
A Review on Exception Analysis and its Applications
(Extended Abstract)

Byeong-Mo Chang
Department of Computer Science, Sookmyung Women’s University,

Yongsan-ku, Seoul 140-742, Korea
chang@sookmyung.ac.kr

ABSTRACT
Exception handling has become popular in most major
languages, including C++, Java, Ada, and ML. Because
uncaught exceptions will abort the program’s execution,
it is important to make sure at compile-time that the in-
put program will have no uncaught exceptions. This pa-
per aims to summarize works so far on exception analyses
and their applications. We first review several exception
analyses including exception usage analysis, uncaught ex-
ception analysis and exception propagation analysis. We
also review applications of exception analyses including
control-flow graph representation, software development
tools, and visualization.

1. INTRODUCTION
Since exception handling was pioneered by the lan-

guage PL/I, it has become popular in most major lan-
guages, including C++, Java, Ada, and ML. An excep-
tion is any unexpected or unusual event, such as input
failure or a timeout. An exception handler is a code se-
quence that is designed to catch and handle a particular
exception, when it is raised or thrown. Exception facili-
ties, for example, in Java allow the programmer to define,
throw and catch exceptional conditions [9]. Exceptions
and exception handling aim to support the development
of robust programs with reliable error detection, and fast
error handling.

In Java, there are two kinds of exceptions: checked and
unchecked exceptions [9]. Checked exceptions must be
specified at a method definition, if they are not caught.
Unchecked exceptions are exempt from the requirement
of being specified. Java compiler checks whether checked
exceptions are caught or specified. Because uncaught ex-
ceptions will abort the program’s execution, it is impor-
tant to make sure at compile-time that the input program
will have no uncaught exceptions.

There are several research directions for exception han-
dling and analysis.

(1) The first one is to approximate dynamic behavior of

This work was supported by grant No. (R01-2002-00363-0) from the Basic
Research Program of the Korea Science & Engineering Foundation. This
work has been done while the author is visiting the University of Pennsyl-
vania as a visiting scholar.
.

thrown exceptions by static analysis, which includes anal-
ysis of uncaught exception and of exception propagation
flow [9, 23, 1, 16, 3]. This kind of analysis information
can be used to facilitate understanding of the exception
behavior and to make better use of the exception mech-
anism.

(2) The second one is to model program execution flow
based on exception analysis so as to incorporate normal
and exceptional control flows. This flow information is
usually represented as control-flow graph(CFG) which
can be used to perform various kinds of analysis, slicing
and structural testing.

(3) The third one is to develop applications of excep-
tion analyses, which include compiler optimizations, soft-
ware development tools and visualization.

This paper aims to summarize works on exception anal-
yses and their applications. We first review several ex-
ception analyses including exception usage analysis, un-
caught exception analysis and exception propagation anal-
ysis. We will focus on exception analyses for Java, even
though we review all exception analysis proposed so far.
We then review applications of exception analyses, which
include control-flow graph representation, software devel-
opment tools, and visualization.

Section 2 presents a background for exception han-
dling of Java, and for constraint-based analysis. Sec-
tion 3 presents a number of exception analyses proposed
so far. Section 4 presents applications of exception anal-
yses. Section 5 concludes this paper.

2. BACKGROUND
We first introduce exception facilities in Java, which

allow the programmer to define, throw and catch excep-
tional conditions [9]. Programmers can define exceptions
as first-class objects in Java. Like normal objects, they
can be defined by classes, instantiated, assigned to vari-
ables, passes as parameters, etc.

The exception object e0 is raised or thrown by throw
statement throw e0.

The try-catch statement

try S0 catch (c x) S1

evaluates S0 first. If the statement don’t raise exception,
the execution is normal and continue to execute the next
statement. If an exception is raised from S0 and its class
is covered by c then the handler statement S1 is evalu-
ated with the exception object bound to x. If the raised
exception is not covered by class c then the raised ex-
ception continues to propagate back along the evaluation

chain until it meets another handler.
In Java, the programmers have to declare, using throws

clause in a method definition, any exception classes whose
exceptions may escape from its body without being caught.
The current JDK compiler checks whether thrown excep-
tions are caught or specified by throws clause.

In [6, 14], they have shown the type soundness of a
subset of Java. It was extended so as to incorporate ex-
ception constructs of Java in [7].

For exception analysis, we construct a constraint: XS ⊇
se for every statement S of the program. The XS is for
the exception classes that the statement S’s uncaught
exceptions belong to. The meaning of a set constraint
XS ⊇ se is intuitive: set XS contains the set represented
by set expression se. Multiple constraints are conjunc-
tions. We write C for such conjunctive set of constraints.
Collected constraints for a program guarantee the exis-
tence of its least solution (model) because every operator
is monotonic (in terms of set-inclusion) and each con-
straint’s left-hand-side is a single variable [11]. We write
lm(C) for the least model of a collection C of constraints.

3. RESEARCH ON EXCEPTION ANAL-
YSIS

3.1 Exception Usage Analysis
Ryder and colleagues [17] developed a tool called JESP

to conduct a study of the usage patterns of exception-
handling constructs such as try, catch, finally, and
throw in Java programs. Their study shows that sub-
stantial percentage of methods (on average 16%) contains
exception constructs. Exception constructs are sparsely
used and almost all trys have one catch clause. Finallys
are rarely used and thrown exceptions are usually not
caught in the same method. User-defined exception hier-
archies are shallow as expected.

Sinha and Harrold [18] present a new control-flow rep-
resentation to model exception flow for data-flow and
control-dependence analyses. They also conducted a static
study of seven Java programs, and found that on average
23 % of their methods contained a try or a catch. This
observation, shows that analysis algorithms will have to
take account of exceptions. Their study offers an evi-
dence to support the belief that exception-handling con-
structs are used frequently in Java programs.

3.2 Uncaught Exception Analysis
Because unhandled exceptions will abort the program’s

execution, it is important to check at compile-time whether
thrown exceptions are caught or not. This is called un-
caught exception analysis.

Historically, uncaught exception analysis was first in-
troduced for ML based on abstract interpretation [22],
which is shown to be very slow. So, the analysis was re-
designed based on set-constraint framework to improve
analysis speed [24], and compared with [8]. Their recent
implementation was integrated in SML/NJ compiler to
give programmers information on potential uncaught ex-
ceptions [25].

Fähndrich and Aiken [8] have applied their BANE toolkit
to the analysis of uncaught exceptions in SML. Their
system is based on equality constraints to keep track of
exception values.

Fessaux and Leroy designed an exception analysis for

OCaml based on type and effect systems, and it provides
good performance for real OCaml programs [15].

The current JDK Java compiler also does an intrapro-
cedural exception analysis relying on the programmer’s
specifications to check that the input program will have
no uncaught exceptions at run-time. However, the JDK
compiler is not elaborate enough to do “better” than as
specified by the programmers. This is mainly due to the
exception analysis of JDK compiler relying on program-
mers’ specification.

In [23, 1], an efficient interprocedural exception analy-
sis was proposed by applying the idea in [24] to Java so
as to estimate uncaught exceptions independently of pro-
grammers’s specified exceptions. The analysis is designed
based on set-constraint analysis framework in [11].

They make one set variable for every statement and
construct set-constraint for every statement. For exam-
ple, let’s consider the rule for try statement
S = try S0 catch (c1 x1) S1

S0 ¤ C0 S1 ¤ C1
try S0 catch(c1 x1) S1 ¤ {XS ⊇ (XS0 − {c1}∗) ∪ XS1}∪C0 ∪ C1

Raised exceptions from S0 can be caught by x1 only
when their classes are covered by c1. After this catching,
exceptions can also be raised during the handling inside
S1. Hence, XS ⊇ (XS0 − {c1}∗) ∪ XS1 , where {c1}∗ rep-
resents all the subclasses of a class c1.

They first designed an exception analysis at statement-
level and then designed a sparse exception analysis at
method-level for cost-effectiveness. It is shown theoreti-
cally and experimentally that the sparse exception analy-
sis gives the same exception information for every method
as the expression-level analysis.

They implemented the analysis on top of Barat [26],
which is a front end of Java compiler. They also com-
pared it with JDK-style analysis by experiments on re-
alistic Java programs. They also have shown that the
analysis is able to detect uncaught exceptions, unneces-
sary catch and throws clauses effectively.

Chang et al. generalized the idea of design of sparse
analysis by a transformational approach , which was pro-
posed to design more efficient constraint-based analyses
for Java at a coarser granularity [2]. In this approach, a
less or equally precise but more efficient version of an orig-
inal analysis can be designed by transforming the original
constraint construction rules.

Robillard and Murphy [16] have developed a similar
tool called Jex for analyzing uncaught exceptions in Java.
They also take account of some unchecked exceptions.
They first designed intraprocedual analysis and then im-
proved it to interprocedual analysis. Jex extracts the un-
caught exceptions in a Java program, and also generates
views of the exception structure.

3.3 Exception Propagation Analysis
Exception analyses usually estimate uncaught excep-

tions only by their names and structure, so that they can-
not provide information on dynamic behavior of thrown
exceptions such as their propagation paths, which are nec-
essary to construct interprocedural control flow graph, vi-
sualize exception propagation, and slice exception-related
parts of programs [18].

In [3], Chang et al. present a static analysis by extend-
ing the work in [1] so as to estimate exception propaga-
tion paths of thrown exceptions in Java programs. An ex-
ception propagation graph is constructed from the static
analysis information, which includes the origin, handlers,
and propagation paths of thrown exceptions.

This analysis is designed by extending the uncaught ex-
ception analysis in [1] so that it can include propagation
paths of thrown exceptions. For example, let’s consider
the rule for the try-catch statement S with a label ` :

S0 ¤ C0 S1 ¤ C1
` : try S0 catch(c1 x1) S1 ¤ {XS ⊇ ((XS0 − {c1}∗) ∪ XS1) · `}

∪C0 ∪ C1

Thrown exceptions from S0 can be caught by x1 only
when their classes are covered by c1. After this catching,
exceptions can also be thrown during the handling inside
S1. Uncaught exceptions from this expression are fol-
lowed by the label ` to record the exception propagation
path. Hence, XS ⊇ ((XS0 − {c1}∗) ∪ XS1) · `.

They implemented the exception propagation analysis
by extending the uncaught exception analysis in [1]. Ex-
ception propagation graph can be constructed from the
analysis results.

4. APPLICATIONS

4.1 Control-flow Representation
The control-flow graph(CFG) is a representation of con-

trol flow relation that exists in a program. Many program-
analysis techniques, such as data-flow and control-dependence
analysis depend on control-flow information. For these
analyses to be safe and useful, the control-flow represen-
tation should incorporate the exception-induced control
flow.

Recently, several researchers have constructed control-
flow representation for exception-related constructs based
on exception analysis [5, 18], and they considered the ef-
fects of exception-induced control flow on various types of
analyses. Sinha and Harold present an algorithm which
constructs control-flow representations for programs with
exception-handling constructs by analyzing exceptional
control-flow together with normal control-flow analysis
[18]. They also discuss the effects of exception-handling
constructs on several static analyses such as control-flow,
data-flow, and control dependence analysis. Choi and
colleagues [5] construct control-flow representation called
the factored control-flow graph (FCFG) for exception-
handling constructs, and use the representation to per-
form data-flow analyses. Chatterjee and Ryder [4] de-
scribe an approach to performing points-to analysis that
incorporates exceptional control flow. They also pro-
vide an algorithm for computing definition-use pairs that
arise because of exception variables, and along excep-
tional control-flow paths.

Control-flow and control-dependence analysis are use-
ful for software engineering and maintenance tasks. The
control-flow representation can be applied to performing
slicing and testing of the programs with exception con-
structs. There are two alternative approaches to com-
puting slices, that either propagate solutions of data-
flow equations using a control-flow representation [21,
10], or perform graph reachability on system dependence

graphs[12, 20]. Using the interprocedural control-flow
representation [20], the slicing technique in [10] can be ex-
tended to take into consideration the effects of exception-
handling constructs.

Structural testing develops test cases to cover struc-
tural elements of a program. Control-based structural
testing criteria use the flow of control in a program to
guide the selection test cases or to access the adequacy
of a test suit. For example, in branch testing, test cases
are developed by considering inputs that cause certain
branches to be executed.

Exception-handling constructs introduce new structural
elements, such as exceptional control-flow paths, that
should be considered for coverage by structural test tech-
niques. In [19], they have developed a family of excep-
tion testing criteria to adequately test the behavior of
exception-handling constructs. These criteria subsume
the all-throw and all-catch criteria, and test exception-
handling constructs with various degree of thoroughness.

4.2 Development tools
In [8], they also developed a program analysis mode for

EMACS editor, providing a textual point-and-click inter-
face for displaying the results of an exception analysis of
ML programs. This system can give the list of declared
exceptions, a list of handlers, a list of function declara-
tions and a list of potentially uncaught exceptions. By
using this system, it is easy to start at the body of the
main function of a program and follow the uncaught ex-
ceptions backwards to see where they were raised.

A similar tool Jex is also developed for Java in [16],
even though it is not integrated into an editor. Jex pro-
vides information about the exceptions that can be raised
in a Java program. For each method of each class, Jex
outputs a description of all exceptions that can be raised
in the method. The description shows the origin of each
exception.

Here is an example describing the flow of exceptions
for an hypothetical constructor, in the Jex format, which
is from [?].

<init>(java.lang.String,boolean) throws IOException {
java.lang.SecurityException:SecurityManager.
checkWrite(java.lang.String);
try
{

java.io.IOException:java.io.FileOutputStream.
openAppend(java.lang.String);
java.io.IOException:java.io.FileOutputStream.
open(java.lang.String);
java.lang.NullPointerException:*environment*;

}
catch(java.lang.IOException)
{

throws java.io.FileNotFoundException;
}

}

This example shows that an SecurityException can be
raised as a result of the call to method checkWrite of
class SecurityManager. Furthermore, in the try block,
IOExceptions can result from the calls to methods openAppend
and open of class FileOutputStream, and a NullPointerException

can be raised by the run-time environment. The view of
exception flow produced by Jex is more precise and more
complete than the information available through excep-
tion interfaces. Jex also reports the origin of exceptions

input program

?

set-constrains construction

?

constrains solving

?

graph construction

?

path construction

?

visualizing exception propagation

Figure 1: Visualization system architecture

stemming from polymorphic calls by using a conservative
class hierarchy analysis algorithm.

4.3 Visualization
The exception propagation analysis information can be

used to visualize exception propagation. This can include
the origin of exceptions, handler of exceptions, and prop-
agation paths of exceptions.

In [3], they also implemented a visualization tool on top
of an open source IDE called Jipe [27], which can visualize
interactively propagation paths of exceptions using the
exception propagation graph.

As in Figure 1, the visualization system consists of five
subsystems:

1. set-constrains construction, which constructs set-
constraints for a Java input program

2. constraint solving, which solves the set-constraints

3. graph construction, which constructs exception prop-
agation graphs from the solution

4. path construction, which constructs propagation paths
for a thrown exception, and

5. visualization, which visualizes exception propaga-
tion paths.

When programmers selects a method, it shows all un-
caught exceptions from that method. If programmers
choose one of them, then it shows where it is propagated
to or from. This process can be continued until it is
caught or get to the main method.

As shown in Figure 2, when users select a method
getStatement, it first displays its all uncaught excep-
tions. When users select the uncaught exception EmptyException,

it then displays the exception propagation path of that
exception, which originates from the line 81, passes through
the methods checkEmpty and getWord and arrive to the
selected method getStatement.

This propagation information can guide programmers
to detect uncaught exceptions, handle exceptions more
specifically, and put exception handlers at appropriate
places by tracing exception propagation. The contribu-
tion of this work is that it can estimate exception prop-
agation paths, while others estimate a set of uncaught
exceptions rather than their propagation paths.

5. CONCLUSION
We have given an overview of exception handling and

various exception analyses. We have also addressed the
impact of them by presenting their applications. Appli-
cations such as slicing, structural testing and compiler
optimizations are not still mature and need to be ex-
plored in more detail.

6. REFERENCES
[1] B.-M. Chang, J. Jo, K. Yi, and K. Choe,

Interprocedural Exception Analysis for Java,
Proceedings of ACM Symposium on Applied
Computing, pp 620-625, Mar. 2001 .

[2] B.-M. Chang and J. Jo, Granularity of
Constraint-based Analysis for Java, ACM
Conference on Principles and Practice of
Declarative Programming, September 2001.

[3] B.-M. Chang, J. Jo, and S. Her, Visualization of
Exception Propagation for Java using Static
Analysis, Proceedings of IEEE Workshop on Source
Code Analysis and Manipulation, Oct. 2002.

[4] R. K. Chatterjee, B. G. Ryder, and W. A. Landi,
Complexity of concrete type-inference in the
presence of exceptions, Lecture notes in Computer
Science, vol. 1381, pp. 57-74, Apr. 1998.

[5] J.-D. Choi, D. Grove, M. Hind, and V. Sarkar,
Efficient and precise modeling of exceptions for
analysis of Java pro grams, Proceedings of ’99 ACM
SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering,
September 1999, pp. 21-31.

[6] S. Drossopoulou, and S. Eisenbach, Java is type
safe-probably, Proceedings of 97 European
Conference on Object-Oriented Programming, 1997

[7] S. Drossopoulou, and T. Valkevych, Java type
soundness revisited. Techical Report, Imperial
College, November 1999. Also available from:
http://www-doc.ic.ac.uk/ scd.

[8] M. Fähndrich, J.S. Foster, A. Aiken,a nd J. Cu.
Tracking down exceptions in Standard ML
programs. Techical report, University of California
at Berkeley, Computer Science Division, 1998.

[9] J. Gosling, B. Joy, and G. Steele, The Java
Programming Language Specification,
Addison-Wesley,1996.

[10] M. Harrold and N. Ci, Reuse Driven
Interprocedural Slicing, Proceedings of the
International Conference on Software Engineering,
April 1998.

[11] N. Heintze, Set-based program analysis. Ph.D
thesis, Carnegi e Mellon University, October 1992.

Figure 2: Visualization of exception propagation

[12] S. Horwitz, T. Reps, and D. Binkley,
Interprocedural slicing using dependence graphs,
ACM Transactions on Programming Languages and
Systems, 11(3), pp 345-387, July 1989.

[13] Jipe, http://jipe.sourceforge.net.

[14] T. Nipkow and D. V. Oheimb, Java is type
safe-definitely, Proceedings of 25th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programm ing Languages,January 1998.

[15] F. Pessaux and X. Leroy, Type-based analysis of
uncaught exceptions. Proceedings of 26th ACM
Conference on Principles of Programming
Languages, January 1999.

[16] M. P. Robillard and G. C. Murphy, Analyzing
exception flow in Java programs, in Proc. of ’99
European Software Engineering Conference and
ACM SIGSOFT Symposium on Foundations of
Software Engineering, pp. 322-337, Springer-Verlag.

[17] B. G. Ryder, D. Smith, U. Kremer, M. Gordon,
and N. Shah, “A static study of Java exceptions
using JESP,” Tech. Rep. DCS-TR-403, Rutgers
University, Nov. 1999.

[18] S. Sinha and M. Harrold, Analysis and testing of
programs with exception-handling constructs, IEEE
Transations on Software Engineering 26(9) (2000).

[19] S. Sinha and M. Harrold, Criteria for testing
exception-handling constructs in Java programs,
In Proc. of the Int. Confenerce on Software
Maintenance, September 1999, pp. 265-274.

[20] S. Sinha, M. Harrold, and G. Rothermel,
System-Dependence-Graph-Based Slicing of
Programs with Arbitrary Inte rprocedural Control
Flow, Proceedings of the International Conference

on Software Engineering, May 1999, pp. 432-441.

[21] M. Weiser, Program Slicing, IEEE Transations on
Software Engineering, 10(4), pp 352-357, July 1984.

[22] K. Yi. Compile-time detection of uncaught
exceptions in standard ML programs Lecture Notes
in Computer Science, volume 864, pp 238-254.
Springer-Verlag, Proceedings of the 1st Static
Analysis Symposium, September 1994.

[23] K. Yi and B.-M. Chang Exception analysis for
Java, ECOOP Workshop on Formal Techniques for
Java Programs , June 1999, Lisbon, Portugal.

[24] K. Yi and S. Ryu. Towards a cost-effective
estimation of uncaught exceptions in SML
programs. Lecture Notes in Computer Science,
volume 1302, pages 98–113. Springer-Verlag,
Proceedings of the 4th Static Analysis Symposium,
September 1997.

[25] K. Yi and S. Ryu. SML/NJ Exception Analysis
version 0.98.
http://compiler.kaist.ac.kr/pub/exna/,
December 1998.

[26]
http://www.sharemation.com/ bokowski/barat/index.html.

[27] http://jipe.sourceforge.net.

