
Evaluation of PAMS’ Adaptive Management Services

Yoonhee Kim,
Department of Electrical Engineering and

Computer Science,
Syracuse University
Syracuse, NY 13244
yhkim@ecs.syr.edu

Salim Hariri, and Muhamad Djunaedi
Department of Electrical and Computer

Engineering, University of Arizona
Tucson, AZ 85721

{hariri, djunaedi}@ece.arizona.edu

ABSTRACT

Management of large-scale parallel and distributed
applications is an extremely complex task due to
factors such as centralized management architectures,
lack of coordination and compatibility among
heterogeneous network management systems, and
dynamic characteristics of networks and application
bandwidth requirements. The development of an
integrated network management framework that is
proactive, scalable and robust is a challenging
research problem. In this paper, we present our
approach to implement a Proactive Application
Management System (PAMS). PAMS architecture
consists of two main modules: Application Centric
Management (ACM) and Management Computing
System (MCS). The ACM module provides the
application developers with all the tools required to
specify the appropriate management schemes to
manage any quality of service requirement or
application attribute/functionality (e.g., performance,
fault, security, etc.). The MCS provides the core
management services to enable the efficient proactive
management of a wide range of network applications.
The services offered by the MCS are implemented
using mobile agents. Furthermore, each MCS service
can be implemented using several techniques that can
be selected dynamically by invoking the corresponding
mobile agent template for the service implementation.
In this paper, we present our preliminary results of
evaluating PAMS management services to manage the
performance and fault tolerance execution of three
applications of different sizes (small, medium and
large). The experimental results demonstrate that our
agent-based approach can lead to significant gains in
the performance and low overhead fault management
of parallel/distributed. For example, the overhead
incurred in the application fault management to
tolerate one task failure, two task failures, and three
task failures in a medium to large size application is
less than 0.02%.

1. Introduction

The emerging high speed networks and the
advances in computing technology are important
driving forces to merge the communications and
computing technologies that will result in an explosive
growth in network complexity, size and networked
applications. Furthermore, we are observing an
explosive growth in network applications that use
computing, networking and storage resources that can
be accessed from global national and/or international
networks. The management of such networks and their
distributed applications has become increasingly
complex, and unmanageable. Unfortunately, the
current network management technologies focus on
collecting management information and manually
manage the network using platform-specific products.
There has been little research toward the development
of intelligent, efficient, proactive end-to-end
management of large networks and their applications.

The increased importance of network management
for large-scale networks has stimulated research on
novel approaches to reduce the management
complexity and cope with dynamic management
change. Instead of a centralized manager, multi-
managers and their communication protocols are
proposed such as Management by Delegation
(MbD)[4] and Code Mobility[5]. Another approach
replaces the manger-agent relationship among
managers and agents with peer-to-peer relationship
using the Common Object Request Broker
Architecture (CORBA) has been studied in the area of
Telecommunications Information Networking
Architecture (TINA) framework [2]. A few web-based
approaches to network management have emerged
recently (JMAPI, WEBEM). [3].

However, distributed network management of
applications over heterogeneous has not fully studied
and is becoming increasingly important. Recently,
Application Management MIB [7] and MIB for
Application [6] have been proposed to collect and
store common application management information in

IETF. Common Information Model (CIM) by DMTF
is proposed a similar process information definition
for WBEM [Patrck98]. Still, there has been little work
done to achieve programmable application
management schemes and is not well understood.

ACM Layer

MCS Layer

NPM Layer

Application Managment Editing Service (AMES)

Management Computing System Service (ACMS)

ADM

TA1

Task1

TIB

TAn

Taskn

TIBTA2

Task2

TIB

Application
Execution

Environement(Api)

SA
S SA A

ADM: Application Delegated Manager
TA1..n: Task Agent1..n

TIB: Task Information Base
S: Sensor
A: Actuator

Network

Abstract NEtwork Infromation Service

Performance Fault Security Configuration

Delegated Management Agent Templates

SNMP
����������

CMIS/P WBEM

Figure 1. The Runtime Architecture of the Proactive
Application Management System.

In this paper, we present the design and evaluation of a
Proactive Application Management System (PAMS)
prototype being developed at the University of
Arizona. PAMS provides adaptive application
management services to dynamically manage the
performance and fault of parallel/distributed
applications in an unreliable and heterogeneous
computing environment. PAMS implementation is
based on using mobile agents that can be programmed
to maintain the quality of service requirements of

distributed applications. We have evaluated three
adaptive techniques to manage the performance and
fault tolerance of distributed applications. The first
approach is based on using active redundancy to
improve performance and tolerate faults. The second
approach is based on passive redundancy in which a
set of machines is designated as backup machines to
be used to replace any of the machines assigned to the
application tasks in order to improve performance or
to tolerate software/hardware failures. The third
approach does not introduce redundancy in the system
and it requires task migration to another machine in
order to improve performance or to tolerate
software/hardware failures. The preliminary results of
applying these techniques demonstrate that our agent-
based approach can lead to significant gains in the
performance and low overhead fault management of
parallel/distributed application. The organization of
the paper is as follows. In Section 2, we give a brief
overview of the PAMS prototype. In Section 3, we
discuss our approach to benchmark and evaluate the
adaptive performance management services offered by
PAMS. In Section 4, we benchmark and evaluate the
adaptive fault management service.

2. Architecture of the Proactive
Application Management System (PAMS)

The architecture of PAMS is shown in Figure 1.

The ACM layer provides application developers with
the tools required to specify and characterize the
application requirements in terms of performance,
fault, security, and also specify the appropriate
management scheme to maintain the application
requirements. Once the application management
requirements are defined using the ACM tools, the
next step is to utilize the management services
provided by the Management Computing System
(MCS) to build the appropriate application execution
environment that can dynamically control the allocated
resources to maintain the application requirements
during the application execution. The MCS assigns
one Application Delegated Manager (ADM) to
manage one or more application attributes
(performance, fault, security, etc.). For each task in the
application, the ADM launches an appropriate Task
Agent (TA) to monitor and manage the task execution.
The TA monitors the task execution using appropriate
task sensors and intervenes whenever the task
execution on the assigned machine can not meet its
requirements using the task actuators that can suspend,
save task execution state, or migrate the task execution
to another remote machine. Our approach supports

several strategies to maintain each task attribute. For
example, to manage the task performance, ADM could
use active redundancy, passive redundancy, or by
migrating the task execution to a faster machine when
the assigned machine becomes heavily loaded. The
appropriate management scheme can be selected at
runtime depending on the system state and the current
available resources as will be discussed in further
detail later.
The main management activities of TA can be
abstracted into three procedures or functions:
Change_Detection, Analsis_Verification, and
Adaptation_Plan. The Change_Detection procedure is
responsible for detecting the conditions in which the
monitored tasks deviates from the acceptable behavior
or operation (e.g., the task performance degrades
severely due to bursty traffic conditions, or due to
software or hardware failures). The
Analysis_Verification algorithm is invoked whenever
a change is detected and to make sure that the change
is real and not due to false alarms. Once the change
event is verified and its type is identified, the
Adaptation Plan procedure is invoked to execute the
appropriate adaptation scheme.

Proactive_Application_Management Algorithm
1 For each Ap Api∈ ACM(Api),
2 Assign Application Delegated Manager ADM
(Api)
3 Lunch ADM (Api)
4 While (AEE(Api) is running) do
5 For each Service Si∈ APi
6 Si ∈ {Sft, Sperf, Ssecurity, Sconfig}
7 Start Service Si(Api),
8 Monitor Si(Api)
9 EndFor
10 EndWhile
End Proactive_Application_Management_Algorithm

Figure 2 Proactive Application Management Algorithm

Figure 2 shows the general Proactive Application

Management Algorithm for the PAMS prototype. The
application Execution Environment (AEE(Api)) refers
to all the resources allocated to run a give application
ApI . While the application is running (step 4 in the
Proactive Application Management Algorithm of
Figure 2), the ADM starts all the task agents required
to manage the application requirements (performance,
security, fault, etc.) (Step 7,8 in the algorithm of
Figure 2) and then monitor the execution of that
application to detect any changes or deterioration
while it is running. In what follows, we discuss PAMS
approach to use mobile agents to manage the

performance and fault tolerance of parallel/distributed
applications.

3. Adaptive Performance Application
Management

Figure 3 Controlling Techniques of Performance

Management

Performance management for distributed systems

is complex due to the existence of many components
that need to be monitored and controlled. Performance
management techniques can be broadly characterized
into two schemes: monitoring and controlling.
Monitoring is the function that tracks the performance
activities of the resources, networks and their
applications. The controlling function enables
performance management to make adjustments to

Candidates

TA

T1

ADM

TA TA

T2 T3

TA

T1

TA TA

T2 T3

TA

T1

ADM

TA TA

T2 T3 T1

TA

T2 T3

TA

T1

ADM

TA TA

T2 T3

TA TA TA

(a) Active Redunduncy

(b) Passive Redunduncy

T2

(c) Migration

Perf. fault
MCS

 security Configuration

Perf. fault
MCS

 security Configuration

Perf. fault
MCS

 security Configuration

improve performance. We need algorithms and
techniques to derive appropriate performance metrics
[9][10], and resource indicators for different levels of
performance. Adjusting threshold schemes [13] and
polling intervals [14] are the main issues in
implementing the performance monitoring function.
Performance statistics can be used to recognize
potential bottlenecks or failures before they cause
problems. Five major prediction models for
performance predictions for parallel or distributed
applications are discussed in [10]. With performance
prediction, performance management schemes can
proactively manage large and complex systems.
Dynamic load-balancing [12] and process migration
[11] have also been studied to provide appropriate
performance management.

In our application performance management, we
monitor the execution times of an application as well
as the resource and network utilization. In addition, we
use redundancy techniques and task migration to
implement the control functions required to
dynamically manage the application performance. In
this paper, we evaluate three techniques to manage the
application performance: active redundancy, passive
redundancy and migration. Each technique is
implemented as an agent template as shown in Figure
3.
The active redundancy scheme duplicates the
execution of the application on two machines (see
Figure 3 (a)). In this scheme, the task agent will pick
up the results from the first machine that completes the
task execution. This approach has several advantages.
First, lead to better performance because we always
pick up the results from the faster machine. Second, it
simplifies the performance management since no need
to perform task migration or load balancing in the
system due to load changes or bursty traffic
conditions.

0

200,000

400,000

600,000

800,000

1,000,000

small
size

large
size

Tasks

load <5%

load <99% and
no migration
load <99% and
migration

Figure 4 Application Execution with migration scheme

The passive redundancy assigns each task to a
primary machine that will run the task and another
machine to be used as a backup whenever the task
performance deteriorates on the assigned machine (see
Figure 3 (b)). The backup machine is kept-up-to-date
in order to be ready to resume the task execution from
the last updated checkpoint. The main advantage of
this approach is that it needs less resources than the
active redundancy approach. In this scheme, one
backup machine can be used as a backup machine to
several tasks.

The third approach does not introduce redundancy
and improves the performance by task migration (see
Figure 3 (c)). However, the overhead of task migration
is high and it should be used only for large task
granularities where the migration overhead is
relatively small when compared to the task execution
time.

0
200,000
400,000
600,000
800,000

1,000,000

small
size

large
size

Tasks

load <5%

load <99%, no
redundancy

load <99%,
active
redundancy
load <99%,
passive
redundancy

 Figure 5 Application Execution with Redundancy policies

We benchmarked the overhead associated with
implementing PAMS performance management
service for two application types: a small application
with an average execution time of 30 seconds and a
large application with an average execution time of
450 seconds. We evaluated the use migration, active
redundancy and passive redundancy techniques to
dynamically mange the performance of these two
applications. If, during the application execution, the
load on a machine suddenly increased to 99% CPU
utilization, the migration approach was able to
improve the performance by 25% for the small size
application (approximately 40 seconds) and by 75%
for the large application (approximately 308 seconds)
as shown in Figure 4. The active redundancy
technique achieved a 31% performance gain for the
small application and 174% for the large application as
shown in Figure 5. Similar results were achieved in
the passive redundancy approach, where a 22%
performance gain was achieved for the small

application and a 114% performance gain for the large
application.

4. Adaptive Fault Tolerance

The main goal of the application fault

management is to efficiently recover from
hardware/software failures of the system resources.
Redundancy is an important technique to detect and
recover from component failures in the system. The
redundancy can be in the form of hardware, software,
or time [15]. As the system increases its complexity,
more sophisticated techniques are needed to manage
those redundancies. In addition, the fault management
scheme must be flexible and adaptive. In SCOP [17], a
design methodology is proposed to introduce support
techniques to reduce the resource cost of fault-tolerant
software, both in space and time, by providing
designers with a flexible redundancy architecture in
which dependability and efficiency can be adjusted
dynamically at run time. In another work [18], the use
of mobile agents to support adaptive fault tolerance is
implemented. In our adaptive application fault-
tolerance approach, we use mobile agents to efficiently
manage the redundancy. We evaluate two redundancy
techniques: Passive and Active redundancy.

Figure 6 Active Redundancy Techniques for Fault

Management

In the active redundancy technique shown in

Figure 6, we assign two identical tasks to two
machines that are managed by two Task Agents (TAs);
one task is designated as the primary task while the

second one is referred to as the secondary task. In this
scenario, the ADM doesn't need to determine the
adaptation plan when a fault occurs. If the fault occurs
in the primary task, the results can be picked up
without any delay from the secondary task that
becomes the new primary task once its task agent
detects the failure in the primary task due to software
or hardware failures. In addition to reducing the time
for fault detection, active redundancy technique
simplifies the communication between task agents.
Figure 8 shows the overhead incurred by applying this
redundancy scheme to adaptively manage the faults of
three applications with three tasks each. In the small
application case (execution time is around 60s), the
overhead incurred in using our scheme to detect and
recover from one task failure, two task failures, and
three task failures are 0.10%, 0.18%, and 0.22%,
respectively (see Figure 7). For medium and large
applications, the overhead in managing one, two or
three task failures is very small (less than 0.02%).

0

0.05

0.1

0.15

0.2

0.25

Time
Overhead

(%)

1 2 3

Number of Task
Failures

Small (60s)
Medium (600s)
Large (6000s)

 Figure 7 The overhead of Active Redundancy Technique

The second approach is based on using passive
redundancy in managing the application faults (see
Figure 8). In this scenario, we assign the task to two
machines: one is designated as the primary machine
while the second machine is designated as the backup
machine. The backup machine does not run the task as
is done in the active redundancy case, but it is kept up-
to-date about the task execution periodically so it can
resume the task execution from the last checkpoint
(update) if a fault occurred in the primary task.
Furthermore, the backup machine could be assigned as

a backup machine for more than one task. This
improves the utilization of the system resources.
Figure 9 shows the overhead incurred in applying this
redundancy technique to manage the faults of three
applications. For a small application with three tasks,
the overhead incurred to manage one task failure, two
task failures, and three task failures are 0.18%, 0.26%,
and 0.42%. For a medium to large size application, the
overhead to manage one, two or three task failures is
very small (less than 0.02%).

It is clear from the experimental results that our
approach is very efficient, especially, for large
parallel/distributed applications. Furthermore, the use
of mobile agents and agent templates, we can
dynamically select the appropriate redundancy
technique at runtime depending on the system load and
number of available resources.

Figure 8 Passive Redundancy Techniques for Fault

Management

5. Conclusion

In this paper, we presented our approach to implement
a Proactive Application Management System (PAMS).
The PAMS architecture is based on integrated
management framework being developed at the
University of Arizona [8]. The experimental results of
the PAMS management services to manage the
performance and fault tolerance execution of three
applications of different sizes (small, medium and
large demonstrate that our agent-based approach can

lead to significant gains in performance and low
overhead in fault management. We are currently
implementing additional services to balance the load
across the network resources and maintain the system
and application security requirements.

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

Time
Overhead

(%)

1 2 3

Number of Task
Failures

Small (60s)
Medium (600s)
Large (6000s)

 Figure 9 The overhead of Passive Redundancy Technique

6. Reference

[1] S. Waldbusser, Remote Network Monitoring
Management Information Base RFC1757, Feb. 1995.
[2] J. Pavon and J. Tomas, CORBA for Network and
Service Management in the TINA Framework, IEEE
Communication Magazine, March 1998.
[3] J. P. Thompson, Web-Based Enterprise
Management Architecture, IEEE Communication
Magazine, March 1998
[4] G. Goldszmidt and Y. Yemini, Distributed
Management by Delegation, in 15th international
Conference on Distbuted Computing, June 1995.
[5] M. Baldi, S. Gai and G. Picco, Exploiting Code
Mobility in Decentalized and Flexible Network
Management, In First International Workshop, MA97,
Berlin, Germany, April 97.
[6] C. Krupczak and J. Saperia, Definition of System-
Level Managed Objects for Applications, RFC2287,
Feb 1998.
[7] C. Kalbfleisch, C. Krupczak, R. Presuhn, and J.
Saperia, Application Management MIB, Internet-draft,
Nov. 98.

[8] S. Hariri, Y. Kim, P.Varshney, R.Kamiski. D
haugue, C Maciag, The End-to-End Proactive
Management. IEEE/IFIP 1998 Network Operations
and management Symposium, Feb. 1998
[9] Michael Katchabaw, Stephen Howard, Andrew
Marshall, Michael Bauer, “Evaluating the Cost of
Management: A Distributed Application Management
Testbed,” Proceeding of the 1996 CAS
conference(CASCON’96) Toronto, Canada, Nov.12-
14 pp29-41.
[10] Tomas Fahringer, “Automatic Performance
Prediction of Parallel Programs” Kluwer Academic
Publishers, 1996
[11] Michael Litzkow, “Supporting Checkpointing and
Process Migration outside the Unix Kernel,” Usenix
Winter Conference, San Francisco, California, 1992
[12] Mohammed Zaki, Wei Li, Srinivasan
Parthasarathy “Customized Dynamic Load Balancing
of a Network of Workstations,”Technical Report 602,
Dec. 1995
[13] Marina Thottan, Chuanyi Ji, “Adaptive
Thresholding for Proactive Network Problem
Detection, Procedding of the 1998 international
workshop for Systems Management, Newport, April,
1998.
[14] P Dini, G. Bochmann,T. Koch, B. Kramer,
“Agent based Management of Distributed Systems
with Variable Polling Frequency Policies,”
[15] A. Avizienis. “Fault-Tolerant Systems.” IEEE
Transactions on Computers, C-25(12):1304-1312,
December 1976.
[16] P. Jalote. “Fault Tolerance in Distributed
Systems.” Prentice Hall, 1994
[17] J. Xu, A. Bondavalli, F. D. Giandomenico.
“Dynamic Adjustment of Dependability and
Efficiency in Fault-Tolerant Software”, in "Predictably
Dependable Computing Systems", B. Randell, J. C.
Laprie, H. Kopetz and B. Littlewood Ed., Springer-
Verlag, 1995, pp.155-172.
[18] S. Bagchi, K. Whisnant, Z. Kalbarcyzk, R.K.
Iyer. “Chameleon: Adaptive Fault Tolerance Using
Reliable, Mobile Agents”, The 27th Fault Tolerance
Computer Symposium, Munich, Germany, June 23-25
1998

Yoonhee Kim is currently a Ph.D. candidate in the
department of Electrical Engineering and Computer
Science at Syracuse University and work in a research
engineer position at the University of Arizona. She
received her M.S. degree in Computer Information
Science from Syracuse University, New York at 1996.
Her research interests include system, network and
application management, distributed and parallel

computing systems, and software architecture. Email:
yhkim@ece.arizona.edu

Dr. Salim Hariri is currently an Associate Professor
in the Department of Electrical and Computer
Engineering at The University of Arizona. Dr. Hariri
received his Ph.D. in computer engineering from
University of Southern California in 1986, and a M.Sc.
degree from The Ohio State University. He is the
Director of the Center for Advanced TeleSysMatics
(CAT): Next-Generation Network-Centric Systems.
His current research focuses on high performance
distributed computing, agent-based proactive and
intelligent network management systems, design and
analysis of high speed networks, benchmarking and
evaluating parallel and distributed systems, and
developing software design tools for high performance
computing and communication systems and
applications. Dr. Hariri is the co-Editor-In-Chief for
the Cluster Computing. Dr. Hariri served as the
General Chair of the IEEE International Symposium
on High Performance Distributed Computing (HPDC).

Muhamad Djunaedi received the B.S. degree in
computer and electrical engineering from Purdue
University in 1995. Since 1998, he has been studying
for M.S. degree in electrical and computer engineering
department at University of Arizona. His research
interests include mobile agent, fault tolerance,
distributed system and management of information
system. Email: djunaedi@ece.arizona.edu

	ABSTRACT
	
	Proactive_Application_Management Algorithm

	8			Monitor Si(Api)

