
A Policy Description Language for Context-based Access
Control and Adaptation in Ubiquitous Environment �

Joonseon Ahn1, Byeong-Mo Chang2, and Kyung-Goo Doh3 ��

1 Hankuk Aviation Universiy, Koyang, 412-791, Korea, jsahn@hau.ac.kr
2 Sookmyung Women’s University, Seoul, 140-742, Korea, chang@sookmyung.ac.kr

3 Hanyang University, Ansan, 426-791, Korea, doh@hanyang.ac.kr

Abstract. The goal of our research is to provide an advanced program-
ming environment for ubiquitous computing, which facilitates the de-
velopment of secure and reliable ubiquitous software. The environment
consists of a high-level ubiquitous programming framework, a run-time
system enhanced with better context adaptation and security, and pro-
gramming support tools.
In this paper, we focus on a ubiquitous programming framework, which
includes a high-level policy description language, a translator to Java and
a runtime system. We first present a high-level policy description lan-
guage for formally specifying context entity relation, as well as context-
based access control and adaptation policies. We then describe how a
specification in the policy description language can be translated into
Java code which makes use of JCAF.

1 Introduction

The vision of ubiquitous computing, where a large number of devices and sensors
are embedded into their physical environment, providing contextual services to
mobile users and applications, is progressing towards realization. Increases in
the performance of hand-held and embedded devices along with improvements
in networking technology are aiding this process.

The software technology for ubiquitous services will soon become the strategic
core of future ubiquitous computing [6]. Thus the effective and secure ubiquitous
computing environment is very important for ubiquitous computing [2].

Several research works have been done to provide software solutions for ubiq-
uitous computing environment, which includes context-aware middleware [4],
context-based security [5, 3], and programming environment for ubiquitous ser-
vice [1, 8]. Recently, the programming environment for ubiquitous services has
become more important for the effective development of ubiquitous software.

The goal of our research is to develop an advanced programming environ-
ment for ubiquitous computing, which facilitates the development of secure and
efficient ubiquitous software. The programming environment consists of three
� This work was supported by grant No. R01-2006-000-10926-0 from the Basic Re-

search Program of the Korea Science and Engineering Foundation.
�� Corresponding author

components: a high-level ubiquitous programming framework, a run-time sys-
tem enhanced with better context adaptation and security, and programming
support tools for program analysis and monitoring.

In this paper, we propose a new ubiquitous programming framework, which
includes a high-level policy description language, a translator for the language
and a runtime system. The ubiquitous programming framework is to support
the application developer to easily write secure ubiquitous applications with
context-centric ubiquitous services.

Using the policy description language, programmers can describe a high-
level specification on context space, context-based security, and context-based
adaptation for ubiquitous application programs. A high-level specification con-
sists of spatial context model description, context-based access control rules, and
context-based adaptation rules. A spatial context model describes the context
world as a tree of nested entities, analogous to ambient in the ambient calculus.

Context-based access control is described by access control rules, which spec-
ify access privileges of an entity in a context. Context-based adaptation is de-
scribed by adaptation rules, which specify an action to perform when a condition
becomes satisfied in a dynamic context.

We also describe how a specification in the policy description language can
be translated into Java code which makes use of JCAF [1]. Our translator pro-
vides automatic generation of Java classes for ubiquitous entities. It can relieve
programmers from dealing with complex programming related to context space,
context adaptation and security. Then we explain our runtime system for sup-
porting context-aware access control in dynamically changing environments.

The rest of the paper is organized as follows. The next section presents the
policy description language. Section 3 presents the translation from the policy
description language into Java and the runtime system for access control. Section
4 describes some related works and Section 5 concludes this paper.

2 Policy Description Language

A policy specification consists of three parts: entity relation definitions, access
control rules, and adaptation rules. Declared first are relations between con-
text entities to be used in the specification, and then access control rules and
adaptation rules follow. An example of policy specification is shown in Fig.1.

2.1 Entity Relation Definitions

A context entity in ubiquitous environment is either a physical or logical space, a
fixed object, or a moving object. For example, consider the context of a software
company: ”building”, ”lobby”, ”floor”, ”room”, and ”lounge” are space entities;
”printer” is a fixed-object entity; and ”PDA” is a moving-object entity. Each
entity of the real world corresponds to an instance of an entity class in programs.
For example, floors of a building can be represented as a class named Floor, and
each floor corresponds to an instance of the class.

-- Entity Relation Definitions

Building:ubisoft[Floor[Room[Printer]+Lounge[Printer]]+Lobby[Printer]],

Pda!IsIn(Room), Pda!IsIn(Lobby), Pda!IsIn(Lounge),

Pda!Employed(Building), Pda!Owns(Room), Pda!Hosts(Pda),

Pda!Friends(Pda)

-- Access Control Rules

(Building:ubisoft/$Lobby/$Pda,$Lobby/$Printer.print, true, CALL);

($Pda, $Room/$Printer.print, $Pda!Owns($Room), CALL);

($Pda,$Lounge/$Printer.print,$Pda!Employed(Building:ubisoft),CALL);

($Pda_1,$Room/$Printer.print,$Pda_2!Hosts($Pda_1)^$Pda_2!Owns($Room),CALL);

($Pda_2, $Pda_2!Hosts($Pda_1), $Pda_2!Friends($Pda_1),MODIFY)

-- Adaptation Rules

$Pda_1!IsIn($Room) ^ $Pda_2!IsIn($Room)

=> $Pda_2!Hosts($Pda_1) if $Pda_2!Owns($Room);

$Pda!IsIn(Building:ubisoft/.../$Room)

=> $Pda.registerPrinter($Room/$Printer);

$Pda!IsIn(Building:ubisoft/$Lobby)

=> $Pda.registerPrinter($Lobby/$Printer);

$Pda!IsIn(Building:ubisoft/$Lounge)

=> $Pda.registerPrinter($Lounge/$Printer);

Fig. 1. An Example of a Policy Specification

The type of a relation between entities in policy specification must be defined
before their use. The general form is a triple, id1!id2(id3), where id2 is the name
of a relation, and id1 and id3 are the names of entity classes (types). For example,
Pda!IsIn(Room) defines that IsIn is a relation between a Pda entity and a Room
entity. Fig.1 shows some examples of entity relation definitions.

A physical space and fixed object can be represented as a nesting hierarchical
structure since it has a structure inside which other spaces and objects are nested.
We describe the nested hierarchical structure as a tree which naturally defines
spatial containment relation among spaces and fixed objects. For example, the
tree representation in the second line of Fig.1 indicates that: (1) A Building
instance, ubisoft, is a root having children nodes, Floor and Lobby; (2) Floor
has two children nodes, Room and Lounge; and (3) each of Room, Lounge and
Lobby have as a child, Printer. The meaning of this tree is that (1) there are
lobbies in the ubisoft building; (2) there are rooms and lounges in each floor
of building; and (3) there are printers in every lobby, room and lounge in the
building. In fact, we can think of this representation as a syntactic sugar of seven
Contains relations (or IsIn relations when its arguments are in reverse order)
as follows:

Building!Contains(Floor), Building!Contains(Lobby),
Floor!Contains(Room), Floor!Contains(Lounge),
Room!Contains(Printer), Lounge!Contains(Printer),

Lobby!Contains(Printer)

The specific name of an instance can be specified in the definition along with its
class name when statically determinable and necessary. Note that an instance
name must always be preceded by a class name and a colon for clarity.

The formal syntax for entity relation definition is defined as follows:

c ∈ Context-Relation ::= id1!id2(id3) | s | c1, c2

s ∈ Space-Relation ::= id | id1 : id2 | id[s] | id1 : id2[s] | s1 + s2 | ε
id ∈ Identifier

2.2 Access Control Rules

An access control rule specifies that the given subject entity has the given access
mode to the given object when the given condition is met. We describe the rule
to be a quadruple consisting of a subject, an object, a condition, and an access
mode as in the following syntax:

x ∈ Access-Rule ::= (p, o, r, m) | x1 ; x2

p ∈ Entity-Expression ::= id1 : id2 | $id | $id n | ∗ | p1/p2 | . . . /p
o ∈ Object ::= p.id | p1!id(p2)
r ∈ Relation-Expression ::= p1!id(p2) | ∼ r | r1 ∧ r2

m ∈ Mode ::= READ | MODIFY | CALL
n ∈ Number

The subject is an entity instance in context and is described as an entity expres-
sion. An entity expression, id1 : id2, represents an entity instance where id2 is the
name of the instance and id1 is the name of its class, e.g., Pda:pdaBob. For space
entities, we write an entire path (sequence of entity names) describing a route
through the space entity hierarchy from the root, which is thus called a path ex-
pression. For example, a path expression, Building:ubisoft/Floor:fl1/Room
:rmBob, represents a Room entity named rmBob in the floor named fl1 inside
the building named ubisoft. $id is a placeholder representing an instance of a
class named id. The placeholder may be numbered when two or more different
ones of the same class are needed. Entity expressions employ regular expression-
like notation to effectively name some entity. For example, a path expression,
Building:ubisoft/.../$Room, indicates a Room instance in the ubisoft in-
stance of Building, and Building:ubisoft/Floor:fl1/* represents any entity
instance in the fl1 floor inside the ubisoft building.

A context relation expression describes a relation between entities in context,
and is represented as p1!id(p2), where p1 and p2 are entity expressions, and id
is a relation name. The triple means that an entity represented by p1 has an
id relation with the one by p2, which is always interpreted as either true or
false. For example, a relation ”a PDA is in Bob’s room” can be expressed as:
$Pda!IsIn(Room:rmBob). Technically, when this relation expression evaluates
to true, the placeholder $Pda represents a Pda instance in the Bob’s room. We
employ a logical ”not” operator, ∼, to express the negation of a relation, and a
logical ”and” operator, ∧, to express the conjunction of two relations.

An object is either an entity’s method name, p.id, or a context relation
expression, p1!id(p2). A condition is a dynamic context relation which needs to
be met in order to grant the given access mode. The READ/MODIFY mode
indicates the right to read/modify a dynamic relation in the context, and the
CALL mode the right to call a method.

Let us examine some examples of access control rules in Fig. 1. The first
rule says that any PDA located in any lobby in the ubisoft building has the
permission to use a printer at the lobby. The second rule permits that only the
owner of a room can use the printer in her room. The third rule lets all employers
of the ubisoft building use printers in lounges. The fourth rule restricts that
anyone who is the guest of a room’s owner can use the printer in the owner’s
room. The last rule lets a PDA set a Hosts relation with a guest PDA only when
they have a Friends relation.

2.3 Adaptation Rules

An event occurs when the change of a relation in context takes place. For exam-
ple, ”Bob’s PDA enters Bob’s room” is an event that sets Pda:pdaBob!IsIn(Room
:rmBob) to true. An adaptation rule specifies how to respond when an event oc-
curs in a given context. The syntax of adaptation rules is as follows:

d ∈ Adaptation-Rule ::= r ⇒ a if b | d1 ; d2

a ∈ Action ::= p1.id(p2) | p1!id(p2) | a1 ; a2

where b represents either a Java conditional expression or a context relation
expression.

Let’s look through the examples in Fig.1. The first rule specifies that when
a guest PDA enters a room where the owner PDA is in the room, the owner
sets the Hosts relation with the guest PDA to true. The second rule says that
when a PDA enters a room equipped with a printer in the Ubisoft building, the
PDA registers the printer in the room. The third(last) rule describes that when
a PDA enters the lobby(lounge) of the Ubisoft building, the PDA registers the
printer in the lobby.

3 Implementation of Policy files

Given a policy specification file, we generate Java classes for context entities de-
scribed in the file. Adaptation rules are translated into Java methods which exe-
cute adaptation actions when specified context-change events take place. Access-
control rules are implemented as the runtime access controller which maintains
the rules and controls the access. Our implementation makes use of JCAF [1].

3.1 JCAF

In [1], Bardram presents Java Context-Awareness Framework(JCAF) which is
a Java-based context-awareness infrastructure and API for creating context-
aware applications. The core modelling interfaces provided by JCAF are Entity,

Fig. 2. UML model of an Entity with a Context in JCAF[1]

Context, Relationship, and ContextItem as illustrated in Fig.2. JCAF is also
equipped with default implementations of these core interfaces. For example, the
GenericEntity class implements the Entity interface and can be used to create
concrete entities through specialization. Person and Place are some examples of
entities. A Hospital Context and an Office Context, each knowing specific aspects
about a hospital and an office, respectively, are examples of context. Physical
location and the status of an operation are examples of abstract context items.
Examples of relations are Located or Uses. Hence, we can model that a PDA is
located in a lobby, where a PDA is an Entity, located is a relation, and a lobby is
a context item.

The central processing part of an Entity is its contextChanged() method
in the EntityListener interface. This method is guaranteed to be called by
the entity container whenever this entity’s context is changed. This is a very
powerful way of handling context changes effectively. That is, for each possible
event of context changes, an appropriate action to be taken can be defined for
users of applications. For example, suppose that we want to turn a TV’s power
switch on when a person approaches to the TV within a viewable distance. Then
we can add the following contextChanged() method to the TV class:

public void contextChanged(ContextEvent event) {
// If someone approaches to a TV within a viewable distance,
// then turn the TV’s power switch on.

}

The contextChanged() method is called by the JCAF runtime system as soon
as the TV’s context is changed. Then the contextChanged() method examines
the event and executes an appropriate adaptation action accordingly.

3.2 Translation of Adaptation Rules

Adaptation rules are implemented using the contextChangedmethod. An adap-
tation rule p1!id1(p′1) ∧ p2!id2(p′2) ∧ . . . ∧ pn!idn(p′n) => a if b is applied when

public void contextChanged (ContextEvent e) {

Entity x1, x2, x3; Entity[] t; int i;

if (e.getRelationship instanceof IsIn) {

x1 = e.getItem();

if (x1 instanceof Room) {

t = getAllEntitiesByType(Class.forName("Pda"));

for (i=0; i<t.length; x2 = t[i++])

if (x2.getContext().getContextItem(new IsIn()) == x1)

if (x2.getContext().getContextItem(new Owns()) == x1)

addContextItem(x2.getId(), new Hosts(), this);

}}

if (e.getRelationship instanceof IsIn) {

x1 = e.getItem();

if (x1 instanceof Room) {

t = getAllEntitiesByType(Class.forName("Pda"));

for (i=0; i<t.length; x2 = t[i++])

if (x2.getContext().getContextItem(new IsIn()) == x1)

if (this.getContext().getContextItem(new Owns()) == x1)

addContextItem(this.getId(), new Hosts(), x2);

}}

// ... if statements for dealing with other context change events

}

Fig. 3. A part of the contextChanged method of Pda class

some context value of entity pi is changed and the adaptation condition is sat-
isfied as a result. Therefore, the rule is used to generate those contextChanged
methods which belong to the entity classes represented by p1, . . . , pn.

Fig.3 shows two if statements of the contextChanged method of Pda entity
class. They are generated from the following adaptation rule from Fig. 1.

$Pda_1!IsIn($Room) ^ $Pda_2!IsIn($Room)
=> $Pda_2!Hosts($Pda_1) if $Pda_2!Owns($Room)

The Pda object whose contextChanged method has been called can be either
$Pda 1 or $Pda 2 where the former case is dealt with by the first if-statement
and the latter is dealt with by the second. The first if-statement deals with the
case that a PDA enters a room while the owner of the room is in the room. The
second if-statement is for the case that the PDA which is the owner of a room
enters its room while other PDA’s are in the room.

In the first if-statement, x1 is bound to $Room entity and this and x2 is
bound to $Pda 1 and $Pda 2 entity, respectively. In the if-statement, we bind
related entities and examine the types of related entities and other conditions for
the adaptation action. Because there can be multiple PDA’s in the current con-
text, the statements for binding $Pda 2 is included in the for-statement which
examines each Pda entity. (x2.getContext().getContextItem(new IsIn())
== x1) examines whether x2 and x1 is in IsIn relation, where getContext() re-

turns the current context of an entity and getContextItem(<relation>) returns
the entity which is in the <relation> relation. addContextItem(x2.getId(),
new Hosts(), this) replaces the Hosts relation value of x2 with this. For the
second if-statement, x2 and this is bound to $Pda 1 and $Pda 2 entity of the
event, respectively, and the statements are generated analogously.

An expression p1!id(p2) included in the adaptation rule r ⇒ a if b has
different meaning based on where it is used. If it occurs in the r or b part, the
translated code examines whether the id relation value of p1 is p2 using the
getItem() method of JCAF. If it occurs in the a part, the generated statement
replaces the id relation value of p1 with the entity represented by p2 using the
method addContextItem.

3.3 Access Control Implementation

Access control policies are managed and forced by Context-aware Access Con-
trol Manager(CACM) with the help of ContextService runtime system. Before
executing a method, or reading or updating a context value, the entity object
consults CACM whether or not the request can be accepted.

For those methods under access control, we insert a method call

checkMethodAccess(<method name>)

Given the call, CACM decides whether the request should be accepted con-
sidering the method name and contexts of related entity objects which can be
identified by inspecting stack frames. If the request is permitted, the method
returns normally. Otherwise, CACM disallows the method call by raising an
exception.

Access control for context relation value is implemented using the call

checkRelationAccess(<entity1>,<entity2>,<relationship>,<mode>)

which consults CACM whether the requesting entity can access <entity1>’s
<relationship> context value, where <mode> is either READ or MODIFY. <entity2>
is used for the modification case as a new context value and is ignored for the read
access. The method calls are inserted at the beginning of the addContextItem
method and the getContextItem method which updates and reads context re-
lation value, respectively.

CACM maintains associations between entities and their applicable permis-
sions which change under dynamic context. To this end, CACM manages a hash
table which maps a 4(or 3)-tuple of related entities and a relation(or method)
name to a list of sufficient context conditions for the method call or context
value access. Because, there can be multiple sufficient conditions for an access,
each condition becomes an element of the list.

Given a query for access control, CACM maps the tuple of related entity
classes and a method or relation name to a list of representations of sufficient
conditions. Then, CACM examines whether there exists any condition which is
satisfied under the current dynamic context. If CACM finds such one, it allows
the requested access. Otherwise, if no condition is satisfied, CACM refuses the
access by rasing an exception.

4 Related Works

Several research works have been done to provide software solutions for ubiqui-
tous computing environment, which includes programming framework, context-
aware middleware, and context-based security for ubiquitous service [7, 1, 5, 4,
8].

Bellavista et al. developed a middleware for context-aware resource manage-
ment, called CARMEN, capable of supporting the automatic reconfiguration of
wireless Internet services in response to context changes without any interven-
tion on the service logic [4]. CARMEN determines the context on the basis of
metadata, which include declarative management policies and profiles for user
preferences, terminal capabilities, and resource characteristics.

Roman et al. also proposed a middleware infrastructure called Gaia to pro-
vide support for mobile user-centric active space applications [7]. It manages
the resources and services of an active space. It provides services for location,
context, and events, and repositories with information about the active space.

Corradi et al. introduced an access control model built upon the concept of
context as the first-class design principle to rule access to resources [5]. This
model associates access control permissions with contexts where users operate
and users acquire/lose their permissions when entering/leaving a specific context,
and exploits the user context to fully determine the set of available permissions.
This model allows to express context-based access control policies at a high level
of abstraction cleanly separate from service logic implementation.

Scott proposed a spatial model for describing mobil agents with respect to
physical location of objects as well as virtual location of mobile code. The model
comes with a mobility restriction policy language which can control the mobility
of agent programs.

In [3], Cho and Lee described a security policy description model based on
an ubiquitous language called PLUE, and a static checker to extract the rules
that will be possibly fired under a given credential and a policy.

5 Conclusion and Future Works

We have designed an unified high-level policy description language for formally
specifying space context relation, context-based security policies and context-
based adaption. In our policy description language, programmers can specify a
hierarchical spatial context easily, which includes physical and logical context
space. Also, programmers can describe various dynamic relations among enti-
ties located in the spatial context. Based on them, programmers can develop a
context-based access control and adaptation specification in a unified way. Our
approach of the unified application of spatial context model and flexible relation
specification to dynamic access control and context adaptation provides a simple
and strong way to specify ubiquitous systems.

The final goal of our research is to develop an advanced programming envi-
ronment for ubiquitous computing which facilitates the development of secure

and adaptive ubiquitous software. We will design a type system for the specifi-
cation language and check consistency of the policy specification automatically
based on the type system. To enforce the policy specification in the program
execution, we will enhance the existing context-aware run-time system so as to
provide context adaptation and access control based on the spatial model and
rules in the specification.

We will also develop ubiquitous programming support tools for program anal-
ysis and monitoring. The program analysis tools help programmers develop se-
cure and efficient programs based on static analysis such as context-flow analysis,
access control analysis, secure information-flow analysis and exception analy-
sis. The program monitoring tools allow programmers to examine the execution
traces of programs such as context change, exception handling and access control
during execution.

Acknowledgement

We would like to thank the anonymous reviewers for thoughtful comments and
corrections.

References

1. J. E. Bardram, The Java Context Awareness Framework-A Service Infrastruc-
ture and Programming Framework for Context-Aware Applications, Third Inter-
national Conference, Pervasive 2005, Munich, Germany, May, 2005.

2. V. Cahill et. al, Using Trust for Secure Collaboration in Uncertain Environment,
Pervasive computing, July-September 2003, pp52-61.

3. E. Cho and K. Lee, Security Checks in Programming Languages for Ubiquitous
Environments, Proceedings of 2004 Workshop on Pervasive, Security, Privacy and
Trust, Aug. 2004.

4. P. Bellavista, A. Corradi, R. Montanari, Context-Aware Middleware for Resource
Management in the Wireless Internet, IEEE Transactions on Software Engineering
, Vol. 29, No. 12, December 2003.

5. Antonio Corradi, Rebecca Montanari, Daniela Tibaldi, Context-based Access Con-
trol for Ubiquitous Service Provisioning, Proceedings of the 28th International
Computer Software and Applications Conference(COMPSAC’04), 2004.

6. T. Kindberg, A. Fox, System Software for Ubiquitous Computing, Pervasive com-
puting, January-March 2003, pp. 70-81.

7. M. Roman, C.K. Hess, R. Cerqueira, A. Ranganat, R.H. Campbell, K. Nahrst-
edt, Gaia: A Middleware Infrastructure to Enable Active Spaces. IEEE Pervasive
Computing, pp. 74-83, 2002

8. D. J. Scott, Abstracting application-level security policy for ubiquitous computing,
University of Cambridge, Computer Laboratory, Technical Report UCAM-CL-TR-
613, January 2005.

9. D. Wichadakul, X. Gu and K. Nahrstedt, A Programming Framework for Quality-
Aware Ubiquitous Multimedia Applications, Proceedings of Multimedia’02, Decem-
ber, 2002, Juan-les-Pins, France.

