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ABSTRACT 

Management of large-scale parallel and distributed 
applications is an extremely complex task due to 
factors such as centralized management architectures, 
lack of coordination and compatibility among 
heterogeneous network management systems, and 
dynamic characteristics of networks and application 
bandwidth requirements. The development of an 
integrated network management framework that is 
proactive, scalable and robust is a challenging 
research problem. In this paper, we present our 
approach to implement a Proactive Application 
Management System (PAMS). PAMS architecture 
consists of two main modules: Application Centric 
Management (ACM) and Management Computing 
System (MCS). The ACM module provides the 
application developers with all the tools required to 
specify the appropriate management schemes to 
manage any quality of service requirement or 
application attribute/functionality (e.g., performance, 
fault, security, etc.). The MCS provides the core 
management services to enable the efficient proactive 
management of a wide range of network applications. 
The services offered by the MCS are implemented 
using mobile agents. Furthermore, each MCS service 
can be implemented using several techniques that can 
be selected dynamically by invoking the corresponding 
mobile agent template for the service implementation.  
In this paper, we present our preliminary results of 
evaluating PAMS management services to manage the 
performance and fault tolerance execution of three 
applications of different sizes (small, medium and 
large). The experimental results demonstrate that our 
agent-based approach can lead to significant gains in 
the performance and low overhead fault management 
of parallel/distributed. For example, the overhead 
incurred in the application fault management to 
tolerate one task failure, two task failures, and three 
task failures in a medium to large size application is 
less than 0.02%. 
 
 

1. Introduction 
 

The emerging high speed networks and the 
advances in computing technology are important 
driving forces to merge the communications and 
computing technologies that will result in an explosive 
growth in network complexity, size and networked 
applications. Furthermore, we are observing an 
explosive growth in network applications that use 
computing, networking and storage resources that can 
be accessed from global national and/or international 
networks. The management of such networks and their 
distributed applications has become increasingly 
complex, and unmanageable. Unfortunately, the 
current network management technologies focus on 
collecting management information and manually 
manage the network using platform-specific products. 
There has been little research toward the development 
of intelligent, efficient, proactive end-to-end 
management of large networks and their applications.  

The increased importance of network management 
for large-scale networks has stimulated research on 
novel approaches to reduce the management 
complexity and cope with dynamic management 
change. Instead of a centralized manager, multi-
managers and their communication protocols are 
proposed such as Management by Delegation 
(MbD)[4] and Code Mobility[5]. Another approach 
replaces the manger-agent relationship among 
managers and agents with peer-to-peer relationship 
using the Common Object Request Broker 
Architecture (CORBA) has been studied in the area of 
Telecommunications Information Networking 
Architecture (TINA) framework [2]. A few web-based 
approaches to network management have emerged 
recently (JMAPI, WEBEM). [3].  

However, distributed network management of 
applications over heterogeneous has not fully studied 
and is becoming increasingly important. Recently, 
Application Management MIB [7] and MIB for 
Application [6] have been proposed to collect and 
store common application management information in 



IETF. Common Information Model (CIM) by DMTF 
is proposed a similar process information definition 
for WBEM [Patrck98]. Still, there has been little work 
done to achieve programmable application 
management schemes and is not well understood.  
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Figure 1. The Runtime Architecture of the Proactive 
Application Management System. 

 
In this paper, we present the design and evaluation of a 
Proactive Application Management System (PAMS) 
prototype being developed at the University of 
Arizona. PAMS provides adaptive application 
management services to dynamically manage the 
performance and fault of parallel/distributed 
applications in an unreliable and heterogeneous 
computing environment. PAMS implementation is 
based on using mobile agents that can be programmed 
to maintain the quality of service requirements of 

distributed applications. We have evaluated three 
adaptive techniques to manage the performance and 
fault tolerance of distributed applications. The first 
approach is based on using active redundancy to 
improve performance and tolerate faults. The second 
approach is based on passive redundancy in which a 
set of machines is designated as backup machines to 
be used to replace any of the machines assigned to the 
application tasks in order to improve performance or 
to tolerate software/hardware failures. The third 
approach does not introduce redundancy in the system 
and it requires task migration to another machine in 
order to improve performance or to tolerate 
software/hardware failures. The preliminary results of 
applying these techniques demonstrate that our agent-
based approach can lead to significant gains in the 
performance and low overhead fault management of 
parallel/distributed application. The organization of 
the paper is as follows. In Section 2, we give a brief 
overview of the PAMS prototype. In Section 3, we 
discuss our approach to benchmark and evaluate the 
adaptive performance management services offered by 
PAMS. In Section 4, we benchmark and evaluate the 
adaptive fault management service.  

 
2.  Architecture of the Proactive 
Application Management System (PAMS)  

 
The architecture of PAMS is shown in Figure 1. 

The ACM layer provides application developers with 
the tools required to specify and characterize the 
application requirements in terms of performance, 
fault, security, and also specify the appropriate 
management scheme to maintain the application 
requirements. Once the application management 
requirements are defined using the ACM tools, the 
next step is to utilize the management services 
provided by the Management Computing System 
(MCS) to build the appropriate application execution 
environment that can dynamically control the allocated 
resources to maintain the application requirements 
during the application execution. The MCS assigns 
one Application Delegated Manager (ADM) to 
manage one or more application attributes 
(performance, fault, security, etc.). For each task in the 
application, the ADM launches an appropriate Task 
Agent (TA) to monitor and manage the task execution. 
The TA monitors the task execution using appropriate 
task sensors and intervenes whenever the task 
execution on the assigned machine can not meet its 
requirements using the task actuators that can suspend, 
save task execution state, or migrate the task execution 
to another remote machine. Our approach supports 



several strategies to maintain each task attribute. For 
example, to manage the task performance, ADM could 
use active redundancy, passive redundancy, or by 
migrating the task execution to a faster machine when 
the assigned machine becomes heavily loaded.  The 
appropriate management scheme can be selected at 
runtime depending on the system state and the current 
available resources as will be discussed in further 
detail later. 
The main management activities of TA can be 
abstracted into three procedures or functions: 
Change_Detection, Analsis_Verification, and 
Adaptation_Plan. The Change_Detection procedure is 
responsible for detecting the conditions in which the 
monitored tasks deviates from the acceptable behavior 
or operation (e.g., the task performance degrades 
severely due to bursty traffic conditions, or due to 
software or hardware failures). The 
Analysis_Verification algorithm is invoked whenever 
a change is detected and to make sure that the change 
is real and not due to false alarms. Once the change 
event is verified and its type is identified, the 
Adaptation Plan procedure is invoked to execute the 
appropriate adaptation scheme.   
 
Proactive_Application_Management Algorithm 
1 For each Ap Api∈  ACM(Api), 
2 Assign Application Delegated Manager ADM 
(Api) 
3 Lunch ADM (Api) 
4 While (AEE(Api) is running) do 
5   For each Service Si∈  APi  
6   Si ∈  {Sft, Sperf, Ssecurity, Sconfig} 
7   Start Service Si(Api), 
8   Monitor Si(Api) 
9  EndFor 
10 EndWhile 
End Proactive_Application_Management_Algorithm 

Figure 2 Proactive Application Management Algorithm 
 
Figure 2 shows the general Proactive Application 

Management Algorithm for the PAMS prototype. The 
application Execution Environment (AEE(Api)) refers 
to all the resources allocated to run a give application 
ApI . While the application is running (step 4 in the 
Proactive Application Management Algorithm of 
Figure 2), the ADM starts all the task agents required 
to manage the application requirements (performance, 
security, fault, etc.)  (Step 7,8 in the algorithm of 
Figure 2) and then monitor the execution of that 
application to detect any changes or deterioration 
while it is running. In what follows, we discuss PAMS 
approach to use mobile agents to manage the 

performance and fault tolerance of parallel/distributed 
applications. 

 
3. Adaptive Performance Application 
Management  

 
Figure 3 Controlling Techniques of Performance 

Management 
 
Performance management for distributed systems 

is complex due to the existence of many components 
that need to be monitored and controlled. Performance 
management techniques can be broadly characterized 
into two schemes: monitoring and controlling. 
Monitoring is the function that tracks the performance 
activities of the resources, networks and their 
applications. The controlling function enables 
performance management to make adjustments to 

Candidates

TA

T1

ADM

TA TA

T2 T3

TA

T1

TA TA

T2 T3

TA

T1

ADM

TA TA

T2 T3 T1

TA

T2 T3

TA

T1

ADM

TA TA

T2 T3

TA TA TA

(a) Active Redunduncy

(b) Passive Redunduncy

T2

(c) Migration

Perf. fault
MCS

 security Configuration

Perf. fault
MCS

 security Configuration

Perf. fault
MCS

 security Configuration



improve performance. We need algorithms and 
techniques to derive appropriate performance metrics 
[9][10], and resource indicators for different levels of 
performance. Adjusting threshold schemes [13] and 
polling intervals [14] are the main issues in 
implementing the performance monitoring function. 
Performance statistics can be used to recognize 
potential bottlenecks or failures before they cause 
problems. Five major prediction models for 
performance predictions for parallel or distributed 
applications are discussed in [10]. With performance 
prediction, performance management schemes can 
proactively manage large and complex systems. 
Dynamic load-balancing [12] and process migration 
[11] have also been studied to provide appropriate 
performance management.   

In our application performance management, we 
monitor the execution times of an application as well 
as the resource and network utilization. In addition, we 
use redundancy techniques and task migration to 
implement the control functions required to 
dynamically manage the application performance. In 
this paper, we evaluate three techniques to manage the 
application performance: active redundancy, passive 
redundancy and migration.  Each technique is 
implemented as an agent template as shown in Figure 
3.  
The active redundancy scheme duplicates the 
execution of the application on two machines (see 
Figure 3 (a)). In this scheme, the task agent will pick 
up the results from the first machine that completes the 
task execution. This approach has several advantages. 
First, lead to better performance because we always 
pick up the results from the faster machine. Second, it 
simplifies the performance management since no need 
to perform task migration or load balancing in the 
system due to load changes or bursty traffic 
conditions.  
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Figure 4 Application Execution with migration scheme 

 

The passive redundancy assigns each task to a 
primary machine that will run the task and another 
machine to be used as a backup whenever the task 
performance deteriorates on the assigned machine (see 
Figure 3 (b)). The backup machine is kept-up-to-date 
in order to be ready to resume the task execution from 
the last updated checkpoint. The main advantage of 
this approach is that it needs less resources than the 
active redundancy approach. In this scheme, one 
backup machine can be used as a backup machine to 
several tasks. 

The third approach does not introduce redundancy 
and improves the performance by task migration (see 
Figure 3 (c)). However, the overhead of task migration 
is high and it should be used only for large task 
granularities where the migration overhead is 
relatively small when compared to the task execution 
time.  
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 Figure 5 Application Execution with Redundancy policies 
 

We benchmarked the overhead associated with 
implementing PAMS performance management 
service for two application types: a small application 
with an average execution time of 30 seconds and a 
large application with an average execution time of 
450 seconds. We evaluated the use migration, active 
redundancy and passive redundancy techniques to 
dynamically mange the performance of these two 
applications. If, during the application execution, the 
load on a machine suddenly increased to 99% CPU 
utilization, the migration approach was able to 
improve the performance by 25% for the small size 
application (approximately 40 seconds) and by 75% 
for the large application (approximately 308 seconds) 
as shown in Figure 4.  The active redundancy 
technique achieved a 31% performance gain for the 
small application and 174% for the large application as 
shown in Figure 5. Similar results were achieved in 
the passive redundancy approach, where a 22% 
performance gain was achieved for the small 



application and a 114% performance gain for the large 
application. 

 
4. Adaptive Fault Tolerance  

 
The main goal of the application fault 

management is to efficiently recover from 
hardware/software failures of the system resources. 
Redundancy is an important technique to detect and 
recover from component failures in the system. The 
redundancy can be in the form of hardware, software, 
or time [15]. As the system increases its complexity, 
more sophisticated techniques are needed to manage 
those redundancies. In addition, the fault management 
scheme must be flexible and adaptive. In SCOP [17], a 
design methodology is proposed to introduce support 
techniques to reduce the resource cost of fault-tolerant 
software, both in space and time, by providing 
designers with a flexible redundancy architecture in 
which dependability and efficiency can be adjusted 
dynamically at run time. In another work [18], the use 
of mobile agents to support adaptive fault tolerance is 
implemented. In our adaptive application fault-
tolerance approach, we use mobile agents to efficiently 
manage the redundancy. We evaluate two redundancy 
techniques: Passive and Active redundancy.  

 

 
Figure 6 Active Redundancy Techniques for Fault 

Management 
 
In the active redundancy technique shown in 

Figure 6, we assign two identical tasks to two 
machines that are managed by two Task Agents (TAs); 
one task is designated as the primary task while the 

second one is referred to as the secondary task. In this 
scenario, the ADM doesn't need to determine the 
adaptation plan when a fault occurs. If the fault occurs 
in the primary task, the results can be picked up 
without any delay from the secondary task that 
becomes the new primary task once its task agent 
detects the failure in the primary task due to software 
or hardware failures.  In addition to reducing the time 
for fault detection, active redundancy technique 
simplifies the communication between task agents. 
Figure 8 shows the overhead incurred by applying this 
redundancy scheme to adaptively manage the faults of 
three applications with three tasks each. In the small 
application case (execution time is around 60s), the 
overhead incurred in using our scheme to detect and 
recover from one task failure, two task failures, and 
three task failures are 0.10%, 0.18%, and 0.22%, 
respectively (see Figure 7).  For medium and large 
applications, the overhead in managing one, two or 
three task failures is very small (less than 0.02%). 
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 Figure 7 The overhead of Active Redundancy Technique 
 

The second approach is based on using passive 
redundancy in managing the application faults (see 
Figure 8). In this scenario, we assign the task to two 
machines: one is designated as the primary machine 
while the second machine is designated as the backup 
machine. The backup machine does not run the task as 
is done in the active redundancy case, but it is kept up-
to-date about the task execution periodically so it can 
resume the task execution from the last checkpoint 
(update) if a fault occurred in the primary task.  
Furthermore, the backup machine could be assigned as 



a backup machine for more than one task. This 
improves the utilization of the system resources.  
Figure 9 shows the overhead incurred in applying this 
redundancy technique to manage the faults of three 
applications. For a small application with three tasks, 
the overhead incurred to manage one task failure, two 
task failures, and three task failures are 0.18%, 0.26%, 
and 0.42%. For a medium to large size application, the 
overhead to manage one, two or three task failures is 
very small (less than 0.02%). 

It is clear from the experimental results that our 
approach is very efficient, especially, for large 
parallel/distributed applications. Furthermore, the use 
of mobile agents and agent templates, we can 
dynamically select the appropriate redundancy 
technique at runtime depending on the system load and 
number of available resources. 

 

 
Figure 8 Passive Redundancy Techniques for Fault 

Management 
 
5. Conclusion 
 
In this paper, we presented our approach to implement 
a Proactive Application Management System (PAMS). 
The PAMS architecture is based on integrated 
management framework being developed at the 
University of Arizona [8]. The experimental results of 
the PAMS management services to manage the 
performance and fault tolerance execution of three 
applications of different sizes (small, medium and 
large demonstrate that our agent-based approach can 

lead to significant gains in performance and low 
overhead in fault management. We are currently 
implementing additional services to balance the load 
across the network resources and maintain the system 
and application security requirements.  
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