
Thread-Sensitive Points-to Analysis for
Multithreaded Java Programs

Byeong-Mo Chang1? and Jong-Deok Choi2

1 Dept. of Computer Science,
Sookmyung Women’s University, Seoul 140-742, Korea

chang@sookmyung.ac.kr
2 IBM T. J. Watson Research Center

P.O. Box 704 Yorktown Heights, NY 10598 USA
jdchoi@watson.ibm.com

Abstract. Every running thread has its own thread context that con-
sists of values of the fields of the target thread object. To consider
the thread context in understanding the behaviors of concurrently run-
ning threads, we propose a thread-sensitive interprocedural analysis for
multithreaded Java applications. Our thread-sensitive analysis exploits
thread-context information, instead of the conventional calling-context
information, for computing dataflow facts holding at a statement. The
thread-sensitive analysis is highly effective in distinguishing dataflow
facts for different threads, producing more precise dataflow information
than non-thread-sensitive analysis. The analysis is also generally much
more efficient than conventional (calling) context-sensitive analysis. It
uses the target thread objects at a thread start site to distinguish differ-
ent thread contexts. We give a thread-sensitive points-to analysis as an
instance of thread-sensitive analysis. We have implemented it and give
some experimental results. We discuss several possible applications of
the analysis.

1 Introduction

Multithreading in Java has become widely used in developing concurrent and
reactive software. One of the most important analyses for Java is points-to anal-
ysis, which provides information about the objects, to which references point.
Potential applications of points-to analysis for multithreaded programs include
synchronization elimination, alias analysis, escape analysis, static datarace detec-
tion, software engineering tools and compiler optimizations [2–4, 12, 9]. Several
points-to analyses was proposed for Java [8, 13]. However, they treat threads
just like methods without paying special attention to threads, and don’t provide
experimental results for multithreaded Java programs.

In multithreaded programs, there are multiple concurrently running threads
for one thread definition. Every running thread has its own thread context that

?
This Research was supported by the Sookmyung Women’s University Research Grants 2004

consists of values of the fields of the target thread object. Moreover, it has its
own instances for locals, newly created objects, and method invocations.

In this paper, we propose a thread-sensitive interprocedural analysis for mul-
tithreaded Java programs to consider the thread context in understanding the
behaviors of concurrently running threads. Our thread-sensitive analysis exploits
thread-context information, instead of the conventional calling-context informa-
tion, for computing dataflow facts holding at a statement. It is highly effective
in distinguishing dataflow facts for different threads, producing more precise
dataflow information than non-thread-sensitive analysis. It is also generally much
more efficient than conventional (calling) context-sensitive analysis. It uses the
target thread objects at a thread start site to distinguish different thread con-
texts. We give a thread-sensitive points-to analysis as an instance of it.

For thread-sensitive points-to analysis, we first identify thread objects stati-
cally by making one (abstract) thread object for each thread object creation site.
Then we do separate points-to analyses for possible target thread objects at each
thread start site. Conceptually, every thread is replicated for each possible target
thread object. A thread-sensitive analysis for each target thread object starts
from its run() method and analyzes all methods reachable from it. For clear
presentation, we present the thread-sensitive analysis based on constraint-based
analysis [5]. While context-insensitive analysis makes one set-variable for every
reference variable, the thread-sensitive analysis makes as many set-variables as
the number of its target thread objects for every reference variable (not static) in
a thread definition to model that every thread has its own instance. We construct
a separate collection of set-constraints for each target thread.

We have implemented the thread-sensitive points-to analysis based on con-
ventional iterative algorithm by extending the inclusion-based points-to analysis
[13]. We first do context-insensitive points-to analysis of the main thread to
extract abstract thread objects, and then identify the run() method of each
abstract thread object. Then we do separate points-to analysis specific to each
target thread. We have evaluated the impact of the analysis over nine bench-
mark programs along with the work in [13]. We also observed that codes for
run() methods have to be connected with its start site in the analysis, because
threads are started by native code. Otherwise, it will be missing as in [13] when
analyzing multithreaded Java programs. We have implemented the functionality
to connect and analyze the run() methods of started threads automatically.

The rest of the paper is organized as follow. We first give a motivation in
Section 2. We present the thread-sensitive analysis in Section 3 and its imple-
mentation and experiments in Section 4. Section 5 discusses some applications of
it such as synchronization removal, datarace detection, and software engineering
tools. Section 6 discusses related works and Section 7 concludes this paper.

2 Motivation

We consider a multithreaded Java program in Figure 1 from the book [7].
This program divides a picture to be rendered into two parts, leftHalf and

rightHalf, and then creates two threads, leftThread and rightThread, to
render left and right parts respectively. After rendering, it finally combines the
two images rendered by the two threads.

class RenderWaiter extends Thread {
private PictureRenderer ren; // service object
private byte [] arg; // arguments to its method
private Picture rslt = null; // results from its method
RenderWaiter(PictureRenderer r, byte[] raw) {

ren = r; arg = raw;
}
synchronized Picture result() { return rslt; }
public void run() {

rslt = ren.render(arg);
}

}

class DumbPictureRenderer implements PictureRenderer {
public Picture render(byte[] raw) {

return new Picture(new String(raw, raw.length));
}

}

public class SplitRenderer implements PictureRenderer {
PictureRenderer renderer1; // group member 1
PictureRenderer renderer2; // group member 2
public SplitRenderer() {

renderer1 = new DumbPictureRenderer();
renderer2 = new DumbPictureRenderer();

}
public Picture render(byte[] rawPicture) {

byte[] rawLeft = leftHalf(rawPicture); // split
byte[] rawRight = rightHalf(rawPicture);
RenderWaiter leftThread = new RenderWaiter(renderer1, rawLeft);
RenderWaiter rightThread = new RenderWaiter(renderer2, rawRight);
leftThread.start(); // start threads
rightThread.start();

... // join both of them
Picture leftImg = leftThread.result(); // use results
Picture rightImg = rightThread.result();
return combinePictures(leftImg, rightImg);

}
byte[] leftHalf(byte[] arr) { ... }
byte[] rightHalf(byte[] arr) { ... }
Picture combinePictures(Picture a, Picture b) {

return new Picture(a.image() + b.image());
}

}

Fig. 1 Example program

Conventional context-insensitive points-to analyses collect all the objects
passed to a parameter, into one set-variable [8, 13]. Because they also collect
target thread objects in the same way when analyzing run method, they cannot
distinguish different thread contexts at a thread start site. However, each thread
can have different thread contexts and can behave differently depending on its
target thread object. For example, the method run in RenderWaiter accepts the
two thread objects, leftThread and rightThread, passed to this parameter.
So, in the context-insensitive analysis, the field this.ren points to the objects
pointed by renderer1 and renderer2, and the field this.arg points to the ob-
jects pointed by rawLeft and rawRight. So, it cannot provide separate points-to

analysis information specific to each target thread, because it does neither pay
special attention to threads and nor distinguish different thread contexts.

In this paper, our thread-sensitive analysis will analyze RenderWaiter twice
with leftThread and rightThread as its target thread object, respectively. The
analysis now can provide separate analysis information specific to each thread.
For example, we can determine from the analysis information that this.ren in
each thread actually points to only one object. This information can be useful for
such thread-related applications as synchronization removal or static datarace
detection.

In this paper, the set of all reference variables in a program is denoted by
Ref . The set of all abstract objects in a program is denoted by AbsObj. Each
abstract object O ∈ AbsObj is a mapping O : Field→ ℘(AbsObj) where Field
is the set of fields of the object O. We denoted by Oc` an abstract object of a class
c created at a label l. For simple presentation, we only discuss the statements:
(1)Direct assignment: p = q (2) Instance field write: p.f = q (3) Static field
write: c.f = q (4) Instance field read: p = q.f (5) Static field read: p = c.f
(6) Object creation: p = new c (7)Virtual invocation: p = a0.m(a1, ..., ak).

Context-insensitive points-to analysis makes one set-variable Xv for every
reference variable v ∈ Ref . A set variable Xv is for objects, which the reference
v points-to. A set expression se is an expression to denote a set of objects, which
is of this form:

se ::= Oc`(new object)| Xv(set variable)| se ∪ se(set union)| se · f(object field)

where a set-expression se · f represents the set of objects pointed by the field f
of the objects represented by se.

A set-constraint is of this form: Xv ⊇ se or Xv ⊇f se. The meaning of a set
constraint X ⊇ se is intuitive: the set Xv contains the set of objects represented
by the set expression se. A set constraint Xv ⊇f se means that the field f of
the objects in the set Xv contains the set of objects represented by se. Multiple
constraints are conjunctions. We write C for such conjunctive set of constraints.
The semantics of the context-insensitive points-to analysis can be found in [8].

3 Thread-Sensitive Points-to Analysis

We describe a thread-sensitive interprocedural analysis for multithreaded Java
applications in terms of points-to analysis. Our thread-sensitive analysis exploits
thread-context information, instead of the conventional calling-context informa-
tion, to distinguish dataflow facts for different threads. It uses the target thread
objects at a thread start site to distinguish different thread contexts.

We define a thread-sensitive points-to analysis for multithreaded Java pro-
grams based on constraint-based analysis framework [5]. To distinguish different
thread contexts, we analyze each thread definition separately for each target
thread object, on which it may be started. Conceptually, every thread can be
thought to be replicated for each possible target thread object.

We denote a thread definition (i.e. thread defining class) by T . We make its
abstract thread objects for every thread creation site for T . We denote them
by OT1 , ..., OTn . An abstract thread represented by Tı is a replica of the thread
definition with a possible thread object OTı as its target object. It actually
includes the run method started with OTı as its target object and all methods
that can be reachable from it.

Our thread-sensitive points-to analysis consists of three steps:
(1) Identification of abstract thread objects: We first identify abstract thread
objects by examining thread creation sites. We can identify a number of abstract
thread objects OT1 , ..., OTn for a thread defining class T .
(2) Set-constraint construction: We construct separate set-constraints for each
abstract thread Tı with its target thread object OTi .
(3) Solving the set-constraints: Solve all the set-constraints constructed in the
second step.

While conventional context-insensitive analysis makes one set-variable for ev-
ery reference variable, our thread-sensitive analysis makes as many set-variables
as the number of its abstract threads for every reference variable in a thread
definition, which is not static. This can model that every thread has its own
instances for every reference variable if it is not static.

〈p = new c`〉 ⇒ {X ıp ⊇ Oıc`}
〈p = q〉 ⇒ {X ıp ⊇ X ıq}
〈p = c.f〉 ⇒ {X ıp ⊇ Xc.f}
〈c.f = q〉 ⇒ {Xc.f ⊇ X ıq}
〈p.f = q〉 ⇒ {X ıp ⊇f X ıq}
〈p = q.f〉 ⇒ {X ıp ⊇ X ıq · f}
〈p = a0.m(a1, ..., ak)〉 ⇒ {X ıf0

⊇ X ıa0
, ...,X ıfk ⊇ X ıak ,X ıp ⊇ X ıret|

m(f0, ..., fk, ret) ∈ targets(X ıa0
,mc)}

Fig. 2 Thread-sensitive set constraints for statements

〈p = new c`〉 ⇒ {−→Xp ⊇ −→Oc`}
〈p = q〉 ⇒ {−→Xp ⊇ −→Xq}
〈p = c.f〉 ⇒ {−→Xp ⊇ Xc.f}
〈c.f = q〉 ⇒ {Xc.f ⊇

⋃
ı X ıq |X ıq ∈

−→Xq}
〈p.f = q〉 ⇒ {−→Xp ⊇f −→Xq}
〈p = q.f〉 ⇒ {−→Xp ⊇ −→Xq · f}
〈p = a0.m(a1, ..., ak)〉 ⇒ {−→Xf0 ⊇ −−→Xa0 , ...,

−−→Xfk ⊇ −−→Xak ,−→Xp ⊇ −−→Xret|
m(f0, ..., fk, ret) ∈ targets(X ıa0

,mc)}
Fig. 3 A system of thread-sensitive set constraints

Specifically, for each abstract thread Tı of a thread class T , we make one
set variable Xı

p for a reference variable p, if it is not static. As in Figure 2,
we construct set-constraints for all statements in all instance methods of every
abstract thread Tı. In case of static variables or static methods we make set
variables or set-constraints as conventional context-insensitive analysis.

We first consider an object creation statement p = new c. Since each thread
Tı has its own instance pı for the local reference variable p and its own instance
Oıc` for the new object, we construct a set constraint X ıp ⊇ Oıc` . For a direct
assignment p = q, we simply construct a set constraint X ıp ⊇ X ıq to model that
the variable instance pı gets the objects of the variable instance qı in each thread
Tı. Consider an instance field read p = q.f. Each thread Tı has its own instances
pı and qı and the instance pı gets the field f of the instance qı. So we construct
a set constraint X ıp ⊇ X ıq · f . In case of a static field write c.f = q, because
every thread can share a static field c.f , we have only one instance for it and so
construct a set-constraint Xc.f ⊇ X ıq .

Consider a virtual method invocation p = a0.m(a1, ..., ak). We denote by mc
the method call a0.m(a1, ..., ak). Each thread Tı has its own instance for for-
mal parameters as local variables. To model parameter passing and return, we
construct set-constraints as follows:

{X ıf0
⊇ X ıa0

, ...,X ıfk ⊇ X ıak ,X ıp ⊇ X ıret|m(f0, ..., fk, ret) ∈ targets(X ıa0
,mc)}

where the function targets returns the set of possible methods invoked by the
method call mc for the target objects in X ıa0

.
In addition, if OT1 , ..., OTn are abstract thread objects for a thread class

T such that run(f0) ∈ T , we also make a set-constraint X ıf0
⊇ OTı for each

abstract thread object OTı to simulate passing the target thread object to the
run method. If there are n abstract threads for a thread class T , there are n
instances of a reference variable p in abstract threads, if it is not static. So, we
can make a vector of set variables for one reference variable p in T as follows:−→Xp = 〈X 1

p , ...,Xnp 〉. In the same way, we can make a vector of abstract objects
created at an object creation site ` as follows: −→Oc` = 〈O1

c`
, ..., Onc`〉. Then, we can

make a system of set constraints for all abstract threads T1, ..., Tn of a thread
class T as in Figure 3.

Consider the main thread started from main method. We denote this abstract
thread by Tmain. Note that there is only one thread instance for the abstract
thread Tmain. We can construct a context-insensitive points-to analysis like [8]
for every statement reachable from main by replacing the index ı by main in
Figure 2. So, Xmainv denotes the set of abstract objects pointed by a reference
variable v in the main thread.

We construct set-constraints for each abstract thread (object) as in Figure 2,
and collect all set-constraints including those for main thread. We can solve the
collection of set-constraints as usual in [5]. The time complexity of the constraint-
solving is k · n3 where k is the number of abstract thread objects and n is the
number of reference variables.

4 Experimental Results

We have implemented the thread-sensitive points-to analysis by extending the
inclusion-based points-to analysis, which is an iterative fixpoint algorithm based

on method summaries [13]. It is implemented on an experimental Java virtual
machine called joeq [14, 13]. We also observed that codes for run() methods have
to be connected with its start site during analysis, because threads are started
by native code. Otherwise, it will be missing, when analyzing multithreaded Java
programs [13]. They missed codes for new threads and actually analyzed codes
for main thread only in the analysis.

We have also implemented the functionality to connect and analyze the run()
methods of started threads automatically. Our implementation consists of the
following steps: (1) the context-insensitive points-to analysis of the main thread
(2) extraction of abstract thread objects from that analysis (3) identification of
the run() method of each abstract thread object, and (4) one thread-specific
analysis of the run method for each target thread object

A thread-specific analysis starts from the run method of a thread class and
analyzes all methods reachable from it. The algorithm iterates until there are no
more newly called methods. We implement the analysis by creating one points-to
analysis object and starting the iteration for each target thread object.

Programs Classes Methods Calls Size Points-to Time Iter.

SplitRenderer 308 2108 7295 12K 1.67(88.4%) 12.7 48
AssemblyLine 136 456 1423 21K 1.61(87.7%) 12.7 24

ATApplet 319 2093 7274 120K 1.73(88.5%) 243.4 48
EventQueue 107 394 1220 20K 1.55(86.4%) 12.2 23

Raytrace 108 402 1232 20K 1.55 (86.6%) 12.1 24
mtrt 108 402 1233 20K 1.55 (86.6%) 12.1 24

Timer 107 388 1176 19K 1.57(86.0%) 12.7 24
TLQ 310 2109 7309 120K 1.71(88.4%) 250.0 48

ToolTip 532 4206 18601 243K 1.86(89.8%) 292 37
Tab. 1 Benchmarks and points-to analysis of main thread

All experiments were performed on a PC with 1.3 GHz Pentium 4 processor
and 1 GB of memory running Redhat Linux 7.2. We have experimented over
9 multithreaded Java benchmarks programs. All programs are compiled with
IBM Java 2.13 compiler, and their bytecodes are analyzed. SplitRenderer is the
example program in this paper. mtrt and raytrace are two ray tracing programs
from the standard SpecJVM98 benchmark suite. ToolTip is a class library to
manage tool tips, which is from the javax.swing package. ATApplet is an applet
for auto bank transfer from the book [7]. AssemblyLine is an applet for simulating
assembly line from the book [7]. EventQueue is a library class from java.awt. It
is a platform-independent class that queues events. Timer is a class library from
java.util. It produces tasks, via its various schedule calls, and the timer thread
consumes, executing timer tasks as appropriate, and removing them from the
queue when they’re obsolete. TLQApplet is an applet for two lock queue with
TLQProducer and TLQConsumer.

Table 1 shows some characteristics of the benchmark programs. The first
four columns show the numbers of classes, methods, call sites and the size of
bytecode. This table also shows analysis results of the main thread for each

benchmark program, which is actually analysis results of [13]. The next column
“Points-to” shows average number of targets per a call site and a ratio of a single
target among all call sites in the parenthesis. The last two columns shows the
computation time and the number of iterations to complete.

Thread classes Abs. Classes Methods Calls Size Points-to Time Iter.

SplitRenderer:T1 2 239 1178 4383 71K 2.05(91.6%) 70 19
Assembly:T1 5 5 9 12 0.16K 1.09(91.6%) 0.2 6
ATApplet:T1 4 226 1050 3938 63K 2.12(92.0%) 87 15
ATApplet:T2 3 233 1064 3941 64K 2.12(92.0%) 108 21
ATApplet:T3 3 237 1172 4360 71K 2.06(91.6%) 102 18

EventApplet:T1 1 281 1940 6685 113K 1.74(87.4%) 76.3 39
Raytrace:T1 2 139 515 2429 33K 1.21(80.0%) 8.3 17

mtrt:T1 2 139 515 2429 33K 1.21(80.0%) 8.3 17
Timer:T1 1 4 9 15 0.5K 1.07(93.3%) 0.08 5

TLQApplet:T1 4 230 1050 3912 63K 2.13(92.9%) 156 23
TLQApplet:T2 4 228 1042 3897 63K 2.14(92.0%) 158 23
TLQApplet:T3 4 239 1178 4384 71K 2.05(91.6%) 141 18

ToolTip:T1 2 336 1530 5508 83K 3.06(88.8%) 197 19
Tab. 2 Thread-sensitive analysis

In Table 2, the first column shows the number of thread classes in each bench-
mark program, and the second column shows the number of abstract threads,
which is the same as the number of target thread objects passed to the run
method of each thread class. In case of ATApplet, there are 3 thread classes de-
noted ATApplet:T1, ATApplet:T2 and ATApplet:T3. There are 4 target thread
objects for the first thread class, which means 4 abstract threads. There are 3
target thread objects for the second and third thread classes, respectively. The
next columns show the number of classes, methods and calls, and the bytecode
size of each thread. This table shows analysis results of each thread. A thread is
analyzed once for each target thread object, and their average values are listed
in the table. The column “Points-to” shows average number of targets per a call
site and a ratio of a single target among all call sites in the parenthesis. In case
of the first thread class ATApplet:T1, average number of targets per a call site
is 2.12 and single target ratio is 92%.

5 Applications

Since thread-sensitive analysis can provide analysis information specific to each
thread, it can be applied to applications related with threads. Its potential appli-
cations include synchronization elimination, static datarace detection, software
engineering tools, and alias analysis.
(1) Synchronization elimination: A simple synchronization elimination is to de-
tect thread-local object, which do not escape its creating thread. Escape analyses
have been used to identify thread-local objects and remove synchronization as-
sociated with such objects [2, 3, 12]. By the thread-sensitive analysis, we can

record all threads accessing a synchronization object, and get more precise in-
formation on use of synchronization objects from the thread-sensitive analysis.
This information enables more precise synchronization elimination.
(2) Static datarace detection: A datarace analysis requires a points-to analysis of
thread objects, synchronization objects and access objects. The thread-specific
analysis can provide more precise points-to information by recording threads
accessing objects. With this information, we can identify which threads access
each object. With this thread-specific analysis, we can not only detects static
dataraces more precisely, but it also provide more specific datarace information
such as which threads may be involved in a datarace.
(3) Software engineering tools: There are a few known researches on debugging
multithreaded Java programs utilizing static analysis information [4]. The pro-
posed thread-specific analysis can give information specific to a particular thread.
Software engineering tools together with this thread-specific information helps
programmers to understand the behavior of a particular thread more precisely
and to debug multithreaded program more easily.

6 Related works

Steensgaard pointer and alias analysis is a context-insensitive and flow-insensitive
algorithm, which is fast but imprecise. It has almost linear time complexity.
Andersen’s constraint-based analysis is a more precise points-to analysis for C
programs, which is also a context-insensitive and flow-insensitive algorithm [1].
It has cubic worst time complexity. Rountev et al. presented a points-to analy-
sis for Java by extending Andersen points-to analysis for C programs [8]. They
implement the analysis by using a constraint-based approach which employs an-
notated inclusion constraints and compare with a basic RTA analysis. Whaley
and Lam also presented an inclusion-based points-to analysis for Java by adapt-
ing and extending CLA algorithm [6], which allows Andersen’s algorithm to be
scalable. They treat threads just like methods.

There have been several escape analyses connected with points-to analysis
[2, 3, 12, 10]. They usually apply escape information to synchronization removal
and/or stack allocation of objects. A combined pointer and escape analysis for
multithreaded Java programs was presented based on parallel interaction graphs
which model the interactions between threads [9]. The analysis information was
applied to efficient region-based allocation.

Our thread-sensitive analysis is unique in that it is context-sensitive for tar-
get thread objects only and can provide separate analysis information for each
thread. When k is the number of abstract thread objects and n is the number of
reference variables, the time complexity of our thread-sensitive analysis is k ·n3.

7 Conclusion

We have presented the idea of thread-sensitive analysis in terms of points-to anal-
ysis. The idea of thread-sensitive analysis can be applied to other analyses, and

the analysis results can be applied to thread-related applications, since they can
provide analysis information specific to each thread. There can be two research
directions in future works. One direction of future works is to investigate the
effectiveness of the thread-sensitive points-to analysis more by developing more
applications. Another direction of future works is to extend the idea of thread-
sensitive analysis to other static analyses such as escape analysis and exception
analysis. This kind of analyses could provide more thread-specific information
on escaping objects and exceptions.

References

1. L. Andersen. A Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, 1994.

2. B. Blanchet. Escape analysis for object-oriented languages: Applications to Java. In
Proceedings of ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, pages 20-34, 1999.

3. J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar and S. Midkiff. Escape analy-
sis for Java. In Proceedings of ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications, 1999.

4. J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M.Sridharan. Ef-
ficient and Precise Datarace Detection for Multithreaded Object-Oriented Pro-
grams. In Proceedings of ACM Conference on Programming Languages Design and
Implementation, pages 258-269, 2002.

5. N. Heintze. Set-based program analysis. Ph.D thesis, Carnegie Mellon University,
October 1992.

6. N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using CLA: A million lines
of C code. In Proceedings of ACM Conference on Programming Languages Design
and Implementation, pages 85-96, 1998.

7. D. Lea. Concurrent Programming in Java: Design Principles and Patterns.
Addison-Wesley, 2000.

8. A. Rountev, A. Milanova and B. G. Ryder. Points-to analysis for Java using an-
notated constraints. In Proceedings of ACM Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, 2001.

9. A. Salcianu and M. Rinard. Pointer and escape analysis for multithreaded pro-
grams. In Proceedings of ACM Symposium on Principles and Practice of Parallel
Programming, pages 12-23, 2001.

10. E. Ruf. Effective synchronization removal for Java. In Proceedings of ACM Confer-
ence on Programming Language Design and Implementation, pages 208-218, 2000.

11. B. Steensgaard. Points-to analysis in almost linear time. In Proceedings of ACM
Symposium on Principles of Programming Languages, pages 32-41, 1996.

12. J. Whaley and M. Linard. Compositional pointer and escape analysis for Java
programs. In Proceedings of ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications, 1999.

13. J. Whaley and M. S. Lam. An efficient inclusion-based points-to analysis for
strictly-typed languages. InProceedings of Static Analysis Symposium, 2002.

14. J. Whaley. Joeq: A Virtual Machine and Compiler Infrastructure. In Proceedings
of ACM SIGPLAN Workshop on Interpreters, Virtual Machines and Emulators,
June 2003, also available at http://joeq.sourceforge.net.

