
A Thread Monitoring System for Multithreaded Java Programs

Sewon Moon and Byeong-Mo Chang

Department of Computer Science
Sookmyung Women’s University, Seoul 140-742, Korea

wonsein@nate.com, chang@sookmyung.ac.kr

Abstract. To assist developing robust multithreaded software, we develop a thread monitoring sys-
tem for multithreaded Java programs, which can trace or monitor running threads and synchroniza-
tion. We design a monitoring system which has options to select interesting threads and synchronized
actions. Using this tool, programmers can monitor only interesting threads and synchronization in
more details by selecting options, and can detect a deadlock. It also provides profile information after
execution, which summarizes behavior of running threads and synchronized actions during execution.
We implement the system based on code inlining, and presents some experimental results.

Keywords: Java, thread, synchronization, monitoring.

1 Introduction

Multithreading in Java has become widely used in modern software development. It has become popular
for Java programmers to develop concurrent and reactive software like sever software using multithreading
[8]. Multiple instances of one thread can be running concurrently in multithreaded programs, while a single
threaded program executes one instance of a method at a time.

Because there are multiple running threads in a multithreaded program, it is usually difficult for pro-
grammers to understand the behavior of the program. In addition, because multiple running threads can
share resources, there can be some race conditions or deadlocks during execution which make programs
more difficult to understand.

So, it is important for the development of robust multithreaded programs for programmers to observe
behavior of multithreaded programs more effectively. However, it is not easy for programmers to trace or
monitor behaviors of multiple running threads and synchronization effectively.

To assist developing robust multithreaded software, we need a tool to trace or monitor running threads
and synchronized actions(methods or blocks) during execution. In this paper, we develop a dynamic thread
monitoring system for multithreaded Java programs, which can trace how running threads and synchronized
actions are progressing. We design a thread monitoring system, which has options to select interesting
threads and synchronized actions. Using this tool, programmers can monitor only interesting threads and
synchronized actions in more details by selecting options before execution, and can also detect a deadlock
during execution. It also provides profile information after execution, which summarizes behavior of running
threads and synchronized actions during execution.

We implement the thread monitoring system based on inlined reference monitor [3] to reduce perfor-
mance overhead. It is implemented in Java using Barat [1], which is a front-end for a Java compiler. We
also present some experimental results, which can show the effectiveness of the system.

The rest of this paper is organized as follows. The next section gives a motivating example. Section 3
describes overall design of the system, and Section 4 describes the implementation of the system. Section
5 presents some experimental results and Section 6 concludes this paper and discusses further research
topics.

2 Example

We consider a multithreaded Java program in Figure 1, which is a running example of this paper. This
program creates three threads, each of which synchronizes one object and then tries to synchronize an-

ACM SIGPLAN Notices 21 Vol. 41 (5), May 2006



class Deallock3thread extends Thread{

static Object a = new Object(); // a monitor object

static Object b = new Object(); // b monitor object

static Object c = new Object(); // c monitor object

String name;

public Deallock3thread(String name){

this.name = name;

}

public void run() {

if(name.equals("d1") ){

synchronized(a) {

System.out.println("d1 acquired a");

try { Thread.sleep(1000); }

catch (InterruptedException e) {}

synchronized(b) {

System.out.println("d1 acquired b");

}

}

}

else if(name.equals("d2") ){

synchronized(b) {

System.out.println("d2 acquired b");

try { Thread.sleep(1000); }

catch (InterruptedException e) {}

synchronized(c) {

System.out.println("d2 acquired c");

}

}

}

else if(name.equals("d3") ){

synchronized(c) {

System.out.println("d3 acquired c");

try { Thread.sleep(1000); }

catch (InterruptedException e) {}

synchronized(a) {

System.out.println("d3 acquired a");

}

}

}

}

}

public class Deadlock3main {

public static void main(String[] args) {

Deallock3thread d1 = new Deallock3thread("d1");

Deallock3thread d2 = new Deallock3thread("d2");

Deallock3thread d3 = new Deallock3thread("d3");

d1.start();

d2.start();

d3.start();

}

}

Fig. 1. Example program

ACM SIGPLAN Notices 22 Vol. 41 (5), May 2006



other object which has been synchronized by another thread. This will make a deadlock situation during
execution.

3 Design considerations

There are several ways that monitors can mediate all application operations. A traditional reference mon-
itor is implemented by halting execution before certain machine instructions and invoking the reference
monitor with the instruction as input. An alternate implementation, not limited by hardware support,
runs applications inside an interpreter like JVM that executes the application code and invokes a reference
monitor before each instruction. JVMPI(JVM Profiler Interface) follows this approach. However, this ap-
proach has unacceptable performance overhead [3], since a cost is incurred on every executed instruction.
The third option inlines reference monitors in the target software. This approach is shown to overcome the
limitations of traditional reference monitors, yet exhibits reasonable performance [3].

An inlined reference monitor is obtained by modifying an application to include the functionality of a
reference monitor. As in Figure 2, IRMs are inserted into applications by a rewriter or transformer that
reads a target application and a policy, and produces a secured application, whose execution monitors its
execution. The inlining approach is shown to be efficient for monitoring Java programs in [3].

Fig. 2. Inlined monitor [3]

We follow the inlining approach to design a dynamic thread monitoring system for efficiency. We take
the following things into consideration in the design.

The first one is to provide users with options to select interesting threads and synchronized ations.
By selecting options before execution, users can focus on interesting threads and synchronized actions by
tracing only interesting ones in real-time. This option can also contribute in reducing performance overhead,
because it makes the system to trace only interesting ones instead of all threads and synchronized actions.

The second one is to provide a profile option to produce profile information after execution, which
summarizes running threads and synchronized actions during execution.

The third one is to reduce performance overhead. We try to reduce performance overhead by inlining
code instead of using JVMPI. An input program P is transformed into a program P

′ by inlinig codes so
as to trace only interesting threads according to user options. The transformed program P

′ will trace how
threads and synchronized actions are started and processed during execution, and give profile information
on threads and synchronization after execution.

Overall architecture of the system is shown in Figure 3. This system consists of four steps as in Figure
3. The function of each step is as follows:

The first step extracts constructs related to threads and synchronization by static analysis. This static
information is used to provide options.

The second step is option selection, where users can select interesting threads and synchronized actions
using the static analysis information. Users can trace only interesting threads and synchronized actions by
selecting options in this step.

The third step is a program transformer, which transforms an input program P into a program P
′ by

inlining codes so as to trace only interesting threads and synchronized actions according to user options.

ACM SIGPLAN Notices 23 Vol. 41 (5), May 2006



Fig. 3. System architecture

The last step is to compile and execute the transformed program P
′. It is to be executed on Java 2

SDK or J2ME WTK.

4 Implementation

We implement the thread monitoring system in Java based on Barat [1], which is a front-end for a Java
compiler. Barat builds an abstract syntax tree for an input Java program and enriches it with type and name
analysis information. It also provides interfaces for traversing abstract syntax trees, based on visitor design

Fig. 4. Architecture of Barat

pattern in [4]. We can traverse AST nodes and do some actions or operations at visiting each node using
a visitor, which is a tree traverse routine based on design patterns. Barat provides several visitors as basic
visitors: DescendingVisitor which traverses every AST node in depth-first manner and OuputVisitor

which outputs input programs by traversing AST nodes. We can develop a static analyzer by implementing
visitors by extending basic visitors so as to do necessary actions or operations when visiting AST nodes
[1].

As described in Figure 3, our system consists of four steps. We implement the first three steps. The last
step is a execution on Java SDK.

A main window for selecting options is shown in Figure 5, which shows all files in the package of a
sample program. After users select files from the package, the window displays a list of threads, synchronized
methods and blocks based on the static analysis information. Then, users can select only interesting ones

ACM SIGPLAN Notices 24 Vol. 41 (5), May 2006



Fig. 5. Menu window

among them. By selecting options, users can trace only interesting information and focus on interesting
threads and synchronization.

To provide users with options, we implement a static analyzer to extract constructs related to threads
and synchronization by extending DescendingVisitor. It extracts static information about possible threads
and synchronization by analyzing input programs statically.

We implement a program transformer called TransformVisitor by extending OuputVisitor, which
transforms an input program P into a program P

′ by inlining codes so as to trace running threads and
synchronization according to selected options. It also inlines codes to trace synchronized objects and dead-
locks. Figure 6 shows overall structure of the program transformer.

A fragment of the transformed EzSearch program is displayed in Figure 7. This figure shows that
putMessage method is a synchronized method. The codes in the box are inlined codes by the transformer,
which monitor the synchronized method and store its related information during execution. The trans-
formed program is to be executed automatically in Java 2 SDK. This transformed code traces how running
threads and synchronization are progressing during execution. In addition, it can give profile information
like the numbers of running threads and synchronized actions during execution.

5 Experiments

We have implemented the system with SDK 1.4.2 on Window XP on Pentium 4 processor. We first tested it
with Deadlock3main in the example. When we execute the example deadlock program after transformation,
we can trace progress of running threads as in Figure 8. It shows progress of running threads visually,
each of which is represented as a running bar. Red color in the bar represents waiting of a thread for
synchronization.

For example, Figure 8 shows that all the three threads are waiting, and that one thread has synchronized
an object and another is waiting for it. Figure 9 shows that a deadlock is found during execution.

ACM SIGPLAN Notices 25 Vol. 41 (5), May 2006



Class TransformVisitor extends OutputVisitor{

public void visitConcreteMethod(ConcrteMethod o) {

// monitoring code for starting thread.

}

public void visitConstructor(Constructor o) {

// monitoring code for thread name and creation.

}

public void visitObjectAllocation(ObjectAllocation o) {

// monitoring code for creation of thread object.

}

public void visitInstanceMethodCall(InstanceMethodCall o) {

// monitoring code for synchronized method call

}

public void visitBlock(Block o) {

// monitoring code for inside of synchronized block

}

public void visitSynchronized(Synchronized o) {

// monitoring code for access to synchronized block

}

}

Fig. 6. Structure of TransformVisitor

Fig. 7. Transformed program

ACM SIGPLAN Notices 26 Vol. 41 (5), May 2006



Fig. 8. Trace of the example program

Fig. 9. Finding a deadlock

ACM SIGPLAN Notices 27 Vol. 41 (5), May 2006



When the program terminates, it profiles the numbers of running threads, synchronized method calls,
and accesses to synchronized blocks.

We have experimented the system with five Java benchmark programs. The first one is EzSearch, which
searches files matching input patterns. The second one is Alaram, which shows time differently depending
on modes. The third one is Atapplet, which withdraws from a bank account. The fourth one is the simple
Read-Write program. The last one is Deadlock3main program, in which there is a deadlock during execution.

Table 1 shows the number of threads, the number of running threads, the number of synchronized
methods, the number of synchronized method calls, the number of synchronized blocks, and the number
of accesses to synchronized blocks.

Programs Threads Running Sync. Methods Sync. Method Sync. Blocks Sync. Block
threads Calls Accesses

EzSearch 2 20 2 25 0 0

Alarm 2 6 8 23 1 8

Atapplet 1 9 1 18 1 0

Read-Write 2 6 5 13 3 8

Deadlock3main 1 3 0 0 3 3

Table 1. Experiment 1 with benchmark programs

Table 2 first shows the numbers of lines of benchmark programs before and after inlining, when all
options are selected. It then shows the execution times of the programs before and after inlining. If only
some options are selected, then the number of lines after inlining and the execution time are to be reduced.
In Deadlock3main program, the monitoring systems detects deadlock during execution.

Programs Lines(before) Lines(after) Execution time(before) Execution time(after)

EzSearch 210 245 3282 4375

Alarm 336 462 12172 21235

ATapplet 272 342 21188 33703

Read-Write 221 293 1797 5719

Deadlock3main 70 160 Deadlock Deadlock

Table 2. Experiment 2 with benchmark programs

6 Related works

Dynamic program analysis techniques have been studied to provide information about actual execution [2,
6, 7, 9, 11]. Several dynamic analysis tools are developed for Java including J2ME Wireless Toolkit [7] and
AdaptJ [6]. Recent J2ME Wireless Toolkit can trace method calls, exceptions and class loading as well as
memory usage using JVMPI. However, it provides just the names of exceptions whenever exceptions are
thrown. Moreover, JVMPI imposes heavy burden on performance overhead, which makes execution speed
too slow. It is hard to trace interesting parts of programs effectively, because all codes including libraries
are included in the trace.

AdaptJ is a dynamic analysis tool, which gets dynamic information using JVMPI during execution and
stores it as a file. It provides the dynamic information after execution. Users can select useful information
from it by choosing some options.

ACM SIGPLAN Notices 28 Vol. 41 (5), May 2006



JFluid is a dynamic analysis tool recently developed at Sun Microsystems [9]. It is integrated in Net-
Beans IDE and shows performance data of running Java programs such as CPU, memory and threads. It
instruments bytecode for monitoring right before execution.

Concurrent Haskell Debugger in [11] is a debugging tool for concurrent Haskell, which can show con-
currency problem like deadlock visually.

In our previous work [13], a dynamic exception monitoring system was developed so as to trace handling
and propagation of thrown exceptions in real-time. With this tool, programmers can examine exception
handling process in more details and handle exceptions more effectively.

Our thread monitoring system can show visually how running threads and synchronized actions are
progressing. In particular, users can focus only on interesting threads and synchronized actions by selecting
options, which can be provided with static analysis information.

7 Conclusion

We have developed a dynamic monitoring system for multithreaded Java programs, which can help pro-
grammers monitor behavior of multithreaded programs effectively. Using this system, programmers can
examine progress of running thread and synchronization in more details by tracing only interesting ones.
We have designed the system based on user options and inlined reference monitor.

We are extending this system in two directions. The first one is to improve the execution times of the
inlined programs. The second one is to visualize thread trace and profile information so as to give more
insights to programmers.

Acknowledgements

This Research was supported by the Sookmyung Women’s University Research Grants 2005.

References

1. B. Bokowski, Andre Spiegel. Barat A Front-End for Java. Technical Report B-98-09 December 1998.
2. B. Dufour, K. Driesen, L. Hendren and C. Verbrugge. Dynamic Metrics for Java. Proceedings of ACM OOPSLA

’03, October, 2003, Anaheim, CA.
3. U. Erlingsson, The inlined reference monitor approach to secure policy enforcement, Ph.D thesis, Cornell Uni-

versity, January 2004.
4. E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns:Elements of Reusable Object-Oriented

Software, Addison-Wesley,1995.
5. J. Gosling, B. Joy, and G. Steele, The Java Programming Language Specification, Addison-Wesley,1996.
6. AdaptJ:A Dynamic Application Profiling Toolkit for Java, http://www.sable.mcgill.ca/ bdufou1/AdaptJ
7. Sun Microsystems, J2ME Wireless Toolkit, http://java.sun.com.
8. Doug Lea, Concurrent Programming in Java(TM): Design Principles and Pattern, 2nd Edition, Addison-Wesley.
9. Sun Microsystems, Design of JFluid: A Profiling Technology and Tool Based on Dynamic Bytecode Instrumen-

tation, 2003.11.
10. http://www.netbeans.org/
11. Jan Christiansen, Frank Huch: Searching for deadlocks while debugging concurrent haskell programs. ICFP

2004: 28-39
12. Deepa Viswanathan, Sheng Liang: Java Virtual Machine Profiler Interface. IBM Systems Journal 39(1): 82-

(2000)
13. Heejung Ohe and Byeong-Mo Chang, An Exception Monitoring System for Java, Proceedings of Rapid Integra-

tion of Software Engineering, Nov. 2004, Luxembourg. Also available as LNCS 3475.

ACM SIGPLAN Notices 29 Vol. 41 (5), May 2006




