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Abstract. Most static analysis techniques for optimizing stack inspection approximate permission

sets such as granted permissions and denied permissions. Because they compute permission sets fol-
lowing control flow, they usually take intra-procedural control flow into consideration as well as call
relationship. In this paper, we observed that it is necessary for more precise optimization on stack
inspection to compute more specific information on checks instead of permissions. We propose a back-
ward static analysis based on simple call graph to approximate redundant permission checks which
must fail. In a similar way, we also propose a backward static analysis to approximate success per-
mission checks, which must pass stack inspection.
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1 Introduction

Java was designed to support construction of applications that import and execute untrusted code from

across a network. The language and run-time system enforce security guarantees for downloading a Java

applet from one host and executing it safely on another. Bytecode verification is the basic building block

of Java security, which statically analyzes the bytecode to check whether it satisfies some safety properties

at load-time [7, 16].

While the bytecode verifier is mainly concerned with verification of the safety properties at load-time,

the security manager in Java 2 is a runtime access control mechanism which more directly addresses the

problem of protecting critical resources from leakage and tampering threats. Whenever an access permission

to critical resources is requested, the security manager inspects a call stack to examine whether the program

has appropriate access permissions or not. This run-time check called stack inspection enforces access-

control policies that associate access rights with the class that initiates the access. A permission check

passes stack inspection, if the permission is granted by the protection domains of all the frames in the call

stack.

Stack inspection may be expensive, since it must examine all the frames in the call stack. The run-time

overhead due to examining stack frames may grow very high. Hence, effective improvement and optimization

of stack inspection is a good research challenge.

There have been several works to optimize stack inspection by eliminating redundant checks with static

analysis information [4, 12, 1, 2, 10]. Most of them approximate permission sets such as granted permissions

and denied permissions [4, 12, 1, 2, 10]. Because they compute permission sets following control flow, they

usually take intra-procedural control flow into consideration as well as call relationship [12, 1, 2].

In this paper, we observed that it is necessary for more precise optimization on stack inspection to

compute more specific information on checks instead of permissions. We propose a backward static analysis

to determine redundant permission checks. The static analysis is performed based on simple call graph. To

determine redundant (dead) checks, we first approximate all live checks at every method by static analysis.

A permission check check(p) in a method m is live at a method n, if there exists a calling chain from

the method n to the method m, along which the permission p is granted. We call it live at the method

n because the stack inspection can go further across the method. Once live checks are computed at each

method, dead checks (which are not live) can be computed easily at each method. Permission checks which
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are dead at a starting method or a privileged action method must fail, because there exists no path, along

which the permission is granted. So dead checks are redundant and can be eliminated. This idea can also

be extended to other methods, even if they are not starting methods. Once a method is called during

execution, its dead checks will certainly fail when they are executed. So, we can transform or optimize a

program so as to utilize this property.

In a similar wary, we can also determine success permission checks, which must pass stack inspection.

We also propose a backward static analysis to approximate success checks.

This paper is organized as follows. The next section reviews Java 2’s stack inspection. Section 3 describes

two proposed static analyses. Section 4 discusses applications of the static analyses. Section 5 discusses

related works. Section 6 concludes this paper with some remarks.

2 Stack inspection

Java 2’s access-control policy is based on policy files which defines the access-control policy for applications.

A policy file associates permissions with protection domains. The policy file is read when the JVM starts.

The checkPermission method in Java determines whether the access request indicated by a speci-

fied permission should be granted or denied. For example, checkPermission in the below will determine

whether or not to grant "read" access to the file named "testFile" in the "/temp" directory.

FilePermission perm = new FilePermission("/temp/testFile", "read");

AccessController.checkPermission(perm);

If a requested access is allowed, checkPermission returns quietly. An AccessControlException is thrown,

if denied. Whenever the method checkPermission is invoked, the security policy is enforced by stack

inspection, which examines the chain of method invocations backward. Each method belongs to a class,

which in turn belongs to a protection domain.

When checkPermission(p) is invoked, the call stack is traversed from top to bottom (i.e. starting

with the frame for the method containing the checkPermission(p) invocation) until the entire stack

is traversed. In the traversal, the stack frames encountered are checked to make sure their associated

protection domains imply the permission. If some frame doesn’t, a security exception is thrown. That is, a

permission for resource access is granted if and only if all protection domains in the chain have the required

permission.

Privilege amplification is supported by doPrivileged construct in Java. A method M performs a privi-

leged action A by invoking AccessController.doPrivileged(A); this involves invoking method A.run()

with all the permissions of M enabled. This can be seen as marking the method frame of M as privileged:

stack inspection will then stop as soon as a privileged frame (starting from the top) is found [2].

In Java, the normal use of the “privileged” feature is as follows [16] :

somemethod() {

...normal code here...

AccessController.doPrivileged(new PrivilegedAction() {

public Object run() {

// privileged code goes here, for example:

System.loadLibrary("awt");

return null; // nothing to return

}

});

...normal code here...

}
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This type of normal privileged call is assumed for simple presentation in this paper.

When inspecting stack, the checkPermission method stops checking if it reaches a caller that was

marked as “privileged” via a doPrivileged call. If that caller’s domain has the specified permission, no

further checking is done and checkPermission returns quietly, indicating that the requested access is

allowed. If that domain does not have the specified permission, an exception is thrown, as usual.

In summary, stack inspection checks the chains of method invocations backward until either the entire

stack is traversed or an invocation is found within the scope of a doPrivileged call.

Java’s stack inspection policy can also handles dynamic creation of threads. When a new thread T

is created, T is given a copy of the existing run-time call stack to extend. The success of subsequently

evaluating checkPermission in thread T thus involves permissions associated with the call stack when T

is created.

3 Static Analysis

We define our static analysis based on simple call graph which can be defined as follows.

Definition 1. A call graph CG = (N,E) is a directed graph, where N is the set of nodes which represent

methods, and E ⊆ N × N is the set of edges, which represents method calls.

There are two kinds of edges in the call graph. A normal edge n → n′ represents a normal method call

from n to n′. Thread start is also considered as a normal method call to its run method. A privileged edge

n ; n′ represents a doPrivileged call from n to n′. This represents doPrivileged call to a privileged

action n′, which is usually a method A.run(), with all the permissions of n enabled. The soundness of call

graph is shown in many literature [14, 9]. This call graph is unlike the call graph in [1], in that it doesn’t

contain any intra-procedural control flow.

In the following, we abbreviate checkPermission(p) by check(p). We denote by check(p) ∈ m if

check(p) occurs in a method m. The set of all permission checks in a program is denoted by Check. The

set of permissions associated with a method m is denoted by Permissions(m), which is determined by a

policy file which associates permissions with protection domains, to which methods belong.

We can say that a permission check check(p) in a method m is live at a method n, if the permission p

is granted by all the stack frames from the method m to the method n by stack inspection. We call it live

because the stack inspection can go further across m.

We will approximate all live checks at every method by static analysis. Then we compute dead checks,

which are not live. A live permission check is defined as follows:

Definition 2. A permission check check(p) in a method m is live at the entry to a method n, if there

exists a path from the method n to the method m in the call graph, along which the permission p is granted

by all the methods in the path.

Based on the simple call graph, we first define a backward static analysis called Live Check Analysis,

which gives a safe approximation of live checks at each method. The Live Check Analysis will determine:

for each node(method), which permission checks may be live at the entry to the node.

The live check analysis is defined by the flow equation in Figure 1, where LCentry(n) includes check(p)’s

in the method n or in LCexit(n) such that the permission p is granted by the method n. Note that only

normal calls denoted by n → m are considered in the equation LCexit(n).

The flow equation in Figure 1 defines a transfer function FLC : L → L, where the property space L is

a complete lattice Lentry × Lexit where Lentry and Lexit are total function spaces from N to 2Check. The

least solution (lcentry, lcexit) ∈ L of the flow equation in Figure 1 can be computed by lfp(FLC) in finite

time as in Theorem 1.
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LCexit(n) =

{

∅ if n is final
⋃

{LCentry(m)|n → m ∈ E} otherwise

LCentry(n) = {check(p)|check(p) ∈ LCexit(n), p ∈ Permissions(n)} ∪ genLC(n)

where genLC(n) = {check(p)|check(p) ∈ n, p ∈ Permissions(n)}

Fig. 1. Flow equation for live check analysis

Theorem 1. The least fixpoint lfp(FLC) for the live check analysis can be computed in finite time.

Proof. Because the set Check of permission checks in a program is finite, the property space L is finite

and so it satisfies the ascending chain condition. The transfer function FLC is monotonic. So, the least

solution can be computed by lfp(FLC) = Fn
LC(⊥) for some finite n by Tarksi theorem.

We prove the soundness of the live check analysis in the following theorem. In the theorem, we only

consider actual normal call chains which don’t contain a privileged call, because stack inspection cannot

go further across a privileged call.

Theorem 2. For every actual normal call chain from a method n to a method m which contains

check(p), if the permission p is granted by all the methods in the call chain, then check(p) is in lcentry(n).

Proof. By the soundness of call graph construction, for every actual normal call chain, there exists a

corresponding path in the call graph. If the permission p is granted by all the methods in the call chain, then

it must be granted by all the methods in the path in the call graph. So, the check check(p) is introduced

into the solution lcentry(m) by the flow equation. It is propagated to the method n, and is included in the

solution lcentry(n) by the equation, because it is granted by all the methods in the path.

As an example, we consider a client-part of small e-commerce example in [2]. As described in [2], the

user agent runs a Java-enabled Web browser, which has the rights to access the local file system and to

open a socket connection. Shop and Robber are client-tier components implemented as Java applets. The

Browser class provides the applets with some methods to manage the user preferences: the getPref()

method tries to retrieve the preferences from a local file if the applet has the rights to do so. Otherwise,

it opens a socket connection with the remote server. The changePrefs() method first looks for the old

preferences (either in the local disk or on the remote server); then it asks for the new preferences, which

are thereafter saved on the local disk (if the applet has the rights to do so) or sent to the remote server.

Its call graph and the security policies are shown in Figure 2. Unlikely to [1, 2], our static analysis is

based on simple call graph. The live check analysis computes live checks for the entry of each method,

which are shown in Figure 3. Note that check(Pread) and check(Pwrite) are live at Shop.start(), and

check(Pconnect) is live at Robber.start().

A permission check is called dead at the entry to a method n, if it is not live at n. If a permission check

check(p) in a method m is dead at the entry to a method n, it implies that there is no path from n to m,

which can grant the permission p. If a starting method(or a privileged action method) is started, its dead

checks will certainly fail stack inspection when they are executed.

Once live checks lc(n) at a method n have been computed, then dead checks dc(n) at the method n

can be simply computed as:

dc(n) = reachable(n) − lcentry(n)

where reachable(n) is the set of all reachable permission checks to a node(method) n without considering

permissions. reachable : N → 2Check is the least solution of the following equation:
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Fig. 2. Call graph and security policy for e-commerce application (client-side)

R(n) =

{

{check(p)|check(p) ∈ n} if n is final
⋃

{R(m)|n → m ∈ E} ∪ {check(p)|check(p) ∈ n} otherwise

Note that only normal calls denoted by n → m are considered when computing reachable checks. A

privileged call n ; n′ is not considered, since stack inspection cannot go further across a privileged call.

In the example, all the three checks are reachable to the Shop.start() and Robber.start() meth-

ods. So check(Pconnect) is dead at Shop.start() and check(Pread) and check(Pwrite) are dead at

Robber.start(). Therefore if the applet starts from Shop.start(), then check(Pconnect) must fail, and

if the applet starts from Robber.start(), then check(Pread) and check(Pwrite) must fail.

Once a starting method(or a privileged action method) is started, then its dead checks must fail stack

inspection and throw AccessControlException when they are executed. This is because there is no back-

ward path from the check to the starting method(or the privileged action method) such that stack inspection

Method Live checks

Shop.start() {check(Pread), check(Pwrite)}
Robber.start() {check(Pconnect)}
Brower.chagePrefs() {check(Pread), check(Pwrite), check(Pconnect)}
Browser.getPrefs() {check(Pread), check(Pconnect)}
FileOutputStream() {check(Pwrite)}
FileInputStream() {check(Pread)}
Socket() {check(Pconnect)}

Fig. 3. Live checks
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can succeed. Optimization of redundant checks based on the static analysis information is to be discussed

in the next section.

Our second analysis is called Success Check Analysis, which gives a safe approximation of permission

checks which must pass stack inspection.

Definition 3. A check(p) in a method m is successful at the entry to a method n, if, for every path

from the method n to the method m in the call graph, the permission p is granted by all the methods in the

path.

The Success Check Analysis will determine:

for each node(method), which permission checks must be successful at the entry to the node.

Once a starting method(or a privileged action method) is started, then its success checks must pass stack

inspection when they are executed. This is because the permission p is granted for every backward path

from the checks to the starting method(or the privileged action method).

If a reachable check is not successful at a node, then it may fail through some path from the check to the

node. We first define Failable Check Analysis and then compute the success checks for each node n by the

complement of failable checks with respect to reachable(n). The Failable Check Analysis will determine:

for each node, which checks may fail through a backward path from the checks to the node.

The failable check analysis is defined by the flow equations in Figure 2, where FCentry(n) includes all the

failable checks in FCexit(n) and new failable check(p)’s in reachable(n) such that the permission p is not

granted by the method n. Note that if check(p) occurs in n, then it is simply included in reachable(n).

If a permission check is failable at the entry to a node n, it means that there exists a path from n to the

check, which doesn’t satisfy the permission.

FCexit(n) =

{

∅ if n is final
⋃

{FCentry(m)|n → m ∈ E} otherwise

FCentry(n) = FCexit(n) ∪ genFC(n)

where genFC(n) = {check(p) ∈ reachable(n)|p /∈ Permission(n)}

Fig. 4. Flow equation of failable check analysis

The flow equation in Figure 2 defines a transfer function FFC : L → L. The least solution (fcentry, fcexit) ∈

L of the flow equation can be computed by lfp(FFC) in finite time as in Theorem 3.

Theorem 3. The least fixpoint lfp(FFC) for the failable check analysis can be computed in finite time.

Proof. Because the finite property space L satisfies the ascending chain condition and the transfer function

is monotonic, lfp(FFC) can be computed by Fn
FC(⊥) for some finite n.

A permission check check(p) in the least solution fcentry(n) means there exists a path from n to the

check, which doesn’t satisfy the permission. We can prove the soundness of the failable check analysis.

Theorem 4. For every actual normal call chain from a method n to a method m which contains

check(p), if the permission p is not granted by some method in the call chain, then check(p) is in fcentry(n).

Proof. By the soundness of call graph, for every actual normal call chain, there exists a corresponding

path in the call graph. If the permission p is not granted by some method k in the call chain, it must not
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be granted by the method in the corresponding path in the call graph. So the check check(p) is introduced

into the solution fcentry(k) by the flow equation. Once it is introduced, it is propagated to n along the

path, and is included in fcentry(n) by the flow equation.

In the example, check(Pconnect) is a failable check at the entry to Shop.start() and check(Pread)

and check(Pwrite) are failable checks at the entry to Robber.start().

Once the least fixpoint fc has been computed, the success checks sc at each node n can be computed

by scentry(n) = reachable(n) − fcentry(n) for each node n. If a starting method(or a privileged action

method) n is started, its success checks in scentry(n) must pass stack inspection when they are executed,

because all paths from n to the checks satisfy the permission.

For example, check(Pconnect) is a success check at Robber.start() and check(Pread) and check(Pwrite)

are success checks at Shop.start(). So, if the applet starts from Robber.start(), then check(Pconnect)

must pass stack inspection.

The fixpoint can be computed by worklist algorith [11]. Basic operations in the worklist algorithm are

set operations like union and membership. The worklist algorithm needs at most O(|E| · |Check|) basic

operations where |Check| is the number of checks and the height of the lattice 2Check [11].

4 Applications

In the example, we detect by the static analysis that if the applet starts from Shop.start(), then

check(Pconnect) must fail, and if the applet starts from Robber.start(), then check(Pread) and check(

Pwrite) must fail.

Based on the static analysis information, the dead checks can be eliminated and replaced by the code

throwing AccessControlException. This optimization can be done based on a starting point, which is an

end point of stack inspection. There are several starting points with respect to stack inspection in Java

programs. A main or start method are starting methods in case of Java applications or applets respectively.

A privileged action method can also be considered as a starting point because stack inspection ends there.

If a starting method(or a privileged action method) is started, then its dead checks must fail stack

inspection and throw AccessControlException. This is because there is no backward path from the

check to the starting method(or the privileged action method), which can pass stack inspection. Therefore,

permission checks which are dead at a starting method(or a privileged action method) are redundant and

can be replaced by the code throwing AccessControlException.

This optimization can be justified as follows. Because we don’t consider intra-procedural control flow,

the check may or may not be executed. When the check is not executed, it is a kind of dead code, and so

the elimination causes no problems. When the check is executed, it must fail, and so can be replaced by

the code throwing AccessControlException.

This idea can also be extended to other methods, even if they are not starting methods. If a method

is called during execution, its dead checks will certainly fail when they are executed. So, we can transform

or optimize a program so that if a method is called, its dead checks can be skipped and replaced by the

code throwing AccessControlException.

In a similar way, success check information can also be utilized for optimizing redundant permission

checks. For example, check(Pread) and check(Pwrite) are success checks at Shop.start(). So, if the

applet starts from Shop.start(), then check(Pread) and check(Pwrite) must pass stack inspection, so

those checks can be skipped.

5 Related Works

There are several static analysis techniques for permission checks [4, 5, 1, 2, 10]. Most static analyses approx-

imate stack inspection in terms of permissions. Our proposed analysis is unique in that it compute dead or
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success information in terms of checks. By this type of analysis, we can determine whether each check is

dead or not at each method. This can give more specific information for optimization of redundant checks.

Every method has specific information about dead checks and partially context-sensitive optimizations can

be done depending on method calls using this information.

There are some works on static analysis of security checks like stack inspection. Bartolleti et al. pro-

posed two control flow analyses for the Java bytecode [1]. They safely approximate the set of permissions

granted/denied to code at run-time. This static information helps optimizing the implementation of the

stack inspection algorithm. They also developed a technique to perform program transformation in the

presence of stack inspection [2]. This technique relies on the trace permission analysis, which is a con-

trol flow analysis and compute a safe approximation to the set of permissions that are always granted to

bytecode at run time.

Koved et al. [10] presents a technique for computing the access rights requirements by using a context

sensitive, flow sensitive, interprocedural data flow analysis. This analysis computes at each program point

the set of access rights required by the code. They implemented the algorithms and present the results of

the analysis on a set of programs.

Besson et al applied constraint-based static analysis techniques to the verification of global security

properties [5]. They introduces a formalism based on a linear-time temporal logic for specifying global

security properties pertaining to the control flow of the program. They defined a security-dedicated program

model that only contains procedure call and run-time security checks and propose a model checking method

for verifying that an implementation using local security checks satisfies a global security property. In [4],

they also presented a technique for inferring a secure calling context for a method, which is a pre-condition

on the call stack sufficient for guaranteeing that execution of the method will not violate a given global

property.

There are some other works on stack inspection such as semantics, type system and implementation.

Wallach et al. [15] present a new semantics for stack inspection based on a belief logic and its implementation

using the calculus of security-passing style which addresses the concerns of traditional stack inspection.

With security-passing style, the security context can be efficiently represented for any method activation,

and a prototype implementation is built by rewriting the Java bytecodes before they are loaded by the

system.

Pottier et al. [13] address static security-aware type systems which can statically guarantee the success

of permission checks. They use the general framework, and construct several constraint- and unification-

based type systems. They offer significant improvements on a previous type system for JDK access control,

both in terms of expressiveness and in terms of readability of inferred type specifications.

Erlingson [6] describes how IRMs(Inlined Reference Monitor) can provide an alternative to enforcing

access control on runtime platforms, like the JVM, without requiring changes to the platform. Two IRM

implementations of stack inspection are discussed. One is a reformulation of security passing style proposed

in [15]; the other is new and exhibits performance competitive with existing commercial JVM-resident

implementations.

6 Conclusion

We have proposed two static analysis techniques, which can give more specific information for optimization

of redundant checks. We have also discussed optimization of redundant checks using the static analysis

information. In particular, every method has specific information about dead checks. This information can

allow us to do partially context-sensitive optimizations depending on method calls.

We are currently implementing the static analysis, and transformation-based optimizations using static

analysis information. We will also extend the proposed static analysis for fully context-sensitive analysis.
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