
Constructing Control Flow Graph for Java by
Decoupling Exception Flow from Normal Flow�

Jang-Wu Jo1 and Byeong-Mo Chang2

1 Department of Computer Engineering
Pusan University of Foreign Studies

Pusan 608-738, Korea
jjw@pufs.ac.kr

2 Department of Computer Science
Sookmyung Women’s University, Seoul 140-742, Korea

chang@sookmyung.ac.kr

Abstract. A control flow graph represents all the flows of control
that may arise during program execution. Since exception mechanism
in Java induces flows of control, exception induced control flow have
to be incorporated in control flow graph. In the previous research to
construct control flow graph, they compute exception flow and normal
flow at the same time while computing control flow information. In
this paper, we propose a method to construct control flow graph by
computing separately normal flow and exception flow. We show that
normal flow and exception flow can be safely decoupled, hence these
two flows can be computed separately. We propose the analysis that
estimates exception-induced control flow, and also propose exception
flow graph that represents exception induced control flows. We show
that a control flow graph can be constructed by merging an exception
flow graph onto a normal flow graph.

Keywords: control flow graph, exception flow, normal flow

1 Introduction

A control flow graph(CFG) is a static representation of the program and repre-
sents all alternatives of control flow. The CFG is essential to performing many
program-analysis techniques, such as data-flow and control-dependence analysis,
and software-engineering techniques, such as program slicing and testings. For
these program analyses and software engineering techniques to be safe and use-
ful, the CFG should incorporate all the flows of control that may arise during
execution of the program. Exception mechanism in Java may induce flow of con-
trol during program execution[1]. When an exception is thrown during program
execution, an exception flow occurs from the statement that throws the excep-
tion to the handler block or the exit of the main method. So, these exception
flow must be incorporated in CFG.
� This work was supported by grant No. R01-2002-000-00363-0 from the Basic Rese-

arch Program of the Korea Science & Engineering Foundation.

A. Laganà et al. (Eds.): ICCSA 2004, LNCS 3043, pp. 106–113, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 24000 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 10.0
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Constructing Control Flow Graph for Java 107

Recently, several works on the effects of exception flow have been proposed.
The first one is to construct CFG that incorporates exception flow[2].The second
one is to modify the program analysis techniques [2,3,4] and software engineer-
ing technique in order to consider the effect of exception flow[2]. However, in
constructing CFG in [2], they compute normal flow and exception flow at the
same time. This is due to that Java program’s normal flow and exception flow
are mutually dependent.

In this paper, we propose a method to construct CFG by computing sepa-
rately normal flow and exception flow. We investigated Java programs and found
that such cases as normal flow and exception flow are mutually dependent rarely
happened. This suggests that, in most cases, normal flow analysis can be done
independent of exception flow analysis. This does not mean that we don’t guar-
antee the safety of these two flow analyses. For such cases when these two flows
are mutually dependent, we use the type information instead of the result of
exception flow analysis, believing that this approximation would be rarely detri-
mental to the accuracy of normal flow analysis. We propose an exception flow
analysis that estimates exception-induced control flow, and also propose excep-
tion flow graph that represents exception-induced control flow. The CFG that
represents both normal and exception flow can be constructed by merging an
exception flow graph onto a normal flow graph (CFG with only normal flow).

The advantages of decoupling these two flow analyses are two folds. The first
one is that when only one flow information (normal flow or exception flow) is
needed, the desired flow can be computed solely, instead of computing two flows
at the same time. The second one is that we can use already existing normal flow
graph that is constructed by a former technique. Moreover, since our exception
flow graph represents the information about thrown exceptions, such as origins,
handlers, and propagation paths, it can be used to guide programmers to put
handlers at appropriate places.

The rest of this paper is organized as follows. Section 2 exemplifies the mutual
dependence between normal control flow analysis and exception flow analysis,
and describes how these two analyses can be decoupled. Section 3 describes a
static analysis to compute exception flow of Java programs. Section 4 describes
how to construct control flow graph that incorporates exception flow. Section 5
contains our conclusions.

2 Decoupling Exception Flow Analysis from Normal
Flow Analysis

Normal flow analysis and exception flow analysis are mutually dependent: com-
puting normal flow requires the information on exception flow, and computing
exception flow also requires the information on normal flow.

The Java code in Figure 1 illustrates this situation where these two analyses
are mutually dependent. Consider the call to m() in line 1. The call may induce
an exception flow because exceptions may be propagated by the called method
m(). The flow of propagated exceptions is in the reverse order of method call

108 J.-W. Jo and B.-M. Chang

chain. So, computing the flow induced by propagated exceptions requires the
method call graph, which is a result of normal flow analysis. For the situation
where computing normal control flows requires the information on exception
induced control flows, consider the call to m() in line 3 which uses the catch
parameter x. The method m() may be overridden in its subclasses. In order to
determine which m() among overridden methods may be called during execution,
the type of the exception that are caught by catch block is required, which is a
result of exception flow analysis.

We conducted a study of frequency with which try {
1: x.m();
2:} catch (Exception x) {
3: e.m();

}

Fig. 1. An example code

the case of mutual dependence between these two
flows appeared in real Java programs. We exam-
ined a suite of fourteen Java programs, which
covers a wide range of application areas, includ-
ing language processors, a compression utility, an
artificial intelligence system, a simulation utility,
and a servlet container. We found that 0.3% of method calls in catch block
require the exception flow information. Thus we can separate exception flow
analysis from normal flow analysis. This does not mean that we don’t guarantee
the safety of normal flow analysis. For such cases when the information of excep-
tion flow is required, the type information of catch parameter is used instead.
We believe that this approximation would be rarely detrimental to the accuracy
of normal flow analysis.

3 Exception Flow Analysis

This section presents an exception flow analysis which estimates exception
induced control flows of Java programs. Our analysis is based on set-based
framework[5], which consists of three phases: designing construction rules, col-
lecting set constraints and solving them.

3.1 Source Language

As will be explained in 3.2, our exception flow analysis collects set constraints
at exception related constructs, such as method declaration, throw statement
try-catch statement, and method call. For presentation brevity we define ab-
stract syntax of these constructs and their semantics are same as in [1].

[Throw] throw e
[Try-catch] try block catch (c x) block
[MethCall] e.m(e)
[MethDecl] m(x) = block [throws c∗]

3.2 Set Constraints

Each set constraint is of the form X ⊇ se where X is a set variable and se is a set
expression. The meaning of a set constraint X ⊇ se is intuitive: set X contains

Constructing Control Flow Graph for Java 109

the set represented by set expression se. Multiple constraints are conjunctions.
We write C for such conjunctive set of constraints.

In case of our analysis, the set expression is of this form:

se → X set varaible
| se ∪ se union
| 〈c, �〉 thrown exception from �
| se − {c1, ..., cn} exceptions escaping from try-catch
| se ∩ {c1, ..., cn} exceptions caught by catch-block
| se · � exception propagation

The thrown exception from a throw statement labelled with � is represented by
〈c, �〉 where c is the class name of the exception. The set expression se−{c1, ..., cn}
is for representing the exceptions that escape from try-catch statement. The
set expression se ∩ {c1, ..., cn} is for representing the exceptions that is caught
by catch block. The set expression se · � records an exception propagation path
by appending a label � to se.

The formal semantics of set expressions is defined by an interpretation I
that maps from set expressions to sets of values in V = ExnName × Trace,
where ExnName is the set of exception names, and Trace = Label∗. A trace
τ ∈ Trace is a sequence of labels in Label, which is an exception propagation
path.

I(se · �′) = I(se) · �′ where I(se) · �′ = {〈c, �1 · · · �n�′〉|〈c, �1 · · · �n〉 ∈ I(se)}
I(se − {c1 · · · cn}) = {〈c, τ〉|〈c, τ〉 ∈ se, c /∈ {c1 · · · cn}}
I(se ∩ {c1 · · · cn}) = {〈c, τ〉|〈c, τ〉 ∈ se, c ∈ {c1 · · · cn}}

We call an interpretation I a model (a solution) of a conjunction C of constraints
if, for each constraint X ⊇ se in C, I(X) ⊇ I(se).

3.3 Set Constraints Construction

The basic idea of our exception flow analysis is that exception flows are traced by
recording the labels of statements that exceptions are propagated through. The
constructs that we record the labels of are throw , catch block of try-catch,
and method declarations, which are necessary for constructing CFG. We assume
this kind of constructs s has a label �, which is denoted by � : s.

Our analysis increases the cost-effectiveness by enlarging the analysis gran-
ularity. Instead of defining a set variable for each statement or expression, our
analysis defines a set variable for each methods and try blocks. For each method
m, the set variable Xm represents the flows of exceptions escaping from method
m. For each try block b1 of try b1 catch (c x) b2, the set variable Xb1 represents
the flows of exceptions escaping from try block b1. This approach of enlarging
the analysis granularity is addressed in [6] and is applied to uncaught exception
analysis successfully [7].

Figure 2 has the rules to generate set-constraints. The left-hand-side m in re-
lation m � s : C indicates that a method or a try-block m contains the statement

110 J.-W. Jo and B.-M. Chang

[Throw]m
m � e : C1

m � � : throw e : {Xm ⊇ 〈c, �〉, c = Class(e)} ∪ C1

[Try-catch]m
m � b1 : Cb1 m � b2 : Cb2

m � try b1 � : catch(c x) b2 : {Xb1 ⊇ (Xb1 ∩ {c}∗) · �, Xm ⊇ (Xb1 − {c}∗)} ∪ Cb1 ∪ Cb2

[MethCall]m
m � e1 : C1 m � e2 : C2

m � e1.m′(e2) : {Xm ⊇ Xc.m′ |c ∈ Class(e1), m′(x) = em′ ∈ c} ∪ C1 ∪ C2

[MethDecl]m
m � b : Cm

m � � : m(x) = b : {Xm ⊇ Xm · �} ∪ Cm

Fig. 2. Set-constraints construction rules

s the constraints C are generated from statement s. The class(e) represents the
classes that the expression e’s object belongs to, which is the result of normal
control flow analysis.

Consider the rule [Throw]m. It throws an exception e, which is represented
as 〈c, �〉 where c = class(e1) is the class name of the exception and l is the label
of the throw statement, which is an origin of the exception.

Consider the rule [Try-catch]m. Among the exceptions escaping from try
block b1, the same class or subclasses of class c in catch(c x) are caught. The
label l of catch(c x) is appended to the flows of caught exceptions in order to
record the flow to the exception handler. Hence, Xb1 ⊇ (Xb1 ∩ {c}∗) · �, where
{c}∗ represents all the subclasses of a class c including itself. The exceptions
escaping from try-catch statement have to be contained in the set variable of
the method or try block that contains this statement. Hence, Xm ⊇ (Xb1 −{c}∗)

Consider the rule [MethCall]m. The method m′(x) = em′ is declared inside
the classes c ∈ class(e1) of e1’s objects. Hence, Xm ⊇ Xc.m′ for uncaught excep-
tions. (The subscript c.m indicates the index for the method m of class c.)

Consider the rule [MethDecl]m. The set variable Xm includes the uncaught
exceptions from the method m. The label l of method m is appended to the flows
of uncaught exceptions in order to record the exceptions propagate through the
method m.

1: public static void main() throws E2
try { 8: void m2() throws E1{

2: m1(); 9: if(...)
3: } catch (Exception x) { 10: throw new E1();
4: ; 11: void m3() throws E2 {

} 12: if (...)
5: m3(); 13: throw new E2();

} 14: if (...)
6: void m1() throws E1{ 15: m3();
7: m2(); }

}

Fig. 3. An example program for exception propagation

Constructing Control Flow Graph for Java 111

Example 1. We can construct a collection C of constraints by applying the con-
struction rules in Figure 2 to a program in Figure 3.

Xmain ⊇ Xtry − {Exception}∗, Xm1 ⊇ Xm2, Xm3 ⊇ {〈E2, 13〉},
Xtry ⊇ (Xtry ∩ {Exception}∗) · 3, Xm1 ⊇ Xm1 · 6, Xm3 ⊇ Xm3,
Xtry ⊇ Xm1, Xm2 ⊇ {〈E1, 10〉}, Xm3 ⊇ Xm3 · 11,
Xmain ⊇ Xmain · 1, Xm2 ⊇ Xm2 · 8

3.4 Solving the Set Constraints

A collection C of constraints for a program guarantees the existence of its least
solution (model) because every operator is monotonic (in terms of set-inclusion)
and each constraint’s left-hand-side is a single variable [5]. We write lm(C) for
the least model of a collection C. The least model can be computed by iterative
fixedpoint method because the solution space is finite: exception classes and
labels in the program.

Example 2. We can compute the solution lmS(C) of set-constraints C in Example
1 by iterative fixpoint method.

{ Xmain ⊇ {〈E2, 13 · 11 · 1〉}, Xtry ⊇ {〈E1, 10 · 8 · 6 · 3〉}, Xm1 ⊇ {〈E1, 10 · 8 · 6〉},
Xm2 ⊇ {〈E1, 10 · 8〉}, Xm3 ⊇ {〈E2, 13 · 11〉} }

Theorem 1. Let P be a program and C be the set-constraints constructed by the
rules in Figure 2. Every exception trace of P is included in the solution lmS(C).
Proof sketch. We first have to lift the standard semantics to a collecting semantics
called set-based approximation so as to collect sets of concrete traces, because a
static program point can be associated with a set of traces. Correctness proofs
can be done with respect to this collecting semantics by the fixpoint induction
over the continuous functions that are derived from our constraint system as in
[8]. �

We can see exception flow by defining the exception flow graph of the solution
lmS(C).

Definition 1. Let C be the set-constraints constructed for a program P . Ex-
ception flow graph of the solution lmS(C) is defined to be a graph 〈V, E〉
where V is the set of labels in P and E = {�1 →c �2, �2 →c �3, · · · , �n−1 →c

�n|〈c, �1�2 · · · �n〉 ∈ lmS(C)(X) for a set variable X in C} where �i →c �i+1 de-
notes an edge from �i to �i+1 labelled with c.

4 Construction of CFG

A CFG which includes both normal flow and exception flow can be constructed
by merging exception flow graph onto normal flow graph. We show the construc-
tion of CFG by using example Java program in Figure 3. The statement-level
normal flow graph for Figure 3 is shown in Figure 5. The normal flow graph in

112 J.-W. Jo and B.-M. Chang

Figure 5 does not represent exception flow yet. As in the Figure 5, there are two
exception flow paths, which are caused by a throw statement: the path starting
from node 10 and node 13 (nodes that are shown as double circles in this figure).
The exception flow graph for the example program is shown in Figure 4. We la-
bel each edge with the type of exception. By merging exception flow graph in
Figure 4 onto normal flow graph in Figure 5, we can construct CFG in Figure 6
which incorporates both normal flow and exception flow. The CFG in Figure 6
contains exceptional-exit node, to model the propagation of exceptions between
methods. An exceptional-exit node represents the propagation of an exception
of type T by the corresponding method.

Fig. 4. Exception Flow Graph

Fig. 5. Normal Flow Graph Fig. 6. Control Flow Graph

5 Conclusions

The contributions of this paper are two-folds. First, we showed that while com-
puting control flow information, normal flow and exception flow can be computed
separately, and also showed that the approximation from this separation is not

Constructing Control Flow Graph for Java 113

detrimental to the accuracy of each flow analysis. Second, We presented an anal-
ysis that estimates exception-induced control flow, and also proposed exception
flow graph that represents exception induced control flows. We showed that a
control flow graph can be constructed by merging an exception flow graph onto
a normal flow graph.

References

1. J. Gosling, B. Joy, and G. Steele, The Java Programming Language Specification,
Addison-Wesley Longman, 1996.

2. S. Sinha and M. Harrold, Analysis and Testing of Programs With Exception-
Handling Constructs, IEEE Transations on Software Engineering vol. 26, no. 9,
pp. 849-871, 2000.

3. R. K. Chatterjee, B. G. Ryder, and W. A. Landi, Complexity of concrete type-
inference in the presence of exceptions, Lecture notes in Computer Science, vol.
1381, pp. 57-74, Apr. 1998.

4. J.-D. Choi, D. Grove, M. Hind, and V. Sarkar, Efficient and precise modeling
of exceptions for analysis of Java programs, Proceedings of ’99 ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering, pp.
21-31, Sep. 1999.

5. N. Heintze, Set-based program analysis. Ph.D thesis, Carnegie Mellon University,
1992.

6. Jang-Wu Jo, B.-M. Chang, Granularity of Constrain-Based Analysis for Java, Pro-
ceedings of ACM SIGPLAN Conference on Principles and Pracice of Declarative
Programming, pp. 94-102, Sep. 2001.

7. Jang-Wu Jo, B.-M. Chang, K. Yi, and K. Choe, An Uncuaght Exception Analysis
for Java, Journal of Systems and Software, accepted for publication.

8. Patrick Cousot and Radhia Cousot. Compositional and inductive semantic defi-
nitions in fixpoint, equational, constraint, closure-condition, rule-based and game-
theoretic form. Lecture Notes in Computer Science, volume 939, pp. 293-308.
Springer-Verlag, Proceedings of the 7th international conference on computer-aided
verification, 1995.

	Introduction
	Decoupling Exception Flow Analysis from Normal Flow Analysis
	Exception Flow Analysis
	Source Language
	Set Constraints
	Set Constraints Construction
	Solving the Set Constraints

	Construction of CFG
	Conclusions

