
Visualization of Exception Propagation for Java using Static Analysis ∗

Byeong-Mo Chang

Department of Computer Science

Sookmyung Women’s University

Seoul 140-742, Korea

chang@sookmyung.ac.kr

Jang-Wu Jo

Department of Computer Engineering

Pusan University of Foreign Studies

Pusan 608-738, Korea

jjw@taejo.pufs.ac.kr

Soon Hee Her

Department of Computer Science

Sookmyung Women’s University

Seoul 140-742, Korea

hsh@cs.sookmyung.ac.kr

Abstract

In this paper, we first present a static analysis

based on set-based framework, which estimates excep-

tion propagation paths of Java programs. We construct

an exception propagation graph from the static analysis

information, which includes the origin of exceptions,

handler of exceptions, and propagation paths of excep-

tions. We have implemented the exception propagation

analysis and a visualization tool which visualizes prop-

agation paths of exceptions using the exception propa-

gation graph. This propagation information can guide

programmers to detect uncaught exceptions, handle ex-

ceptions more specifically, and put exception handlers

at appropriate places by tracing exception propagation.

Keywords: Java, exception propagation, exception
analysis, set-based analysis.

1 Introduction

Exception facilities in Java allow the programmer to
define, throw and catch exceptional conditions. Java
distinguishes between checked and unchecked excep-
tions. Unchecked exceptions are exempt from the re-
quirement of being declared. Java compiler checks
whether checked exceptions are caught or declared, so
checked exception must be declared if they are not

∗This work was supported in part by grant No. 2000-1-30300-

009-2 from the Basic Research Program of the Korea Science &

Engineering Foundation.

caught.
Because unhandled exceptions will abort the pro-

gram’s execution, it is important to make sure at
compile-time that the input program will have no
(checked) exceptions which are uncaught at run-time.
There have been several uncaught exception analyses,
that estimate uncaught exceptions [10, 24, 1, 18].

However, they estimate uncaught exceptions only by
their names, so that they cannot provide information
on the propagation paths of thrown exceptions, which
is necessary to construct interprocedural control flow
graph [20], visualize exception propagation, and slice
exception-related parts of programs.

In this paper, we first present a static analysis to
safely approximate propagation paths of thrown ex-
ceptions and then present a visualization tool to show
exception propagation paths.

We design an exception propagation analysis based
on set-based framework [12]. We first design set-
constraint construction rules to safely approximate
propagation paths of thrown exceptions. We then de-
sign constraint solving rules. We compute the solution
of the constraints in finite time by applying the solving
rules.

Our visualization tool displays exception propaga-
tion information using the static analysis information.
If users select a method, the visualization tool first dis-
plays all uncaught exceptions from that method. If one
of the uncaught exceptions is selected, its exception
propagation paths are visualized. This visualization
tool can guide programmers to detect uncaught excep-
tions, handle exceptions more specifically and declare
exceptions more exactly. Moreover, this information

P ::= C∗ program
C ::= class c ext c′ { var x∗ M∗} class definition
M ::= m(x) = e [throws c∗] method definition
e ::= id variable

| id := e assignment
| new c new object
| this self object
| e ; e sequence
| if e then e else e branch
| throw e exception raise
| try e catch (c x) e exception handle
| e.m(e) method call

id ::= x method parameter
| id.x field variable

c class name
m method name
x variable name

Figure 1. Abstract Syntax of a Core of Java

can guide programmers to put exception handlers at
appropriate places by tracing exception propagation.

We have implemented the exception propagation
analysis on top of Barat [26], which is a front-end of
Java compiler, and have also implemented the visual-
ization tool on top of Jipe [27] using the static analysis
information.

The next section describes preliminaries including
the core of Java, on which our presentation is based.
Section 3 describes the exception propagation analysis.
Section 4 describes implementation of the exception
propagation analysis and visualization tool. Section 5
discusses related works and Section 6 concludes this
paper.

2 Preliminaries

For presentation brevity of our static analysis, we
consider an imaginary core of Java with its exception
constructs [24]. Its abstract syntax is in Figure 1. A
program is a sequence of class definitions. Class bodies
consist of field variable declarations and method def-
initions. A method definition consists of the method
name, its parameter, and its body expression. Every
expression’s result is an object. An assignment expres-
sion returns the object of its righthand side expression.
A sequence expression returns the object of the last
expression in the sequence. A method call returns the
object from the method body. The try expression

try e0 catch (c x) e1

evaluates e0 first. If the expression returns a normal
object then this object is the result of the try expres-
sion. If an exception is thrown from e0 and its class is
covered by c then the handler expression e1 is evaluated
with the exception object bound to x. If the thrown
exception is not covered by class c then the thrown
exception continues to propagate back along the eval-
uation chain until it meets another handler. Multiple
handlers for a single expression e0 can be expressed by
a nested try expression:

try (try e0 catch (c1 x1) e1) catch (c2 x2) e2.

The exception object e0 is thrown by throw e0. The
programmers have to declare in a method definition
any exception class whose exceptions may escape from
its body.

Like normal objects, exceptions can be defined by
classes, instantiated, assigned to variables, passed as
parameters, etc. Exception facilities in Java allow the
programmer to define, throw and catch exceptional
conditions.

The formal semantics of Java was proposed in [7]
with exception throwing, propagation and handling
taken into consideration.

Let’s consider a simple example in Java which shows
exception propagation. The thrown exception E1 from
the method m2 is propagated through m2 and m1, and
caught by the try-catch in the main method. The
exception E2 may be thrown from the method m3. If it
is thrown, then it is propagated until the main method

2

class Demo{

public static void main(String[] args) throws E2

{

try {

m1();

} catch (E1 x) { ; }

. . .

m3();

}

void m1() throws E1{

m2();

}

void m2() throws E1{

throw new E1();

}

void m3() throws E2 {

if (...) throw new E2();

if (...) m3();

}

}

Figure 2. An example program for exception
propagation

and not caught. The method m3 also has a recursive
call to itself, so that the thrown exception E2may prop-
agated back through the recursive calls.

3 Exception Propagation Analysis

Our analysis is based on the set-based framework
[12]. Set-based analysis consists of two phases: collect-
ing set constraints and solving them. The first phase
constructs set-constraints by the construction rules,
that describe the data flows between the expressions
of the analyzed program. The second phase finds the
sets of values that satisfy the constraints. A solution is
a table or mapping from set variables in the constraints
to the finite descriptions of such sets of values.

We shall first describe the notion of set constraints
and then present a constraint system that estimates
traces of thrown exceptions from every expression of
the input program.

3.1 Set Constraints

Each set constraint is of the form X ⊇ se where X is
a set variable and se is a set expression. The meaning
of a set constraint X ⊇ se is intuitive: set X contains
the set represented by set expression se. Multiple con-
straints are conjunctions. We write C for such conjunc-
tive set of constraints.

In case of our analysis, the set expression is of this
form:

se→ 〈c`, `〉 thrown exception from `

| X set varaible
| se ∪ se union
| se− {c1, ..., cn} catching exceptions
| se · ` exception propagation

The thrown exception from a throw expression labeled
with ` is represented by 〈c`, `〉 where c is the name or
class of the exception and l is the location or label of
the throw expression. We call c` the unique identifier

of the thrown exception in this paper.
The set expression se − {c1, ..., cn} is for catching

exceptions. The set expression se · ` records exception
propagation paths by appending a label ` to se.

The semantics of set expressions naturally follows
from their corresponding language constructs. The for-
mal semantics of set expressions is defined by an inter-
pretation I that maps from set expressions to sets of
values in

V = Exception× Trace

where Exception = ExnName × Label where
ExnName is the set of exception names, and Trace =
Label∗. A trace τ ∈ Trace is a sequence of labels in
Label, which is an exception propagation path. For
example, I(se · `′) = I(se) · `′ where I(se) · `′ =
{〈c`, `1 · · · `n`

′〉|〈c`, `1 · · · `n〉 ∈ I(se)}. We call an in-
terpretation I a model (a solution) of a conjunction
C of constraints if, for each constraint X ⊇ se in C,
I(X) ⊇ I(se).

Collected constraints for a program guarantee the
existence of its least solution (model) because every
operator is monotonic (in terms of set-inclusion) and
each constraint’s left-hand-side is a single variable [12].
We write lm(C) for the least model of a collection C of
constraints.

3.2 Set-constraint Construction

For simple presentation, our analysis traces ex-
ception propagation paths by recording the labels
of just exception-related constructs such as throw,
try-catch, and method declarations. We assume this
kind of expressions e has a label `, denoted by ` : e. If
more detailed trace information is necessary, it is pos-
sible to record other expressions such as method calls
and try-blocks.

Figure 3 has the rules to generate set-constraints for
every expression. For our analysis, every expression e

of the program has a constraint: Xe ⊇ se. The Xe

is a set-variable for collecting the propagation paths

3

of thrown exceptions inside e. The subscript e of Xe

denotes the current expression to which the rule ap-
plies. The relation “e ¤ C” is read “constraints C are
generated from expression e.”

We assume that class information class(e) is al-
ready available for every expression e in the analysis.
There are several choices for obtaining class informa-
tion. First, we can approximate it using type informa-
tion [6, 15, 7]. Second, we can utilize information from
class analysis [5, 16], which estimates for each expres-
sion e the classes (including exception classes) that the
expression e’s object belongs to.

Consider the rule for the throw expression with a
label `:

e1 ¤ C1
` : throw e1 ¤ {Xe ⊇ 〈c`, `〉 ∪ Xe1

} ∪ C1
c = class(e1)

It throws an exception e1, which is represented by
〈c`, `〉 where c = class(e1) is the name or class of the
exception and l is the label of the throw statement, an
origin of the exception. Prior to the throwing, it can
have uncaught exceptions from sub-expressions inside
e1 too.

Consider the rule for the try expression with a label
`′ :

e0 ¤ C0 e1 ¤ C1

`′ : try e0 catch(c1 x1) e1¤ {Xe ⊇ ((Xe0
− {c1}

∗) ∪ Xe1
) · `′}

∪C0 ∪ C1

Thrown exceptions from e0 can be caught by x1 only
when their classes are covered by c1. After this catch-
ing, exceptions can also be thrown during the handling
inside e1. Uncaught exceptions from this expression are
followed by the label `′ to record the exception prop-
agation path. Hence, Xe ⊇ ((Xe0 − {c1}

∗) ∪ Xe1) · `
′,

where {c}∗ represents all the descendant classes of a
class c including itself.

Consider the rule for the method call:

e1 ¤ C1 e2 ¤ C2

e1.m(e2) ¤ {Xe ⊇ Xc.m|c ∈ class(e1), m(x) = em ∈ c}
∪{Xe ⊇ Xe1

∪ Xe2
} ∪ C1 ∪ C2

Uncaught exceptions from the call expression first in-
clude those from the subexpressions e1 and e2 : Xe ⊇
Xe1 ∪ Xe2 . The method m(x) = em is the one de-
fined inside the classes c ∈ class(e1) of e1’s objects.
Hence, Xe ⊇ Xc.m for uncaught exceptions. (The sub-
script c.m indicates the index for the body expression
of class c’s method m.)

Consider the rule for the method definition with a
label `′:

em ¤ C

`′ : m(x) = em ¤ {Xc.m ⊇ Xem
· `′} ∪ C

m ∈ c

Xmain ⊇ Xtry−catch ·main

Xmain ⊇ Xm3 ·main

Xtry−catch ⊇ (Xm1 − {Exception}∗) · try − catch

Xm1 ⊇ Xm2 ·m1
Xm2 ⊇ XthrowE1 ·m2
XthrowE1 ⊇ 〈E1, throwE1〉
Xm3 ⊇ XthrowE2 ·m3
XthrowE2 ⊇ 〈E2, throwE2〉
Xm3 ⊇ Xm3 ·m3

Figure 4. Set-constraints

X ⊇ X1 ∪ X2

X ⊇ X1

X ⊇ X1 ∪ X2

X ⊇ X2

X ⊇ Y Y ⊇ 〈c`, τ〉

X ⊇ 〈c`, τ〉

X ⊇ X1 · `
′ X1 ⊇ 〈c

`, τ〉

X ⊇ 〈c`, τ · `′〉

X ⊇ X1 − {c1, · · · , ck} X1 ⊇ 〈c
`, τ〉 c /∈ {c1, · · · , ck}

X ⊇ 〈c`, τ〉

Figure 5. Rules S for solving set constraints

Uncaught exceptions from the this method m include
those from the method body em, which are followed by
the label `′ to record exception propagation path.

We can construct the set-constrains in Figure 4 by
applying the construction rules to the example program
in Figure 2. After identifying the set-constraints, we
use the statements with some simplification instead of
labels for better understanding.

3.3 Solving the set-constraints

We first design naive constraint solving rules S. We
can compute the possibly infinite solution lmS(C) of
the constraints C by applying the naive solving rules
S. This solution can be infinite due to recursive calls
in the input program.

The naive solving phase closes the initial constraint
set C under the rules S in Figure 5. Intuitively, the rules
propagate values along all the possible data flow paths
in the program. Each propagation rule decomposes
compound set constraints into smaller ones, which ap-
proximates the steps of the value flows between expres-
sions.

Consider the rule for tracing exception propagation
path :

X ⊇ X1 · `
′ X1 ⊇ 〈c

`, τ〉
X ⊇ 〈c`, τ · `′〉

4

[New] new c¤ ∅

[FieldAss]
e1 ¤ C1

id.x := e1 ¤ {Xe ⊇ Xe1
} ∪ C1

[ParamAss]
e1 ¤ C1

x := e1 ¤ {Xe ⊇ Xe1
} ∪ C1

[Seq]
e1 ¤ C1 e2 ¤ C2

e1;e2 ¤ {Xe ⊇ Xe1
∪ Xe2

} ∪ C1 ∪ C2

[Cond]
e0 ¤ C0 e1 ¤ C1 e2 ¤ C2

if e0 then e1 else e2 ¤ {Xe ⊇ Xe0
∪ Xe1

∪ Xe2
} ∪ C0 ∪ C1 ∪ C2

[FieldVar]
id¤ Cid

id.x¤ Cid

[Throw]
e1 ¤ C1

` : throw e1 ¤ {Xe ⊇ 〈c`, `〉 ∪ Xe1
} ∪ C1

c = class(e1)

[Try]
e0 ¤ C0 e1 ¤ C1

`′ : try e0 catch(c1 x1) e1 ¤ {Xe ⊇ ((Xe0
− {c1}∗) ∪ Xe1

) · `′} ∪ C0 ∪ C1

[MethCall]
e1 ¤ C1 e2 ¤ C2

e1.m(e2)¤ {Xe ⊇ Xc.m|c ∈ Class(e1), m(x) = em ∈ c} ∪ {Xe ⊇ Xe1
∪ Xe2

} ∪ C1 ∪ C2

[MethDef]
em ¤ C

`′ : m(x) = em ¤ {Xc.m ⊇ Xem
· `′} ∪ C

m ∈ c

[ClassDef]
mi ¤ Ci, i = 1, · · · , n

class c = {var x1, · · · , xk, m1, · · · , mn}¤ C1 ∪ · · · ∪ Cn

[Program]
Ci ¤ Ci, i = 1, · · · , n

C1, · · · , Cn ¤ C1 ∪ · · · ∪ Cn

Figure 3. Set-constraint construction rules

This rule simulates the propagation path of the thrown
exception by appending the label `′ to the exception
trace τ in X1. Other rules are similarly straightforward
from the semantics of corresponding set expressions.

We can compute the solution lmS(C) of set-
constraints C by applying the rules S in Figure 3. We
can sketch the soundness of the solution as follows:

Theorem 1 Let P be a program and C be the set-

constraints constructed by the rules in Figure 3. Every

exception trace of P is included in the solution lmS(C).

We can compute the infinite solution for the set-
constraints C in Figure 4 by applying the rule S. Pos-
sible solutions are the following:

lmS(C)(Xm1)⊇ { 〈E1,throwE1·m2·m1〉 }

lmS(C)(Xm2)⊇ { 〈E1,throwE1·m2〉 }

lmS(C)(Xm3)⊇ { 〈E2,throwE2·m3〉,

〈E2,throwE2·m3·m3〉,

〈E2,throwE2·m3·m3·m3〉,

...

}

lmS(C)(Xmain)⊇ { 〈E2,throwE2·m3·main〉

〈E2,throwE2·m3·m3·main〉,

〈E2,throwE2·m3·m3·m3·main〉,

...

}

The solution can be infinite in case there are recur-
sive methods, which contain uncaught exception(s).We
need to find a finite representation for the possibly in-
finite solution.

So, we design the new solving rules S ′ for finite so-
lution by modifying the exception propagation rule in
S. The main idea is to represent an exception propaga-

5

tion path, that is a trace, by the edges constituting the
path and the unique identifer of the thrown exception.
They are finite because the number of exception names
and labels is finite.

To do this, at every step of exception propagation,
we record the last two labels (that is an edge) together
with the unique identifer of the thrown exception. We
modify the rule for tracing exception propagation as
follows :

X ⊇ X1 · `
′ X1 ⊇ 〈c

`, τ〉
X ⊇ 〈c`, bτ · `′c2〉

where

b`1 · · · `nc2 = `n−1`n when n ≥ 2

This rule simulates the propagation of thrown excep-
tions, by recording the last two labels together with
the thrown exception’s unique identifier c`. Because
this is done at every step of exception propagation, the
dropped information has already been included into the
solution together with the unique identifier c`.

In the following, S′ denotes the solving rules S with
the propagation rule being replaced by the new one.
Our analysis computes the least model lmS′(C) of set-
constraints C by applying the new solving rules S ′. We
can compute the solution for the set-constraints C in
Figure 4 by applying the new rule S ′. Possible solutions
are as follows:

lm
S′ (C)(Xm1)⊇ { 〈E1,m2·m1〉}

lm
S′ (C)(Xm2)⊇ { 〈E1,throwE1·m2〉}

lm
S′ (C)(Xm3)⊇ { 〈E2,throwE2·m3〉,〈E2,m3·m3〉}

lm
S′ (C)(Xmain)⊇ { 〈E2,m3·main〉}

We can see exception propagation paths by defin-
ing the exception propagation graph of the solution
lmS′(C).

Definition 1 Let C be the set-constraints constructed
for a program P . Exception propagation graph of
the solution lmS′(C) is defined to be a graph 〈V,E〉

where V is the set of labels in P and E = {`1 →
c`

`2|〈c
`, `1`2〉 ∈ lmS′(C)(X) for a set variable X in C}

where `1 →
c`

`2 denotes an edge from `1 to `2 labeled
with c`. 2

We can easily draw the exception propagation graph
for the finite solution by making the following labeled
edges :

throwE1→E1 m2 m2→E1 m1 throwE2→E2 m3

m3→E2 main m3→E2 m3

input program

?

set-constrains construction

?

constrains solving

?

graph construction

?

path construction

?

visualizing exception propagation

Figure 6. System architecture

We can show the soundness of the finite solution by
finding a path in the exception propagation graph for
every trace in the possibly infinite solution.

Theorem 2 Let lmS(C) and lmS′(C) be the solutions
of set-constraints C by applying the solving rules S and

S′ respectively. For every exception trace 〈c`, τ〉 in

lmS(C), there is a path for τ with every edge labeled

c` in the exception propagation graph of lmS′(C).

4 Implementation

We first implemented the exception propagation
analysis and then a tool to visualize exception prop-
agation paths using the static analysis information.

We take the followings into consideration in the im-
plementation :

1. Even if we present our analysis for a core Java in
Figure 1, we considered the full Java in the imple-
mentation, which includes object-allocations, ex-
plicit constructor calls, interfaces, abstract meth-
ods, and nested classes.

2. We considered checked exceptions only, because
including unchecked exceptions can generate too

6

Figure 7. Source program and a menu for the visualization tool

much information, which affects the usability of
our analysis.

3. Java programs use libraries, which may have no
source code. In case no source code is available,
our analyzer also depends on the throws declara-
tions as in JDK compiler.

As in Figure 6, our system consists of five subsys-
tems:

1. set-constrains construction, which constructs set-
constraints for a Java input program

2. constraint solving, which solves the set-constraints

3. graph construction, which constructs exception
propagation graphs from the solution

4. path construction, which constructs propagation
paths for a thrown exception, and

5. visualization, which visualizes exception propaga-
tion paths.

Our exception propagation analysis is implemented
in Java on top of Barat framework [26], which is a
front-end for a Java compiler. Barat builds an abstract
syntax tree for an input Java program and enriches
it with type and name analysis information. It also
provides interfaces for traversing abstract syntax trees,
based on visitor design pattern in [9].

The implementation of our analysis consists of two
passes. The first pass sets up set-constraints by travers-
ing the input Java program. The first pass is im-
plemented by writing visitors so as to construct set-
constraints. In constructing set-constraints, we need
a naming convention for the indices of set variables.
Instead of simply naming by number, for example
X1,X2, ...,Xn, we use source code information such as
package name, class name, method name, and try-

7

Figure 8. Visualization of exception propagation

block index. The second pass solves the generated
set-constraints by the conventional iterative fixpoint
method. The solving completes in finite time because
the solution space is finite: exception classes, pairs of
labels in the program.

Our system then constructs the set of edges consti-
tuting the exception propagation graph from the solu-
tion of the static analysis.

Our visualization tool displays exception propaga-
tion paths using the exception propagation graph. We
have implemented our visualization tool on top of Jipe
[27], which is an open source IDE for Java. If users
select a method name, the visualization tool first dis-
plays all uncaught exceptions of the method, using the
static analysis information. If users selects one of the
uncaught exceptions, its propagation path from the ori-
gin to the selected method is constructed by following
the edges in the exception propagation graph. The ex-
ception propagation path is used to visualize exception
propagation.

Figure 7 shows the source program and the menu
called Exception Browser to start our exception vi-
sualization tool.

As shown in Figure 8, when users select the method
getStatement, it first displays its all uncaught ex-
ceptions. When users select the uncaught excep-

tion EmptyException, it then displays the excep-
tion propagation path of that exception, which orig-
inates from the line 81, passes through the methods
checkEmpty and getWord and arrive to the selected
method getStatement.

Our visualization system can also show exception
propagation paths starting from a selected method ,
through which a selected uncaught exception from the
selected method will pass.

5 Related works

Ryder and colleagues [19] and Sinha and Har-
rold [20] conducted a study of the usage patterns of
exception-handling constructs in Java programs. Their
study offers an evidence to support our belief that
exception-handling constructs are used frequently in
Java programs and more accurate exception flow infor-
mation is necessary.

There are several research directions for exception
constructs. The first one is modeling program exe-
cution, which includes constructing CFG with normal
and exceptional control flows, and using the represen-
tation to perform various types of analysis. The sec-
ond one is enabling a developer to make better use of
the exception mechanism, which includes analysis of

8

uncaught exceptions, analysis of exception flow to fa-
cilitate understanding of the exception behavior.

Choi and colleagues [3] construct intraprocedural
control-flow representation called the factored control-
flow graph (FCFG) for exception-handling constructs,
and use the representation to perform data-flow anal-
yses. Sinha and Harold [20] discuss the effects of
exception-handling constructs on several analyses such
as control-flow, data-flow, and control dependence
analysis. They present techniques to construct rep-
resentations for programs with checked exception and
exception-handling constructs. Chatterjee and Ryder
[2] describe an approach to performing points-to anal-
ysis that incorporates exceptional control flow. They
also provide an algorithm for computing definition-use
pairs that arise because of exception variables, and
along exceptional control-flow paths.

In Java[10], the JDK compiler ensures, by an in-
traprocedural analysis, that clients of a method either
handle the exceptions declared by that method, or ex-
plicitly redeclare them.

Robillard and Murphy [18] have developed Jex: a
tool for analyzing uncaught exceptions in Java. They
describe a tool that extracts the uncaught exceptions in
a Java program, and generates views of the exception
structure.

In our previous work [24, 1], we proposed interpro-
cedural exception analysis that estimates uncaught ex-
ceptions independently of programmers’s specified ex-
ceptions. We compared our analysis with JDK-style
analysis by experiments on large realistic Java pro-
grams, and have shown that our analysis is able to
detect uncaught exceptions, unnecessary catch and
throws clauses effectively. Our current work differs
from our previous works in that the previous works
focus on estimating uncaught exceptions rather than
on providing information on the propagation paths of
thrown exceptions.

Several exception analyses have been introduced for
ML based on abstract interpretation and set-constraint
framework [25]. Fähndrich and Aiken [8] have applied
their BANE toolkit to the analysis of uncaught excep-
tions in SML. Their system is based on equality con-
straints to keep track of exception values. Fessaux and
Leroy designed an exception analysis for OCaml based
on type and effect systems, and provides good perfor-
mance for real OCaml programs [17].

Our analysis can estimate exception propagation
paths, while others estimate a set of uncaught excep-
tions rather than propagation paths. Moreover, our
system can visualize exception propagation paths.

6 Conclusion

The contributions of this paper are two-fold. First,
we have presented a static analysis to estimate excep-
tion propagation paths. Second we show how this anal-
ysis information can be applied to visualizing exception
propagation paths. Our system can guide program-
mers to detect uncaught exceptions, handle exceptions
more specifically and declare exceptions more exactly.
It can also guide programmers to put exception han-
dlers at appropriate places by tracing exception prop-
agation paths.

The current system can trace exception propagation
paths by recording the labels of just exception-related
constructs such as throw , try-catch, and method dec-
larations. If more detailed propagation information is
needed, we can extend the exception propagation anal-
ysis so as to incorporate labels of other expressions such
as method calls and try-blocks.

The static analysis information can also be applied
to other applications such as constructing exception-
induced control flow graph [20] and slicing exception-
related parts of programs.

References

[1] B.-M. Chang, J. Jo, K. Yi, and K. Choe, Inter-
procedural Exception Analysis for Java, Proceed-
ings of ACM Symposium on Applied Computing,
pp 620-625, Mar. 2001 .

[2] R. K. Chatterjee, B. G. Ryder, and W. A. Landi,
Complexity of concrete type-inference in the pres-
ence of exceptions, Lecture notes in Computer Sci-
ence, vol. 1381, pp. 57-74, Apr. 1998.

[3] J.-D. Choi, D. Grove, M. Hind, and V. Sarkar,
Efficient and precise modeling of exceptions for
analysis of Java pro grams, Proceedings of ’99

ACM SIGPLAN-SIGSOFT Workshop on Pro-

gram Analysis for Software Tools and Engineer-

ing, September 1999, pp. 21-31.

[4] P. Cousot and R. Cousot. Compositional and
inductive semantic definitions in fixpoint, equa-
tional, constraint, closure-condition, rule-based
and game-theoretic form. Lecture Notes in

Computer Science, volume 939, pages 293–308.
Springer-Verlag, Proceedings of the 7th interna-

tional conference on computer-aided verific ation

edition, 1995.

[5] G. DeFouw, D. Grove, and C. Chambers, Fast in-
terprocedural class analysis, Proceedings of 25th

9

ACM SIGPLAN-SIGACT Symposium on Princi-

ples of Programm ing Languages pp 222-236, Jan-
uaray 1998.

[6] S. Drossopoulou, and S. Eisenbach, Java is type
safe-probably, Proceedings of 97 European Confer-

ence on Object-Oriented Programming, 1997

[7] S. Drossopoulou, and T. Valkevych, Java type
soundness revisited. Techical Report, Imperial
College, November 1999. Also available from:
http://www-doc.ic.ac.uk/ scd.

[8] M. Fähndrich, J.S. Foster, A. Aiken,a nd J. Cu.
Tracking down exceptions in Standard ML pro-
grams. Techical report, University of California at
Berkeley, Computer Science Division, 1998.

[9] E. Gamma, R. Helm, R. Johnson and J. Vlissides,
Design Patterns:Elements of Reusable Object-

Oriented Software, Addison-Wesley,1995.

[10] J. Gosling, B. Joy, and G. Steele, The Java

Programming Language Specification, Addison-
Wesley,1996.

[11] M. Harrold and N. Ci, Reuse Driven Interpro-
cedural Slicing, Proceedings of the International

Conference on Software Engineering, April 1998.

[12] N. Heintze, Set-based program analysis. Ph.D the-
sis, Carnegi e Mellon University, October 1992.

[13] S. Horwitz, T. Reps, and D. Binkley, Interpro-
cedural slicing using dependence graphs, ACM

Transactions on Programming Languages and Sys-

tems, 11(3), pp 345-387, July 1989.

[14] Jipe, http://jipe.sourceforge.net.

[15] T. Nipkow and D. V. Oheimb, Java is type safe-
definitely, Proceedings of 25th ACM SIGPLAN-

SIGACT Symposium on Principles of Programm

ing Languages,January 1998.

[16] J. Palsberg and M. I. Schwarzbach, Object-
oriented type inference, Proceedings of ’91 ACM

Conference on OOPSLA, pp. 141-161, 1991.

[17] F. Pessaux and X. Leroy, Type-based analysis of
uncaught exceptions. Proceedings of 26th ACM

Conference on Principles of Programming Lan-

guages, January 1999.

[18] M. P. Robillard and G. C. Murphy, Analyz-
ing exception flow in Java programs, in Proc.

of ’99 European Software Engineering Conference

and ACM SIGSOFT Symposium on Foundations

of Software Engineering, pp. 322-337, Springer-
Verlag.

[19] B. G. Ryder, D. Smith, U. Kremer, M. Gordon,
and N. Shah, “A static study of Java exceptions
using JESP,” Tech. Rep. DCS-TR-403, Rutgers
University, Nov. 1999.

[20] S. Sinha and M. Harrold, Analysis and testing of
programs with exception-handling constructs,

IEEE Transations on Software Engineering 26(9)
(2000).

[21] S. Sinha, M. Harrold, and G. Rothermel, System-
Dependence-Graph-Based Slicing of Programs
with Arbitrary Inte rprocedural Control Flow,
Proceedings of the International Conference on

Software Engineering, May 1999, pp. 432-441.

[22] M. Weiser, Program Slicing, IEEE Transations

on Software Engineering, 10(4), pp 352-357, July
1984.

[23] K. Yi. Compile-time detection of uncaught ex-
ceptions in standard ML programs . Lecture

Notes in Computer Science, volume 864, pp 238-
254. Springer-Verlag, Proceedings of the 1st Static
Analysis Symposium, September 1994.

[24] K. Yi and B.-M. Chang Exception analysis for
Java, ECOOP Workshop on Formal Techniques
for Java Programs , June 1999, Lisbon, Portugal.

[25] K. Yi and S. Ryu. Towards a cost-effective esti-
mation of uncaught exceptions in SML programs.
Lecture Notes in Computer Science, volume 1302,
pages 98–113. Springer-Verlag, Proceedings of the
4th Static Analysis Symposium, September 1997.

[26] http://www.sharemation.com/ bokowski/barat/
index.html.

[27] http://jipe.sourceforge.net.

10

