
Granularity of Constraint-based Analysis for Java �

Byeong-Mo Chang
Department of Computer Science
Sookmyung Women’s University

Yongsan-ku, Seoul 140-742, Korea

chang@cs.sookmyung.ac.kr

Jangwu Jo
Department of Computer Engineering
Pusan University of Foreign Studies

Pusan, Korea

jjw@taejo.pufs.ac.kr

ABSTRACT
This paper proposes a transformation-based approach to de-
sign constraint-based analyses for Java at a coarser granu-
larity. In this approach, w e design a less or equally precise
but more eÆcient version of an original analysis by trans-
forming the original construction rules into new ones. As
applications of this rule transformation, we provide t w o in-
stances of analysis design by rule-transformation. The �rst
one designs a sparse version of class analysis for Java and the
second one deals with a sparse exception analysis for Java.
Both are designed based on method-level, and the sparse
exception analysis is shown to give the same information for
every method as the original analysis.

Keywords
constrain t-based analysis, set constraints, construction rules,
partition function

1. INTRODUCTION
Constraint-based analysis is a static analysis framework

that is applicable to functional, logic and object-oriented
programming languages [5, 12, 13, 10]. In constraint-based
analysis framework, a speci�c analysis is designed in terms of
set-constrain t construction rules.Constraint-based analysis
�rst constructs set-constraints for input programs using the
construction rules, and then computes the solution or model
of them.
The precision of the analysis depends upon the choice of

the �nite set of indices of set-variables. We usually design
an analysis theoretically at expression-level, which has one
set-variable(or index) for every expression. How ever, the ef-
�ciency of expression-level analyses may not be satisfactory
for large practical programs [21, 19]. In addition, some anal-
yses (lik e side-e�ect analysis [15], exception analysis [20] and

�This work was supported by grant No. 2000-1-30300-009-2
from the Basic Researc h Programof the Korea Science &
Engineering Foundation.

synchronization analysis [11]) are not interested in proper-
ties of all expressions. So, it can be wasteful to de�ne one
set-variable for every expression for this kind of analyses.
Hence, the analysis cost-e�ectiveness need to be addressed
by enlarging the analysis granularit y.
This paper proposes a transformation-based approach to

design constraint-based analyses for Java at a coarser gran-
ularit y. In this approach, w e can design a less or equally
precise but more eÆcient version of an original analysis by
transforming the original construction rules into new ones.
This is done by tw o steps. The �rst is to de�ne or design
an index determination rule for a new sparse analysis based
on some syntactic properties, so that it can partition the
original indices. The second is to transform the original
construction rules into new ones by replacing the original
index of each set variable b y the new index.
As applications of this rule-transformation approach, w e

pro vide t w o instances of analysis design by rule-transformation.
The �rst one designs a sparse version of class analysis for
Java and the second one deals with a sparse exception anal-
ysis for Java. Both are designed based on method-level, and
the sparse exception analysis is shown to give the same in-
formation for each method as the original analysis.
There ha ve been several research directions to improve

eÆciency of analysis. The �rst direction is to improve anal-
ysis time by simplifying set constraints after constructing
the whole constraints [6, 9, 10, 18]. They usually simplify
set constraints without losing the precision of the original
analysis. The second direction is to design analyses at a
coarser granularity. Several constraint-based analyses in-
cluding CFA and exception analysis are also designed man-
ually at a coarser granularity, experimented and practically
applied in [20, 21, 19]. This basic idea is also addressed in
data
ow analysis and abstract interpretation [2, 4, 14, 17].
The contribution of this paper is to provide a systematic

mechanism or bridge to design practical constraint-based
analyses for Java by rule transformation. Moreover, this
paper provides general soundness proof for them.
Section 2 presen ts a core of Java, and basic de�nitions

for constraint-based analysis. Section 3 presents class anal-
ysis for Ja va.Section 4 presents a systematic mechanism to
design analyses by rule transformation. Section 5 presents
some applications of this rule transformation. Section 6 dis-
cusses related works and Section 7 concludes this paper.

2. PRELIMINARIES
For presen tation brevity we consider an imaginary core of

Java with its exception constructs. Its abstract syntax is in

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
PPDP 01 Florence, Italy
© ACM 2001 1-58113-388-x/01/09…$5.00

94

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

P ::= C� program
C ::= class c ext c {var x� M�} class de�nition
M ::= m(x) = e [throws c�] method de�nition
e ::= id variable

j id := e assignment
j new c new object
j this self object
j e ; e sequence
j if e then e else e branch
j throw e exception raise
j try e catch (c x e) exception handle
j e.m(e) method call

id ::= x method parameter
j id.x �eld variable

c class name
m method name
x variable name

Figure 1: Abstract Syntax of a Core of Java

Figure 1. A program is a sequence of class de�nitions. Class
bodies consist of �eld variable declarations and method def-
initions. A method de�nition consists of the method name,
its parameter, and its body expression. Every expression's
result is an object. Assignment expression returns the ob-
ject of its right hand side expression. Sequence expression
returns the object of the last expression in the sequence. A
method call returns the object from the method body. The
try-catch expression

try e0 catch (c x e1)

evaluates the try-block e0 �rst. If the expression returns a
normal object then this object is the result of the try-catch
expression. If an exception is raised from e0 and its class is
covered by c then the handler expression e1 is evaluated with
the exception object bound to x. If the raised exception is
not covered by class c then the raised exception continues
to propagate back along the evaluation chain until it meets
another handler. Note that nested try-catch expression
can express multiple handlers for a single expression e0 :

try (try e0 catch (c1 x1 e1)) catch (c2 x2 e2):

The exception object e0 is raised by throw e0. The pro-
grammers have to declare in a method de�nition any ex-
ception classes whose exceptions may escape from its body.
Note that exceptions are �rst-class objects in Java. Like
normal objects, they can be de�ned by classes, instantiated,
assigned to variables, passes as parameters, etc.
We omit the formal semantics of the core language. Its

operational semantics should be straightforward, not much
di�erent from existing works [8, 16].
Constraint-based analysis consists of two phases [12]: col-

lecting set constraints and solving them. The �rst phase
constructs constraints by the construction rules, that de-
scribe the data
ows between the expressions of the ana-
lyzed program. The second phase �nds the sets of values
that satisfy the constraints by the solving rules. A solution
is an assignment from set variables in the constraints to the
�nite descriptions of such sets of values.
Each set constraint is of the form X � se where X is a set

variable and se is a set expression. The constraint indicates

Syntax of set expressions:

se ::= Xi set variables
j c class names
j app(Xi;m;Xi) sets from method call
j se [se sets from conditionals
j se� fc1; � � � ; cng sets from try-catchs
j > universe set

Semantics of set expressions:

I(Xi) � V al

I(>) = V al

I(c) = fcg
I(app(X1;m;X2)) = fv jc 2 I(X1);m(x) = em 2 c;

v 2 I(Xc:m); I(Xx) � I(X2)g
I(se1 [se2) = I(se1) [I(se2)

I(se1 � fc1; � � � ; cng) = I(se1)� fc1; � � � ; cng

Figure 2: Set constraints : syntax and semantics

that the set variable X must contain the set se. In case of
class analysis, the set expression is of the form

se! cjX japp(X1;m;X2)jse [sejse� fc1; :::; cng

where c's are class names. Multiple constraints are conjunc-
tions. We write C for a �nite collection of set constraints. Se-
mantics of set expressions naturally follows from their corre-
sponding language constructs. For example, app(X1;m;X2)
represents the classes of objects returned from applications
of method m to objects in X1 with parameters in X2. The
formal semantics of set expressions is de�ned by an inter-
pretation I that maps from set expressions to sets of values
(see Figure 2). We call an interpretation I a model (a solu-
tion) of a conjunction C of constraints if, for each constraint
X � se in C, I(X) � I(se).
Our static analysis is de�ned to be the least model of con-

straints. Collected constraints for a program guarantee the
existence of its least solution (model) because every operator
is monotonic (in terms of set-inclusion) and each constraint's
left-hand-side is a single variable [12]. We write lm(C) for
the least model of a collection C of constraints.

3. CLASS ANALYSIS
We �rst present a class analysis for Java based on set-

based analysis framework [12]. Every expression e of the
program has one set constraints: Xe � se. The set variable
Xe is for the classes that the expression e's normal object be-
longs to. Figure 3 has the rules to construct set constraints
for the classes of the objects of each expression e. The sub-
script e of a set variable Xe denotes the current expression
to which the rule applies. The subscript c:x denote a �eld
variable x de�ned in a class c and c:m denotes a method
m de�ned in a class c. The relation \e �1 C" is read \con-
straints C are generated from an expression e."
Consider the rules in Figure 3. The new expression will

have the newly created object from the class c, hence Xe � fcg.
The conditional expression will have the objects from e1 or
e2, hence Xe � Xe1 [Xe2 .
Consider the rule for method call:

e1 �1 C1 � e2 �1 C2
e1.m(e2)�1 fXe � app(Xe1 ;m;Xe2)g [C1 [C2

95

[New1] new c�1 fXe � fcgg [This1]
c is the enclosing class

this �1 fXe � fcgg

[FieldAss1]
e1 �1 C1 id �1 Cid

id.x := e1 �1 fXc:x � Xe1 j c 2 Xid; x 2 cg [fXe � Xe1g [C1

[ParamAss1]
e1 �1 C1

x := e1 �1 fXx � Xe1 ;Xe � Xe1g [C1

[Seq1]
e1 �1 C1 e2 �1 C2

e1;e2 �1 fXe � Xe2g [C1 [C2

[Cond1]
e0 �1 C0 e1 �1 C1 e2 � C2

if e0 then e1 else e2 �1 fXe � Xe1 [Xe2g [C0 [C1 [C2

[FieldVar1]
id�1 Cid

id:x�1 fXe � Xc:x j c 2 Xid; x 2 cg [Cid
[Param1] x�1 Xe � Xx

[Throw1]
e1 �1 C1

throw e1 �1 C1

[Try1]
e0 �1 C0 � e1 �1 C1

try e0 catch(c1 x1 e1)�1 fXe � Xe0 [Xe1 ;Xx1 � fc1g�g [C0 [C1

[MethCall1]
e1 �1 C1 e2 �1 C2

e1:m(e2)�1 fXe � app(Xe1 ;m;Xe2)g [C1 [C2

[MethDef1]
em �1 C

m(x)=em �1 fXc:m � Xemg [C

[ClassDef1]
mi �1 Ci i = 1; � � � ; n

class c = {var x1; � � � ; xk;m1; � � � ;mn}�1 C1 [� � � [Cn

[Program1]
Ci �1 Ci i = 1; � � � ; n

C1; � � � ; Cn �1 C1 [� � � [Cn

Figure 3: Class analysis at expression-level

X � X1 [X2

X � X1

X � X1 [X2

X � X2

X � Y Y � ae

X � ae

X � app(X1;m;X2) X1 � c m(x)=e 2 c

X � Xc:m Xx � X2

Figure 4: Rules S for solving set constraints

The call expression will have the objects returned from the
method m. This method m(x) = em is the one de�ned in-
side the classes c 2 Xe1 of e1's objects. Hence, in the solving
phase, Xe � Xc:m is added by the solving rule in Figure 4,
and the constraint Xx � Xe2 is also added for parameter
binding.
Consider the rule for try expression:

e0 �1 C0 � e1 �1 C1
try e0 catch(c1 x1 e1)�1 fXe � Xe0 [Xe1 ;Xx1 � fc1g�g

[C0 [C1

Normal objects are either from e0 or from e1 (after han-
dling), hence Xe � Xe0 [Xe1 . The objects of x1 are raised
exceptions from the try-block and can be approximated by
all the subclasses (denoted by fc1g*) of its class c1.
The solving phase closes the initial constraint set C un-

der the rules S in Figure 4. Intuitively, the rules propa-
gate values along all the possible data
ow paths in the
program. Each propagation rule decomposes compound set
constraints into smaller ones, which approximates the steps

of the value
ows between expressions. Consider the rule for
method call result X � app(X1;m;X2):

X � app(X1;m;X2) X1 � c m(x)=e 2 c

X � Xc:m Xx � X2

It introduces X � Xc:m if a method m to call is de�ned in
a class c and if so, adds Xx � X2 to simulate the parameter
binding. Other rules are similarly straightforward from the
semantics of corresponding set expressions.
Implementation can compute the solution by the conven-

tional iterative �xpoint method because the solution space
is �nite: classes in the program. Correctness proofs can be
done by the �xpoint induction over the continuous functions
that are derived [5] from our constraint system.

4. RULE-TRANSFORMATION
In this section, we describe how to design an analysis at

a coarser granularity by rule-transformation. We �rst de-
�ne or design an index determination rule for a new sparse
analysis based on some syntactic properties, so that it can
partition the original indices, and then transform the origi-
nal construction rules by applying the partition.
We represent index determination as an index function I :

Expr [Name! Index where Expr is a set of expressions,
Name is a set of the names of variables and methods, and
Index is a set of indices (natural numbers). We assume an
original analysis is designed at expression-level, that is, one
set-variable (or index) is de�ned for every expression and
name. This index determination can be represented as an
index function IE : Expr [Name ! Index where every
expression and name is mapped to its unique index. In the

96

following, because IE is one-to-one, we abuse notation by
denoting XIE(e) just by Xe.
To design an analysis at a coarser granularity, we �rst

need an index function to determine indices of set-variables.
Instead of de�ning one set-variable for one expression, we
can make one set variable (or index) for a set of expressions.
One simple and extreme example is to make one index for
all expressions in a program. That can be represented as an
index function IP : Expr[Name! Index where IP (e) = 1
for every expression and name e. This index function is used
in the rapid type analysis [1].
We can de�ne an index function in terms of some syntactic

properties. For example, we can design a class-level analysis
by de�ning one index for each class.

Example 1. The index function IC : Expr [Name !
Index for a class-level analysis is de�ned as :

IC(c:m) = c if m is a method de�ned in a class c
IC(c:x) = c if x is a �eld variable de�ned in a class c
IC(e) = c if an expression e appears in a class c
IC(x) = c if x is a parameter of a method de�ned in

a class c

where c denotes a class name or its unique index number.
2

While every expression is mapped to its unique index in
IE , a set of expressions is mapped to one index in IC , only
if they appear in the same class. We generalize this idea by
de�ning a partition as follows:

De�nition 1. Let I1 and I2 be two index functions. I2 is a
partition of I1 if there exist a function � such that I2 = �ÆI1,
where � is called a partition function from I1 to I2.

It is easy to show that IP and IC are partitions of IE .
If we have designed a new index function I for a sparse

analysis such that I = � Æ IE for a partition function �,
we can then transform the original construction rules by
applying the partition function � to the original indices.
The basic idea of this rule transformation is to replace the
index of each set variable Xe in the original construction
rules by the new index X�(e). This rule-transformation can
be formalized as follows:

De�nition 2. Let I be an index function such that I =
� Æ IE . Consider a generic expression e = �(e1; � � � ; en),
where � is a language construct. If r is a construction rule
of the form :

e1 : C1; � � � ; en : Cn
�(e1; � � � ; en) : [1�i�n Ci [fXe � seg

then, the transformed rule r=� by applying the partition
function � is de�ned as:

e1 : C1; � � � ; en : Cn
�(e1; � � � en) : [1�i�n Ci [fX�(e) � se=�g

where se=� is obtained by replacing every set variable Xe0
in se by X�(e0).

Semantics of analysis functions app needs to be changed
after this rule transformation, since it introduces new set-
variables while solving. This change will be re
ected and

implemented by transforming the corresponding solving rule
(see the end of this section).
For example, we can design a class analysis at class-level

in [19] by transforming the original rules in Figure 4.

Example 2. Let IC be an index function for a class-level
analysis and � be a partition function such that IC = �ÆIE .
Assuming that e is the current expression to which the rule
applies and e appears in a class c0, we can design a class
analysis at class-level by applying � to the original rules in
Figure 3.
We �rst consider the construction rule for new-expression

e in Figure 3 :
new c�1 fXe � fcgg

Since �(e) = c0 ,by applying �, the rule can be transformed
into:

new c�2 fXc0 � fcgg

In case of the rule for �eld variable access in Figure 3 :

id�1 Cid
id:x�1 fXe � Xc:x j c 2 Xid; x 2 cg [Cid

Since �(id:x) = �(id) = c0 and �(c:x) = c, the rule can be
transformed into:

id�2 Cid
id:x�2 fXc0 � Xc j c 2 Xc0 ; x 2 cg [Cid

Consider the rule for if-expression e in Figure 3 :

e0 �1 C0 � e1 �1 C1 � e2 �1 C2
if e0 then e1 else e2 �2 fXe � Xe1 [Xe2g [C0 [C1 [C2

If this expression e appears in a class c0, then e1 and e2 are
also in c0. So, the rule can be transformed into :

e0 �2 C0 e1 �2 C1 e2 �2 C2
if e0 then e1 else e2 �2 fXc0 � Xc0 [Xc0g [C0 [C1 [C2

which can be simpli�ed into :

e0 �2 C0 e1 �2 C1 e2 �2 C2
if e0 then e1 else e2 �2 C0 [C1 [C2

In case of the rule for method call e in Figure 3 :

e1 �1 C1 e2 �1 C2
e1:m(e2)�1 fXe � app(Xe1 ;m;Xe2)g [C1 [C2

since �(e) = �(e1) = �(e2) = c0, the rule can be transformed
into :

e1 �2 C1 � e2 �2 C2
e1:m(e2)�2 fXc0 � app�(Xc0 ;m;Xc0)g [C1 [C2

where app� is a modi�ed analysis function , and its seman-
tics is de�ned by applying � as follows:

I(app�(X1;m;X2)) = fv j c 2 I(X1);m(x)=em 2 c; v 2 I(Xc);
I(Xc) � I(X2)g

2

If a method call e1:m(e2) is analyzed with this trans-
formed rule, every method in the class will be considered for
this method call. This type of analysis is manually designed
and static type information is integrated in the analysis to
re�ne the precision in [19].
We now can design a new sparse analysis by a set of the

transformed rules. This can be formalized as follows:

97

[New3] new c�3 fXc0:m0 � fcgg [This3]
c is the enclosing class

this �3 fXc0:m0 � fcgg

[FieldAss3]
e1 �3 C1 id�3 Cid

id.x := e1 �3 fXc:x � Xc0:m0 j c 2 Xc0:m0 ; x 2 cg [C1

[ParamAss3]
e1 �3 C1

x :=e1 �3 fXowner(x) � Xc0:m0g [C1

[Seq3]
e1 �3 C1 � e2 �3 C2
e1;e2 �3 C1 [C2

[Cond3]
e0 �3 C0 e1 �3 C1 e2 �3 C2

if e0 then e1 else e2 �3 C0 [C1 [C2

[FieldVar3]
id�3 Cid

id:x�3 fXc0:m0 � Xc:x j c 2 Xc0:m0 ; x 2 cg [Cid
[Param3] x�3 Xc0:m0 � Xowner(x)

[Throw3]
e1 �3 C1

throw e1 �3 C1

[Try3]
e0 �3 C0 e1 �3 C1

try e0 catch(c1 x1 e1)�3 fXc0:m0 � fc1g�g [C0 [C1

[MethCall3]
e1 �3 C1 e2 �3 C2

e1:m(e2)�3 fXc0:m0 � app�(Xc0:m0 ;m;Xc0:m0)g [C1 [C2

[MethDef3]
em �3 C

m(x) = em �3 C

[ClassDef3]
mi �3 Ci; i = 1; � � � ; n

class c = {var x1; � � � ; xk;m1; � � � ;mn}�3 C1 [� � � [Cn

[Program3]
Ci �3 Ci i = 1; � � � ; n

C1; � � � ; Cn �3 C1 [� � � [Cn

Figure 5: Class analysis at method-level

De�nition 3. Let R be a set of construction rules. The
set R=� of transformed rules by a partition function � is
de�ned as

R=� = fr=�jr 2 Rg

Now we describe constraints set-up with the transformed
construction rules for a given program. Whenever a program
variable or expression is encountered during constraints set-
up, its set variable (or index) is determined by applying the
partition function to it, and then set-constraints are con-
structed.
As in Example 2, semantics of an analysis function like app

needs to be changed after transformation, since it introduces
new set-variables while solving.
To re
ect this change, the corresponding solving rule in

Figure 4 must be transformed by applying the partition
function, if it introduces new set-variables. If a solving rule
introduces new set-variables, their indices must be deter-
mined by applying the partition function.
The solving rule for the function application must be trans-

formed by applying � to the newly introduced set-variables
as follows:

X � app�(X1;m;X2) X1 � c m(x)=e 2 c

X � X�(c:m) X�(x) � X2

The other rules are not changed.
Consider the solving rule for the function application for

Example 2. The original solving rule can be transformed
into :

X � app�(X1;m;X2) X1 � c m(x)=e 2 c
X � Xc Xc � X2

We denote by R(p) (or (R=�)(p)) the set of set-constraints
constructed by applying the construction rules inR (or R=�)
to a program p. We can prove the soundness of the trans-
formed construction rules by showing that the least model
of the transformed constraints R=�(p) is a sound approxi-
mation of the original constraints R(p) for every program
p. The proof is based on the observation in [5] that the
least model lm(C) is equivalent to the least �xpoint of the
continuous function F derived from C.

Theorem 1. Let p be a program, R be a set of construc-
tion rules, and � be a partition function. Let C = R(p) and
C� = R=�(p). Then, lm(C�)(X�(e)) � lm(C)(Xe) for every
expression e
Proof. See Appendix. 2

5. APPLICATIONS
To show the usefulness of the rule-transformation, we pro-

vide two instances of analysis design by rule-transformation.
The �rst one designs a sparse version of a class analysis and
the second one deals with an exception analysis. Both are
designed basically based on method-level and the sparse ex-
ception analysis gives the same information for each function
as the original analysis.

5.1 Class analysis
We design a sparse class analysis by rule-transformation,

where only two groups of set variables are considered: set-
variables for methods and �eld variables. The number of set-
variables is thus proportional only to the number of methods
and �elds, not to the number of expressions. This design

98

decision can be represented by an index function as follows.

De�nition 4. The index function IM : Expr [Name !
Index for a method-level analysis is de�ned as :

IM(c:m) = c:m if m is a method de�ned in a class c
IM(c:x) = c:x if x is a �eld variable de�ned in a class c
IM(x) = c:m if x is a parameter of a method m de�ned

in a class c
IM(e) = c:m if e appears in a method m de�ned in

a class c

where c:m and c:x indicates the indices for the class c's
method m and �eld x.

Let IM be an index function for a method-level analysis
and � be a partition function such that IM = �ÆIE . Assum-
ing that the current expression e appears in a method m0

de�ned in a class c0,i.e.�(e) = c0:m0, we can design a class
analysis at method-level in Figure 5 by applying � to the
original rules in Figure 3.
In case of the rule for �eld variable access in Figure 3 :

id�1 Cid
id:x�1 fXe � Xc:xjc 2 Xidg [Cid

Since �(id:x) = c0:m0 and �(c:x) = c:x, this rule can be
transformed into:

id�3 Cid
id:x�3 fXc0:m0 � Xc:xjc 2 Xc:m; x 2 cg [Cid

In case of the rule for method call e in Figure 3 :

e1 �1 C1 e2 �1 C2
e1:m(e2)�1 fXe � app(Xe1 ;m;Xe2)g [C1 [C2

since �(e) = �(e1) = �(e2) = c0:m0, this rule can be trans-
formed into :

e1 �3 C1 e2 �3 C2
e1:m(e2)�3 fXc0:m0 � app�(Xc0:m0 ;m;Xc0:m0)g [C1 [C2

where app� is a modi�ed analysis function , and its seman-
tics is de�ned by applying � as follows:

I(app�(X1;m;X2)) = fv j c 2 I(X1);m(x) = em 2 c;

v 2 I(Xc:m); I(Xc:m) � I(X2)g

The precision of this analysis can be improved by integrating
type information into the analysis as in [19, 20]

5.2 Exception analysis
We �rst present a constraint system that analyzes un-

caught exceptions from every expression independent of pro-
grammers' speci�cation. The analysis can report program-
mer's unnecessary handlers or suggest to programmers for
specialized handlings. We assume the analysis is done after
a class analysis [7] or type inference [8, 16] and that class
analysis information Class(e) is already available for every
expression e. Note that exception classes are normal classes
in Java.
We �rst consider the rules to generate set constraints for

the object classes of every expression in Figure 6. For ex-
ception analysis, every expression e of the program has a
constraint: Pe � se. The Pe is for the exception classes
that the expression e's uncaught exception belongs to. Con-
sider the rule for throw expression:

e1 �1 C1
throw e1 �1 fPe � Class(e1) [Pe1g [C1

It throws exceptions e1 or, prior to throwing, it can have
uncaught exceptions from inside e1 too.
Consider the rule for try expression:

e0 �1 C0 � e1 �2 C1
try e0 catch (c1 x1 e1)�1 fPe � (Pe0 � fc1g�) [Pe1g

[C0 [C1

Raised exceptions from e0 can be caught by x1 only when
their classes are covered by c1. After this catching, ex-
ceptions can also be raised during the handling inside e1.
Hence, Pe � (Pe0 � fc1g

�) [Pe1 , where fc1g
� represents all

the subclasses of a class c1.
Consider the rule for method call:

e1 �1 C1 e2 �1 C2
e1:m(e2)�1 fPe � Pc:mjc 2 Class(e1);m(x) = em 2 cg[

fPe � Pe1 [Pe2g [C1 [C2

Uncaught exceptions from the call expression �rst include
those from the subexpressions e1 and e2 : Pe � Pe1 [Pe2 .
The method m(x) = em is the one de�ned inside the classes
c 2 Class(e1) of e1's objects. Hence, Pe � Pc:m for un-
caught exceptions.
Now we design a sparse constraint system by rule transfor-

mation that analyzes uncaught exceptions at method-level.
In our new analysis, only two groups of set variables are con-
sidered: set variables for class' methods and try-blocks. For
each method m, the set variable is for classes of uncaught
exceptions during the call to m. The try-block eg in the
expression try eg catch (c1 x1 e1) also has a set variable,
which are for uncaught exception classes in eg. The number
of set variables is thus proportional only to the number of
methods and try blocks, not to the total number of expres-
sions. This design decision can be represented by an index
function as follows:

De�nition 5. An index function IX : Expr[MethodName
! Index is de�ned as follows :

IX(e) = c:g if e is a try-block eg in a class c or

appears in it

IX(e) = c:m if e appears in a method m of a class c:

IX(c:m) = c:m if m is a method de�ned in a class c

Let � be a partition function such that IX = � Æ IE. To
design an sparse analysis, we transform the original rules
by applying this partition function � to them. Figure 7
shows the transformed rules for each current expression e,
assuming that �(e) = c0:m0.
For example, consider the rule for try-expression :

eg �1 Cg e1 �1 C1
try eg catch (c1 x1 e1)�1 fPe � Peg � fc1g� [Pe1g

[Cg [C1

If the expression e is in a method c:m, then so does e1. So,
the rule is transformed and simpli�ed into

eg �2 Cg e1 �2 C1
try eg catch (c1 x1 e1)�2 fPc0:m0 � Pc:g � fc1g�g

[Cg [C1

The two analyses give the same information on uncaught
exceptions for every method and try-block. The sparse anal-
ysis in Figure 7 is shown to be equivalent to the expression-
level analysis in Figure 6 with respect to methods and try-
blocks :

99

[New1] new c�1 ; [This1] this �1 ;

[FieldAss1]
e1 �1 C1

id:x := e1 �1 fPe � Pe1g [C1

[ParamAss1]
e1 �1 C1

x := e1 �1 fPe � Pe1g [C1

[Seq1]
e1 �1 C1 e2 �1 C2

e1;e2 �1 fPe � Pe1 [Pe2g [C1 [C2

[Cond1]
e0 �1 C0 e1 �1 C1 e2 �1 C2

if e0 then e1 else e2 �1 fPe � Pe0 [Pe1 [Pe2g [C0 [C1 [C2

[FieldVar1]
id�1 C1

id.x�1 C1

[Throw1]
e1 �1 C1

throw e1 �1 fPe � Class(e1) [Pe1g [C1

[Try1]
eg �1 Cg e1 �1 C1

try eg catch (c1 x1 e1)�1 fPe � Peg � fc1g� [Pe1g [Cg [C1

[MethCall1]

e1 �1 C1 e2 �1 C2
e1:m(e2)�1 fPe � Pc:mjc 2 Class(e1);m(x) = em 2 cg[

fPe � Pe1 [Pe2g [C1 [C2

[MethDef1]
em �1 Cm

m(x) = em �1 fPc:m � Pemg [Cm

[ClassDef1]
Mi �1 Ci i = 1; � � � ;m

class c = {var x1 � � �xn M1 � � �Mm}�1 C1 [� � � [Cm

[Program1]
Ci �1 Ci i = 1; � � � ; n

C1 � � �Cn �1 C1 [� � � [Cn

Figure 6: Exception analysis at expression-level

[New2] new c�2 ; [This2] this�2 ;

[FieldAss2]
e1 �2 C1

id:x := e1 �2 C1

[ParamAss2]
e1 �2 C1

x := e1 �2 C1

[Seq2]
e1 �2 C1 e2 �2 C2
e1;e2 �2 C1 [C2

[Cond2]
e0 �2 C0 e1 �2 C1 e2 �2 C2

if e0 then e1 else e2 �2 C0 [C1 [C2

[FieldVar2]
id�2 C1

id.x�2 C1

[Throw2]
e1 �2 C1

throw e1 �2 fPc0:m0 � Class(e1)g [C1

[Try2]
eg �2 Cg e1 �2 C1

try eg catch (c1 x1 e1)�2 fPc0:m0 � Pc0:g � fc1g�g [Cg [C1

[MethCall2]
e1 �2 C1 e2 �2 C2

e1.m(e2)�2 fPc0:m0 � Pc:m j c 2 Class(e1);m(x) = em 2 cg [C1 [C2

[MethDef2]
em �2 C1

m(x) = em �2 C1

[ClassDef2]
Mi �2 Ci i = 1; � � � ;m

class c = {var x1 � � �xn M1 � � �Mm}�2 C1 [� � � [Cm

[Program2]
Ci �2 Ci i = 1; � � � ; n

C1 � � �Cn �2 C1 [� � � [Cn

Figure 7: Exception analysis at method-level

100

Theorem 2. Let p be a program and � be a partition

function such that IX = � Æ IE. Let C = R(p) for the rules
R in Figure 6 and C� = R=�(p). Then, lm(C�)(Pc:f) =
lm(C)(Pef) for every method f(x) = ef and try-block ef in
a class c.
Proof. See Appendix. 2

6. DISCUSSION
The class analysis has an O(n3) time bound where n is the

number of expressions and variables in a program. Even if
we consider the method-level analysis in Example 4, the or-
der of time complexity does not change, but the number n of
set variables is the same as the size of IM(Expr[Name), the
number of methods and �elds, which is usually much smaller
than the number of expressions and variables. In case of
the sparse exception analysis, the number of set-variables is
proportional only to the number of methods and try-blocks,
which is much smaller than the number of expressions. In
general, if I is the index function for a new sparse analysis,
then the number of set variables is the same as the size of
I(Expr [Name).
There have been several research directions to improve ef-

�ciency of constraint-based analysis. The �rst direction is
to improve analysis time by simplifying set constraints after
constructing the whole constraints [6, 9, 10, 18]. They usu-
ally simplify set constraints without losing the precision of
the original analysis. Basic idea of congruence partitioning
in [6] is to partition set variables based on idempotence and
common subexpression relation. Componential set-based
analysis [10] has added more relations for partitioning over
congruence partitioning.
The second direction is to design analyses at a coarser

granularity. Sparse exception analyses are designed for ML
and Java [21, 20]. A function-level exception analysis for ML
is manually designed in [21] where it is shown to be com-
petitive in speed and precision by experimental study. An
exception analysis with class analysis is manually designed
for Java, and type information is also integrated in the anal-
ysis to re�ne precision in [20]. It is shown theoretically in [3]
that the method-level exception analysis for Java gives the
same information for each method as the expression-level
analysis.
Several sparse versions of 0-CFA, called XTA, CTA,MTA

and CTA, are designed individually for Java in [19]. They
make class analysis scalable by making set variables for
methods, �elds, or classes. It is shown by experiments that
they are fast for large practical programs and give relatively
precise information. Static type information is also inte-
grated in the analysis to re�ne precision as in [21, 20]. The
idea of designing analyses at a coarser granularity is also ap-
plied in data
ow analysis [14, 17], where syntactic tokens
are used to group execution traces and coalesce the mem-
ory states associated with them, and abstract interpretation
framework [2, 4], where a semantic function for every control
point is approximated by partitioning control points.

7. CONCLUSION
We have assumed that the original analysis is designed

at expression level and index determination functions are
de�ned in terms of expressions. However, this idea need
not be con�ned to expressions. We can assume an original
analysis is designed at any level. For example, an original

analysis can be de�ned for every expression and context as
in k-CFA analysis. Then, 0-CFA can also be derived by
transforming the rules of k-CFA.
Even though we present the framework based on a core

Java language, it can also be applied to any programming
languages and analyses, only if constraint-based analysis can
be designed.
Another further research topic is on equivalence of analy-

sis information. As in exception analysis, the sparse version
can give the same information for some syntactic constructs
like function as the original analysis. It is interesting and
open to �nd general conditions for this equivalence. It is also
interesting and promising to design other sparse versions of
concurrency and security analysis by rule transformation.

ACKNOWLEDGEMENTS

We would like to thank K. Yi and R. Giacobazzi for helpful
discussions. We are also grateful to the anonymous referees
for many helpful suggestions that improved the presentation
of the work.

8. REFERENCES
[1] D.F. Bacon and P.F. Sweeney, Fast static analysis of

C++ virtual function calls. In Proceedings of ACM
Conference of Object-Oriented Programming Systems,
languages, and Applications, October 1996.

[2] F. Bourdoncle, Abstract interpretation by dynamic
partitioning, Journal of Functional Programming, 2(4)
(1992) 407-435.

[3] B.-M. Chang, J. Jo, K. Yi and K.-M. Choe,
Interprocedural exception analysis for Java, In
Proceedings of ACM Symposium on Applied
Computing, LasVegas, USA, March 2001.

[4] P. Cousot and R. Cousot, Abstract interpreation and
application to logic programs, Journal of Logic
Programming, Vol 13, no. 2-3, pp. 103-179, 1992.

[5] P. Cousot and R. Cousot, Formal Language,
Grammars and Set-Constraint-Based Program
Analysis by Abstract Interpretation, In Proceedings of

'95 Conference on Functional Programming Languages
and Computer Architecture, pp. 25-28, June 1995.

[6] E. Duesterwald, R. Gupta and M. L. So�a, Reducing
the Cost of Data Flow Analysis by Congruence
Partitioning, In Proceedings of International
Conference on Compiler Construction, April 1994.

[7] G. DeFouw, D. Grove, and C. Chambers, Fast
interprocedural class analysis, In Proceedings of 25th

ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages pages 222-236, Januaray
1998.

[8] S. Drossopoulou, and S. Eisenbach, Java is type
safe-probably, In Proceedings of 1997 European
Conference on Object-Oriented Programming, 1997.

[9] M. Fahndrich, J. S. Foster, Z. Su and A. Aiken,
Partial Online Cycle Elimination in Inclusion
Constraint Graphs, In Proceedings of ACM SIGPLAN
Conference on Programming Language Design and
Implementation, June 1998.

[10] C. Flanagan and M. Felleisen, Componential
Set-Based Analysis, In Proceedings of the 24th ACM

101

Symposium on Principles of Programming Languages,
January 1997.

[11] C. Flanagan and M. Freund, Type-based Race
Detection for Java In Proceedings of the 27th ACM
Symposium on Programming Languages Design and

Implementation, June 2000.

[12] N. Heintze, Set-Based Program Analysis, Ph.D Thesis,
School of Computer Science, Carneige Mellon
University, 1992.

[13] N. Heintze, Set-based analysis of ML programs, In
Proceedings of ACM Conference on Lisp and
Functional Programming, pp 306-317, 1994.

[14] N. D. Jones and S. Muchnick, A
exible approach
interprocedural data
ow analysis and programs with
recursive data structures, In Proceedings of the 9th
ACM Symposium on Principles of Programming
Languages, 1982.

[15] F. Nielson, H. Nielson and C. Hankin, Principles of
Program Analysis, Springer-Verlag, December 1999.

[16] Tobias Nipkow and David von Oheimb. Java is type
safe-de�nitely, In Proceedings of the 25th ACM
Symposium on Principles of Programming
Languages,1998.

[17] M. Sharir and A. Pnueli, Two approaches to
interprocedural data
ow analysis, in Muchnick and
Jones Eds., Program Flow Analysis, Theory and
Applications, Prentice-Hall, 1981.

[18] Z. Su, M. Fahndrich and A. Aiken, Projection
Merging: Reducing Redundancies in Inclusion
Constraint Graphs, In Proceedings of the 27th ACM
Symposium on Principles of Programming Languages,
January 2000.

[19] F. Tip and J. Palsberg, Scalable propagation-based
call graph construction algorithms, In Proceedings of
ACM Conference of Object-Oriented Programming
Systems, languages, and Applications, October 2000.

[20] K. Yi and B.-M. Chang, Exception analysis for Java,
In Proceedings of 1999 ECOOP Workshop on Formal
Techniques for Java Programs, Lisbon, Portugal, June
1999.

[21] K. Yi and S. Ryu, A Cost-e�ective estimation of
uncaught exceptions in Standard ML programs.
Theoretical Computer Science, volume 237, number 1,
2000.

Appendix. Proofs

Theorem 1 Proof As in [5], the continuous function F
can be de�ned from C, and F� can also be de�ned from
C� likewise. So, we will prove this theorem by showing

 Æ lfp(F�) � lfp(F).
We can prove this by showing that :

(1) Galois insertion: Let � = V ars(C) and �� = V ars(C�).
Let D = � ! }(V al) be the domain of interpretations
I and D� = �� ! }(V al) be the domain of partitioned
interpretations I�. For every interpretation I, we de�ne
�(I) = I� where I� : �� ! }(V al) is de�ned as I�(Xm) =
[e2mI(Xe) for every m 2 ��. We de�ne
(I�) = I0 such
that I0(Xe) = I�(X�(e)) for every set variable Xe 2 �.
Then, (D; �;D� ;
) is a Galois insertion, since �(
(I�)) =
I�.
(2) Soundness of the operation
 ÆF�(I�) � F Æ
(I�) : For
this proof, it should be noted that the derivation rules in
Figure 7 are obtained by replacing every set variable Xe by
X�(e) in the corresponding rules in Figure 6. So, if there is
a constraint Xe � se constructed by the rules in Figure 6,
then there must be a constraint X�(e) � se=� constructed
by the rules in Figure 7, where se=� denotes se with its set
variable Xe replaced by X�(e).
Let the function F be de�ned as a collection of equations

of the form : Xe = se for every Xe 2 �, and F� as a
collection of equations of the form : X�(e) = se=� for every
X�(e) 2 �(�). For each set variable Xe0 in se,
(I�)(Xe0) =
I�(X�(e0)) = S by the de�nition of
. Since Xe0 is replaced
by X�(e0) in X�(e) = se=� in F�, and every set expression
is monotone, F�(I�)(X�(e)) � F Æ
(I�)(Xe) for every set
variable Xe. Therefore,
 Æ F�(I�) � F Æ
(I�) by the
de�nition of
.

Theorem 2 Proof As in the soundness proof, the contin-
uous function F and F� can be de�ned. We prove this
theorem by showing that lfp(F�)(Pc:f) = lfp(F)(Pef) for
every method and try-block. By the soundness theorem,
lfp(F�)(Pc:f) � lfp(F)(Pef). So, we just prove that
lfp(F�)(Pc:f) � lfp(F)(Pef) for every method and try-
block.
The proof is by induction on the number of iterations in

computing lfp(F�).
Induction hypothesis : Suppose I�(Pc:f) � I(Pef) for every
method and try-block.
Induction step : If I0� = F�(I�), then there exists I0 such
that I0 = F i(I) for some i and I0�(Pc:f) � I0(Pef).

(1) For every set variable Pc:f , suppose I
0
�(Pc:f) = I�(Pc:f)[

�.
(2) Then, � must be added by some of the rules [Throw2],
[Try2], and [MethodCall2] in Figure 7.
(3) There must be the corresponding rules [Throw1], [Try1],
and [MethodCall1] in Figure 6.
(4) By (3) and induction hypothesis, there must be Xe such
that e appears in ef and F(I)(Pe) � �, which will be even-
tually included in Pef in some more iterations F i(I) by the
rules in Figure 6.

102

