
A Programming Environment for Ubiquitous Computing

Environment

Minkyoung Oh1, Jiyeon Lee1, Byeong-Mo Chang1, Joonseon Ahn2, and Kyung-Goo Doh3

1 Sookmyung Women’s University, Seoul, 140-742, Korea, {omk,jiyeon,chang}@sookmyung.ac.kr
2 Hankuk Aviation Universiy, Koyang, 412-791, Korea, jsahn@hau.ac.kr
3 Hanyang University, Ansan, 426-791, Korea, doh@cse.hanyang.ac.kr

Abstract. The goal of this research is to provide an advanced programming environment for ubiqui-
tous computing, which facilitates the development of secure and reliable ubiquitous software. A dis-
cussion follows on the design and implementation of a ubiquitous programming framework, which is
based on high-level policy description language. A context-based access control manager(CACM) was
implemented for context-aware access control, while an adaptation engine was integrated for context
adaptation in dynamically changing environments. A simulator was also implemented for conducting
experiments with this framework for ubiquitous applications.

Keywords: access control, adaptation, ubiquitous, programming environment.

1 Introduction

The effective deployment of ubiquitous software has recently become an important issue in the computing

environment for assisting ubiquitous services. Numerous researchers provide software solutions for ubiquitous

computing environments, comprising context-aware middlewares[4], context-based security solutions[5, 3],

and programming environments for ubiquitous services[2, 8].

The goal of this research is to develop an advanced programming environment for ubiquitous computing,

which facilitates the development of secure and efficient ubiquitous software. The programming environment

consists of three components: a high-level policy description language, a run-time system enhanced with

better context adaptation and security, and programming support tools like a simulator for simulating

ubiquitous applications.

Using the policy description language[1], programmers can specify context entity relations, context-based

access-control policies and context-based adaptation policies for ubiquitous application programs. A context

entity relation is described by a spatial context model, which is a tree of nested entities.

Context-based access control is described by access control rules, that specify access privileges of an

entity in a context. Context-based adaptation is described by adaptation rules, that specify which action to

perform when a specific context condition is satisfied.

In this paper, a ubiquitous programming environment is presented, which is based on the high-level pol-

icy description language in [1]. The implementation of a context-based access-control manager (CACM) for

context-aware access control is described, and an adaptation engine is integrated for context adaptation in

dynamically changing environments. The implementation of a simulator is also explained as it simulates ubiq-

uitous applications. Finally, a ubiquitous hospital application is presented to demonstrate how this system

operates for context-aware access control and context adaptation in dynamically changing environments.

This paper is organized as follows. Section 2 describes the policy description language. Section 3 explains

the implementation of JCAF [2], CACM, adaptation engine, and simulator. Section 4 discusses related works

and Section 5 concludes with some remarks.

2 Policy Description Language

A policy specification consists of three parts: the entity relation definitions, access control rules, and adap-

tation rules. Declared first are the relations between the context entities to be used in the specification, then

access control rules, and adaptation rules follow.

ACM SIGPLAN Notices 14 Vol. 42 (4), Apr. 2007

2.1 Entity Relation Definitions

A context entity in a ubiquitous environment is either a physical or a logical space, a fixed object, or a

moving object. For example, consider the context of a hospital: “floor”, “consulting room”,“sickroom”, and

“operating room” are space entities; “bed” is a fixed-object entity; and “PDA” is a moving-object entity.

The locations of space entities and fixed entities do not change and thus are static, while those of moving

objects may be changed and are dynamic. Each entity of the real world corresponds to an instance of an

entity class in programs. For example, sickrooms of a hospital can be represented as a class named Sickroom,

while an instance of the Sickroom class can be named sRoom1.

An entity relation definitions consists of two parts: context-relation and space-relation. A context-relation

expresses a general relationship between entities, and a space relation expresses a space-containment rela-

tionship between a general entity and a space entity. The formal syntax for an entity relation definition is

defined as follows:

c ∈ Context-Relation ::= id1(id2, id3, id4) | s | c1, c2

s ∈ Space-Relation ::= id | id1 : id2 | id[s] | id1 : id2[s] | s1 + s2 | ε
id ∈ Identifier

The type of context-relation between entities in policy specification must be defined before use. The gen-

eral form of a context-relation is a quadruple of form id1(id2, id3, id4), where id1 is the kind of a relation, id3

is the name of a relation, and id2,id4 are the names of entity classes(types). For example, Location(Doctor,

IsIn, Sickroom) means that IsIn is the name of a relation between Doctor entity and Sickroom entity.

A physical space can be understood as a nesting hierarchical structure since it has a structure inside

which other spaces are nested. The nested hierarchical structure is described as a tree that naturally defines

the spatial containment relation among spaces and fixed objects. For example, the tree representation

Hospital[Floor[ConsultingRoom+OperatingRoom+Sickroom]]

indicates that: (1) there are floors in a hospital; (2) there are consulting rooms, operating rooms and sickrooms

in each floor. This tree representation is an abbreviation of the following IsIn relations:

Location(Floor, IsIn, Hospital), Location(ConsultingRoom, IsIn,Floor),

Location(OperatingRoom, IsIn, Floor), Location(Sickroom, IsIn, Floor)

When statically determinable and necessary, the specific name of an instance can be specified along with

its class name as in Fig 1. Note that an instance name must always be preceded by a class name and a colon

for clarity.

2.2 Access Control Rules

An access control rule specifies that the given set of entities has the given right to the given object when the

given condition is met. The following syntax is used to specify security policies:

p ∈ Entity-Expression ::= id1 : id2 | $id | $id n | ∗ | p1/p2 | . . . /p
r ∈ Relation-Expression ::= id1(p1, id2, p2) | ∼ r | r1 ∧ r2

n ∈ Number

An entity expression describes a single entity or the set of entities in the context. id1 : id2 represents an

entity instance where id2 is the name of the instance and id1 is the name of its class, eg., SickRoom:sRoom1.

Locational conditions can also be specified, which describe a route through the space entity hierarchy from

the root. The route is called a path expression. For example,

Hospital:ubihosp/Floor:fl1/$SickRoom

ACM SIGPLAN Notices 15 Vol. 42 (4), Apr. 2007

represents any sick room in the floor named fl1 inside the hospital named ubihosp. $id represents the

universally quantified variable of a class named id. For example, $SickRoom is a universally quantified

variable that can be bound to any instance of SickRoom. The universally quantified variables may be num-

bered when two or more different variables of the same class are needed. Entity expressions employ regular

expression-like notation to effectively name a set of entities, and the meanings are as usual. For example,

Hospital:ubihosp/.../$Pda means the set of all instances of Pda in the ubihosp instance of Hospital,

and Hospital:ubihosp/Floor:fl1/* means the set of all instances of any entities in the fl1 floor inside

the ubihosp hospital.

A context relation expression describes relations between entities in context. A relation expression is inter-

preted as either true or false. Context relations between entities are described as a quadruple, id1(p1, id2, p2),

where p1 and p2 are entity expressions, id1 is the kind of a relation and id2 is the name of the relation. The

quadruple means that the set of entities represented by p1 has an id2 relation of the id1 relation kind with

the set of entities represented by p2. For example, a relation “a patient has a doctor” can be expressed as:

HumanRelation($Patient, Has, $Doctor)

Technically, when this relation expression evaluates to true, the variable $Patient represents the set of all

Patient instances having a doctor. A logical “not” operator, ∼, to express the negation of a relation, and a

logical “and” operator, ∧, is employed to express the conjunction of two relations.

The syntax of access control rules is defined as follows:

x ∈ Access-Rule ::= (p, o, r) | x1 ; x2

o ∈ Object ::= p.id

The rule is a triple consisting of a subject, an object, and a condition. The subject is the set of entities;

the object is either an entity’s method name or a relation name; and the condition is a dynamic context

relation which needs to be met in order for the access to be granted.

2.3 Adaptation Rules

An event happens when the change of a relation in context takes place. For example, “Dr. Kim enters

the sickroom #1” is an event that sets Location(Doctor:DrKim, IsIn, SickRoom:sRoom1) to true. An

adaptation rule specifies how to respond to events in a given context.

The syntax of adaptation rules is as follows:

d ∈ Adaptation-Rule ::= r ⇒ a | d1 ; d2

a ∈ Action ::= p1.id(p2) | id1(p1, id2, p2) | a1 ; a2

An adaptation rule describes how to respond when some condition is met. The condition, r is a relation

expression, and the action, a, is a method call or a new event.

2.4 An Example of Policy Specification

An example of a policy specification for a ubiquitous hospital is shown in Fig.1. First, an entity relation

definition part defines the physical space of the ubihosp hospital and the types of context relations between

entities.

This is followed by access control rules, of which Fig. 1 provides a few examples. The first rule says that

the PDA of a doctor in charge of a patient has the permission to get information about the patient. The

second rule permits that any doctor accompanying the doctor who is in charge of a patient can also get

information about the patient with the doctor’s PDA. The last rule allows only the doctor in charge of a

patient to update information about the patient.

Next follow the adaptation rules. The first rule specifies that if a doctor and a patient are within a

consulting room and the doctor owns a PDA, the PDA gets information about the patient. The second rule

ACM SIGPLAN Notices 16 Vol. 42 (4), Apr. 2007

says that when a doctor approaches a patient in a sickroom, the doctor’s PDA gets information about the

patient. The third rule says that if a doctor assisting another doctor is in a sickroom, a new Accompanies

relation is created between them. The last rule says that if a doctor and a patient are within an operating

room and the doctor owns a PDA, the PDA gets operation information about the patient.

%% Entity Relation Definitions

Hospital:ubihosp[Floor[ConsultationRoom+OperatingRoom+SickRoom]]

Location(Pda, IsIn, ConsultationRoom), Location(Pda, IsIn, OperatingRoom),

Location(Pda, IsIn, SickRoom), Location(Doctor, IsIn, ConsultationRoom),

Location(Doctor, IsIn, OperatingRoom), Location(Doctor, IsIn, SickRoom),

Location(Patient, IsIn, ConsultationRoom), Location(Patient, IsIn, OperatingRoom),

Location(Patient, IsIn, SickRoom), Location(Doctor, Approaches, Patient),

HumanRelation(Patient, Has, Doctor), HumanRelation(Doctor, Assists, Doctor),

Ownership(Doctor, Owns, Pda), Behavior(Doctor, Accompanies, Doctor)

%% Access Control Rules

(Hospital:ubihosp/.../$Pda, $Patient.getInfo,

Ownership($Doctor, Owns, $Pda) ^ HumanRelation($Patient, Has, $Doctor))

($SickRoom/$Pda, $Patient.getInfo, Ownership($Doctor_1, Owns, $Pda) ^

HumanRelation($Patient, Has, $Doctor_2) ^ Behavior($Doctor_1, Accompanies, $Doctor_2))

(Hospital:ubihosp/.../$Pda, $Patient.setInfo, Ownership($Doctor,

Owns, $Pda) ^ HumanRelation($Patient, Has, $Doctor))

%% Adaptation Rules

Location($Doctor, IsIn, Hospital:ubihosp/.../$ConsultationRoom) ^

Location($Patient, IsIn, $ConsultationRoom) ^ Ownership($Doctor, Owns, $Pda)

=> $Patient.getInfo($Pda)

Location($Doctor, IsIn, Hospital:ubihosp/.../$SickRoom) ^

Location($Doctor, Approaches, $Patient) ^ Ownership($Doctor, Owns, $Pda)

=> $Patient.getInfo($Pda)

Location($Doctor_1, IsIn, Hospital:ubihosp/.../$SickRoom) ^

Location($Doctor_2,IsIn, $SickRoom) ^ HumanRelation($Doctor_1,Assists,$Doctor_2)

=> Behavior($Doctor_1, Accompanies, $Doctor_2)

Location($Doctor, IsIn, Hospital:ubihosp/.../$OperatingRoom) ^

Location($Patient, IsIn, $OperatingRoom) ^ Ownership($Doctor,

Owns,$Pda)

=> $Patient.getOperationInfo($Pda)

Fig. 1. An example

3 Implementation

In this section, the implementation of a context-aware access controller(CACM), which maintains the rules

and controls the access, is explained. The implementation of an adaptation engine is also discussed, which ex-

ecutes adaptation actions when context conditions of the adaptation rules are satisfied. This implementation

uses JCAF [2].

ACM SIGPLAN Notices 17 Vol. 42 (4), Apr. 2007

Fig. 2. UML model of an Entity with a Context in JCAF[1]

3.1 JCAF

In [2], Bardram presents Java Context-Awareness Framework(JCAF) which is a Java-based context-awareness

infrastructure and API for creating context-aware applications. The core modelling interfaces provided by

JCAF are Entity, Context, Relationship, and ContextItem as illustrated in Fig. 2. JCAF is also equipped

with default implementations of these core interfaces. For example, the GenericEntity class implements the

Entity interface and can be used to crate concrete entities through specialization. Person and Place are

examples of entities. A Hospital Context and an Office Context, each knowing specific aspects about a hos-

pital and an office, respectively, are examples of context. Physical location and the status of an operation

are examples of abstract context items. Examples of relations are Located or Uses. Hence, we can model

that ”a Doctor is located in a Room”, where a Doctor is an Entity, Located is a relation, and a Room is a

context item.

The central processing part of an Entity is its contextChanged() method in the EntityListener inter-

face. This method is guaranteed to be called by the entity container whenever this entity’s context is changed.

This is a very powerful way of handling context changes effectively. That is, for each possible event of context

changes, an appropriate action to take can be defined for users of applications. For example, suppose that

a TV’s power switch should be turned on when a person approaches to the TV within a viewable distance.

Then the following contextChanged() method can be added to the TV class:

public void contextChanged(ContextEvent event) {

// If someone approaches to a TV within a viewable distance,

// than turn the TV’s power switch on.

}

The contextChanged() method is called by the JCAF runtime system as soon as the TV’s context is

changed. Then the contextChanged() method examines the event and executes an appropriate adaptation

action accordingly.

3.2 Implementation of Access Control

Access control rules are managed by CACM(Context-aware Access Control Manager). Before executing any

method which is under access control, ubiquitous applications check the privilege by calling the following

method :

checkMethodAccess(<entity1>, <entity2>, <method name>)

Upon the request, CACM checks whether <entity1> has permission to call the method of <entity2>

or not by evaluating the condition of access control rules under the current context state. If the method

ACM SIGPLAN Notices 18 Vol. 42 (4), Apr. 2007

Fig. 3. The runtime architecture of CACM system

Fig. 4. The hashtable for access control of the UbiHosp application

call request is permitted by CACM, the method executes normally. Otherwise, the request is denied and

AccessControlException is raised.

Fig. 3 shows the runtime architecture of the CACM system. CACM first requests the PDL(Policy Descrip-

tion Language) Analyzer to analyze the access-control rules of an input policy file. PDL Analyzer analyzes

the rules and stores the conditions in a hash table and returns the table to CACM.

CACM manages a hash table which maps the 3-tuple key of the related entities and a method name to a

list of context conditions for the method call. Since there can be multiple sufficient conditions for a method

call, each condition becomes an element of the list. CACM examines whether there exists any condition that

is satisfied under the current dynamic context. If CACM finds one, it allows the requested access. Otherwise,

CACM refuses the access by rasing an exception.

Fig. 4 shows the hash table for the access control rules given in Fig. 1. The hash table stores the access

control rules with keys. A key consists of the method caller, the method callee, and the method name. For

example, a key <Pda, Patient, getInfo> means a Pda calls the method Patient.getInfo(). When a Pda

call the method Patient.getInfo(), CACM searches the applicable conditions of access control rules with

this key.

ACM SIGPLAN Notices 19 Vol. 42 (4), Apr. 2007

Fig. 5. Runtime architecture of adaptation engine

3.3 Implementation of Adaptation Engine

Ubiquitous applications react to dynamically changing contexts. This is implemented by an adaptation engine

in this system. A user specifies the adaptation rules in a policy file, which describes how to respond when

an event occurs in a given context. The adaptation engine is operated based on adaptation rules.

For example, assume there is an adaptation rule that specifies when a doctor and a patient are in the same

consulting room and the doctor owns a PDA, then, in this situation, the information about the patient is

displayed on the doctor’s PDA automatically. Then, given any related event occurrence, such as the entrance

of a patient or a doctor to a consulting room, the adaptation engine examines if all the context conditions are

satisfied. If all the conditions of this rule are satisfied, the adaptation engine executes a method automatically,

which displays information about the patient on the doctor’s PDA.

Fig. 5 shows the system architecture for the adaptation engine. The adaptation engine is operated as

follows. The adaptation engine first reads the policy file, and then analyzes the adaptation rules and stores

them into a hash table.

Given a context change notification from a context service, ubiquitous programs request the adaptation

engine to apply the adaptation rules by calling the following method:

applyAdapRules(<entity>, <relationship>, <contextItem>)

This method should be invoked inside the contextChanged() method that is called automatically when any

context change event happens.

Upon request, the adaptation engine searches applicable adaptation rules in the hash table. If an appli-

cable adaptation rule is found, it evaluates the conditions of the rule under the current context. If all the

conditions are satisfied, then the adaptation engine applies the rule by doing its action such as calling a

method or creating a new relation.

Similarly to CACM, the adaptation engine manages a hash table which maps a 3-tuple key of related

entities and a relationship name to a list of context conditions for an action. Since there can be multiple

related context conditions for an event, each context condition for an action becomes an element of the list.

3.4 Simulator for executing ubiquitous applications

A simulator program was developed for executing ubiquitous applications in this programming framework.

A user is able to create a policy file for a ubiquitous application. Then the user can execute the ubiquitous

application. With this simulator, users can test applications with various scenarios of access control policies

and adaptation policies.

ACM SIGPLAN Notices 20 Vol. 42 (4), Apr. 2007

Fig. 6. The simulator for ubiqutous applications

Fig. 6 shows a snapshot of the simulator, which displays execution traces visually with current context

information. Each numbered part has the following role: In part 1, a user selects a policy file for an application.

The policy information is to be displayed into three separate regions: context definitions, access control rules

and adaptation rules. A user is also able to modify a policy file and apply the new version repeatedly. Part

2 lists possible events to be generated and possible methods to be executed. This information is gathered

by analyzing selected policy files. If a user selects events or methods in a sequence, then a scenario is made

by this selected sequence. Part 3 displays the current context. The current context consists of the relations

of Entity and ContextItem. Part 4 displays the result of the program execution. If a method call is denied

by the access control, the part 4 displays an alarm message with the explanation. If an event is generated

automatically by the adaptation rules, part 4 displays a message about the execution result and the applied

adaptation rule.

4 Related Works

Several groups have conducted research to provide software solutions for the ubiquitous computing environ-

ment, which includes the programming framework, context-aware middleware, and context-based security

for ubiquitous service.

JCAF developed by Badram is a framework for ubiquitous computing that uses Java [2]. This enables

simply and clearly defined context. This implementation for access control and adaptation is based on the

JCAF framework.

A. Ranganathan and Roy H. Campbell developed a context-aware system called Gaia [7]. This system

gathers context information, according to the kind of relation, and it is analyzed and disposed of using

ACM SIGPLAN Notices 21 Vol. 42 (4), Apr. 2007

first-order logic. This system reacts to context circumstance with the content defined in a configuration file.

However, in this configuration file, only instance values can be used.

Bellavista et. al proposed a middleware for context-aware resource management, called CARMEN, capable

of supporting the automatic reconfiguration of wireless Internet services in response to context changes

without any intervention on the service logic [4]. CARMEN determines the context on the basis of metadata,

which include declarative management policies and profiles for user preferences, terminal capabilities, and

resource characteristics.

5 Concluding Remarks

A ubiquitous programming framework has been developed that is based on high-level policy description

language. A context-based access control manager for context-aware access control has been implemented,

and an adaptation engine for context adaptation in dynamically changing environments has been integrated.

A simulator for ubiquitous applications was also implemented.

The final goal of this research is to develop an advanced programming environment for ubiquitous com-

puting, which facilitates the development of secure and adaptive ubiquitous software. A type of system for

the specification language will be designed, while the consistency policy specification will automatically be

checked based on the type of system. Ubiquitous programming support tools will be developed for program

analysis and monitoring. The program analysis tools help programmers develop secure and efficient programs

that are based on static analysis such as context-flow analysis, access control analysis, secure information-flow

analysis, and exception analysis. The program monitoring tools allow programmers to examine the execution

traces of programs such as context change, exception handling, and access control during execution.

Acknowledgements

This work was supported by grant No. R01-2006-000-10926-0 from the Basic Research Program of the Korea

Science and Engineering Foundation

References

1. Joonseon Ahn, Byeong-Mo Chang, and Kyung-Goo Doh, A Policy Description Language for Context-based Access
Control and Adaptation in Ubiquitous Environment, TRUST06, August, 2006

2. J. E. Bardram, The Java Context Awareness Framework-A Service Infrastructure and Programming Framework
for Context-Aware Applications, Third International Conference, Pervasive2005, Munich, Germany, May, 2005.

3. E. Cho and K. Lee, Security Checks in Programming Languages for Ubiquitous Environments, Proceedings of
2004 Workshop on Pervasive, Security, Privacy and Trust, Aug. 2004.

4. P. Bellavista, A. Corradi, R. Montanari, Context-Aware Middleware for Resource Management in the Wireless
Internet, IEEE Transactions on Software Engineering , Vol. 29, No. 12, December 2003.

5. Antonio Corradi, Rebecca Montanari, Daniela Tibaldi, Context-based Access Control for Ubiquitous Service Pro-
visioning, Proceedings of the 28th International Computer Software and Applications Conference(COMPSAC’04),
2004.

6. A. Ranganathan, Roy H. Campbell, An infrastructure for context-awareness based on first order logic, Springer-
Verlag London Limited 2003, November 2003

7. M. Roman, C.K. Hess, R. Cerqueira, A. Ranganat, R.H. Campbell, K. Nahrstedt, Gaia: A Middleware Infras-
tructure to Enable Active Spaces. IEEE Pervasive Computing, pp. 74-83, 2002

8. D. J. Scott, Abstracting application-level security policy for ubiquitous computing, University of Cambridge,
Computer Laboratory, Technical Report UCAM-CL-TR-613, January 2005.

9. D. Wichadakul, X. Gu and K. Nahrstedt, A Programming Framework for Quality-Aware Ubiquitous Multimedia
Applications, Proceedings of Multimedia’02, December, 2002, Juan-les-Pins, France.

ACM SIGPLAN Notices 22 Vol. 42 (4), Apr. 2007

