_Re__Pr tEventload
Baseload

Timemainingtimeremainingedicted =

)(*_Re__Pr tEventload
Baseload

Timemainingtimeremainingedicted =

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000

T1(>99%) T2(>99%) T3(<24%) Total
Tasks

m
se

c

W/O PAMS

W/ PAMS

Total Performance
Gains:25%

Figure 11 Scenario 2: Application Execution with 3 Tasks
(Size : Small Status : Processor of T1 and T2 are overloaded)

5. Adaptation Algorithm for PAMS Fault
Management Service

This service consists of three major modules: MCS,
Delegated Management Agent and Application Agent.
MCS handles the message flows in the system. It displays
the monitoring result from each agent. MCS provides the
all types of mobile agents that are required to maintain
any application service. In our current implementation,
we used RMI scheme to implement mobile agents. The
management agents communicate with Application
Agents in each machine using UDP/IP protocol.

0

200

400

600

800

1,000

T1(>99%) T2(<5%) T3(<24%) Total
Tasks

se
c

W/O PAMS

W/ PAMS

Total Performance
Gains:75%

Figure 12 Scenario 3: Application Execution with 3 Tasks
(Size : Large Status : Processor of T1 is overloaded)

We apply the same proactive application

management algorithm to manage the fault-tolerance
service of any application. In the current implementation,
the fault model assume fail-stop model; the task once it is
crashed, it stop the execution. The application is
abstracted as a set of tasks. In PAM fault-tolerance
service, we assign an application agent to each task in the
application. The TA monitors the task execution and is
responsible for fault-detection and recovery. Similar to
the application performance management algorithm, there
are three procedures: change detection, verification and
incorporating adaptation plan as shown in Figure 13.
Figure 14 shows the main steps followed by the algorithm
to achieve fault-tolerance execution of an application with
two tasks. The sensor maintains the status of the task
execution in an Task Information Base (TIB) (steps 1 and
2). Once the sensor detects the failure in a task, say Task
1, it reports this events to the Task Agent (TA) (Step 3).
The TA can either try to recover locally by retrying the

task on the same machine by invoking the services
offered by the Actuator. Otherwise, it reports the events to
the Application Delegated Manager (ADM) that is
responsible for providing the fault-tolerance for the
application (Step 4). The ADM will then interact with the
MCS to determine the new machine that can run the
faulty task (Step 5). The ADM will then start an
application agent on the selected machine to resume the
execution of the migrated task and also maintains its
fault-tolerance execution (Step 6). The TA will in its turn
setup the task execution environment and monitors its
execution (Steps 7 and 8).

Procedure Fault-Tolerance Service (SFT)
1 while ApplicationEnvironment(Appi)
2 for each Ti ∈ Appi
3 Setup_TA(Ti);
4 Start sensor(TIB(Ti));
5 while (Ti == “RUNNING”)
6 execStatus <== Change_Detection(Ti);
7 if (execStatus == “TASK_STOP”)
8 EventVerification <==
Analysis_Verification(execStatus(Ti));
9 Adaptation_Plan(EventVerification(Ti), Candidate);
10 endif
11 endwhile
12 endfor
13 endwhile
EndProcedure

Procedure Setup_TA(AgentID(Ti))
 if (AgentID(Ti) == “STOP”)
 Redownload agent source;
 Restart AgentID(Ti) execution;
 Endif
End Procedure

Procedure Change_Detection(Ti)
 execStatus <== Read_TIB(Ti);
 return execStatus;
EndProcedure

Procedure Analysis_Verification(execStatus(Ti))
 EventVerification <== Check_Status_TIB(execStatus(Ti));
 return EventVerification;
EndProcedure

Procedure Adaptation_Plan(EventVerification(Ti), Candidate)
 TaskPlan <== Retrieve_Adaptation_Plan(EventVerification(Ti));
 machine <== Select_Machine(TaskPlan, Candidate);
 if (machine == “LOCAL”)
 Resume Ti execution;
 else
 Setup_migration_agent(Ti);
 Resume Ti execution;
 Endif
EndProcedure

Figure 13 Adaptive Fault Tolerance Algorithm

5.1 Benchmarking of PAMS Fault Management
Service

We used four machines in evaluating the application
fault-tolerance service; one machine used as the MCS
management stations, and three machines to run and

manage the application tasks. We benchmarked the
application fault-tolerance service using different size
applications. We evaluated PAMS performance for three
task granularities: 1) Small application with average task
execution time of 60 seconds, 2) Medium size
applications with average task execution time of 600
seconds, and 3) Large size applications with average task
execution time of 6000 seconds. Figure 15 shows the
overhead incurred by using PAMS fault-tolerance service
for these applications when number of faulty tasks vary
from one to three. PAMS overhead for small application
is around 14% while it is less than 2% for large
applications.

Figure 14 An Application Fault Tolerance Service

Example.

6. Summary and Conclusion Remark

In this paper, we presented a general approach to
develop application centric management. We also
described an architecture to achieve proactive application
management. Our approach is scalable and utilizes
delegated agent approach to implement distributed
management services. We presented preliminary results
of the application performance and fault-tolerance
management services offered by PAMS. Our
experimental results showed that application performance
can be improved significantly using PAMS’ proactive
management scheme. Our results showed also the low
overhead incurred by PAMS to achieve application fault-
tolerance execution. We are currently implementing
additional services to balance the load across the network
resources and maintain the system and application
security requirements.

0
2
4
6
8

10
12
14
16

Time
Overhead

(%)

1 2 3

Number of Task
Failures

Small (60s)
Medium (600s)
Large (6000s)

Figure 15 PAMS fault-tolerance service overhead.

7. Reference
[Case90] J. Case, M. Fedor, M. Schoffstall, and C. Davin,
“Simple Network Management Protocol (SNMP),” RFC 1157,
May 1990
[Case93] . McCloghrie, M. Rose, and S. Waldbusser,
“Introduction to version 2 of the Network Management
Framework,” RFC 1441, April 1993
[Mccl90a] K. McCloghrie and M. Rose, “Management
Information Base for Network Management of TCP/IP-based
Internets,” RFC 1156, May 1990
[Mccl90b] K. McCloghrie and M. Rose, “Structure and
Identification of Management Information for TCP/IP-based
Internets,” RFC 1155, May 1990
[Mccl91]K. McCloghrie and M. Rose, “Management
Information Base for Network Management of TCP/IP-based
Internets: MIB-II,” RFC 1213, March 1991
[Sun96] Sun Microsystems, Inc. “Java Management API Home
Page,”
http://java.sun.com/products/JavaManagement/index.html,
November, 1996
[Micr97a] Microsoft corporation, “Web-Based Enterprise
Management Initiative Home Page,” http://wbem.freerange.com,
1997
[Micr97b] Microsoft corporation, “Microsoft Web-Based
Enterprise Management Professional Developers Kit.” 1997
[Wald95] S. Waldbusser, “Remote Network Monitoring
Management Information Base,” RFC 1757, Feb. 1995
[Hari98] Salim hariri, Y. Kim, “The End-to-End Proactive
Management”, submitted to IEEE/IFIP 1998 Network
Operations and Management Symposium(NOMS98), New
Orleans, Feb, 1998
[Hari20] Salim hariri, Y. Kim, M. Djunaedi, “Design and
Analysis of a Proactive Application Management System
(PAMS)”, submitted to IEEE/IFIP 2000 Network Operations
and Management Symposium(NOMS2000), Hawaii, April, 2000

http://java.sun.com/products/JavaManagement/index.html
http://wbem.freerange.com/

	* EECS Dept. Syracuse University	** HPDC Laboratory
	Syracuse, NY 13244 		Dept.of Electrical and Computer Engineering,
	yhkim@top.cis.syr.edu 	University of Arizona
	Tucson, AZ 85721
	Proactive_Application_Management Algorithm
	5			Monitor Si(Api)
	Procedure Sperf
	EndProcedure
	Figure 13 Adaptive Fault Tolerance Algorithm

	5.1 Benchmarking of PAMS Fault Management Service

