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Abstract

This paper proposes a transformation-based approach to design efficient constraint-based analysis at a larger granularity. In
this approach, we can design a less or equally precise but more efficient version of an original analysis by rule transformation.
To do this, we first define or design an index determination rule for a new sparse analysis based on some syntactic properties,
so that it can partition the original indices, and then transform the original construction rules into new ones by applying the
partition. As applications of this approach, we presents sparse versions of side-effect analysis and exception analysis, which
give equally precise information for functions as the original ones. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Set-based analysis is a static analysis framework
that is applicable to functional, logic and object-
oriented languages [8,4,7]. In set-based analysis frame-
work, a specific analysis is designed in terms of set-
constraint construction rules. Set-based analysis first
constructs set-constraints for input programs using the
construction rules, and then computes the least solu-
tion or model of them.

As noted in [3,4], the precision of the analysis de-
pends upon the choice of the finite set of indices of set-
variables. We usually design an analysis theoretically
at expression-level, that has one set-variable (or index)
for every expression. However, its efficiency may not
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be satisfactory for large practical programs [14,11].
In addition, some analyses (like side-effect analysis,
exception analysis, and synchronization analysis [10,
14]) are not interested in properties of all expressions.
So, it is wasteful to define one set-variable for every
expression for this kind of analyses.

This paper proposes a transformation-based ap-
proach to design analyses at a larger granularity than at
expression-level, in terms of a simple functional lan-
guage. In this approach, we design a less or equally
precise but more efficient version of an original analy-
sis by transforming the original construction rules into
new ones. This is done by two steps. The first is to de-
fine or design an index determination rule for a new
sparse analysis based on some syntactic properties, so
that it can partition the original indices. The second is
to transform the original construction rules into new
ones by replacing the original index of each set vari-
able by the new index.
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As applications of this rule transformation, we
provide two instances of analysis design by rule
transformation. The first one designs a sparse version
of an uncaught exception analysis and the second one
deals with a side-effect analysis. Both are basically
based on function-level and they are shown to give
thesame information for each function as the original
analyses.

Section 2 presents basic definitions. Section 3 pres-
ents a systematic way to design sparse analyses by rule
transformation. Section 4 presents some applications
of this rule transformation. Section 5 discusses related
work and future research directions.

2. Preliminaries

For presentation brevity, we consider a simple
call-by-value functional language whose termse are
defined by

e ::= c constant

| x variable

| λx.e function

| e1 e2 application

| case e1 c e2 e3 branch

Expressions in the language are either constants,
variables, functions, function applications, conditional
branches. Values are either constants or functions. The
case expression “case e1 c e2 e3” branches toe2 or
e3 depending on the value ofe1. Let Var be a set of
program variables.

We review basics for constraint-based analysis in
terms of 0-CFA. Each expressione and program
variablex has set-variablesXe andXx , respectively
representing expression’s values and variable’s bound
values. Each set-constraint is of the formX ⊇ se,
whereX is a set-variable andse is a set-expression.
The constraint indicates that the setX must have
the setse. The set-expressionse has six kinds, each
of which corresponds to each program construct (see
Fig. 1). We write C for a finite collection of set-
constraints.

Semantics of set-expressions naturally follows from
their corresponding language constructs. For example,
app(X1,X2) represents the set of values returned from

applications of functions inX1 to parameters inX2.
The formal semantics of set-expressions is defined by
an interpretationI that maps from set-expressions to
sets of values (see Fig. 1). We call an interpretationI
a model (a solution) of a conjunctionC of constraints
if, for each constraintX ⊇ se in C, I(X )⊇ I(se).

Our static analysis is defined to be the least model
lm(C) of a collectionC of constraints. The constraint
system guarantees the existence of the least model
because every operator is monotonic and each con-
straint’s left-hand side is a single variable [8]. The
solving phase closes the initial constraint-setC un-
der the solving rulesS in Fig. 1. Intuitively, the rules
propagate values along all the possible data flow paths
in the program. Each propagation rule dissolves com-
pound set-constraints into smaller ones, which approx-
imate the steps of the value flows between expressions.
Consider the rule for applicationX ⊇ app(X1,X2) in
Fig. 1. It introducesX ⊇ Xe if a function to call has
body-expressione, and if so, addsXx ⊇ X2 to sim-
ulate the parameter binding. Other rules are similarly
straightforward from the semantics of corresponding
set-expressions.

3. Rule transformation

In this section, we describe how to design an
analysis at a larger granularity by rule transformation.
We first define or design an index determination rule
for a new sparse analysis based on some syntactic
properties, so that it partitions the original indices,
and then transform the original construction rules by
applying the partition.

As noted in [3,4], the precision of the analysis
depends upon the choice of the finite set of indices
of set-variables. We represent index determination as
index function

I : Expr ∪ Var → Index,

where Expr is a set of expressions,Var is a set of
variables, andIndex is a set of indices (natural num-
bers). We assume an original analysis is designed at
expression-level, that is, one set-variable (or index) is
defined for every expression. This index determination
can be represented as an index function

IE : Expr ∪ Var → Index,
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Syntax of set-expressions:

se ::= X set variables

| c constants

| λx.e lambdas

| app(X1,X2) sets from function call

| X1 ∪X2 sets from switch

| � universe set

Semantics of set-expressions:

I(X ) ⊆ Val

I(�) = Val

I(c) = {c}
I(λx.e) = {λx.e}

I(app(X1,X2)) = {v | λx.e ∈ I(X1),I(Xx)⊇ I(X2), v ∈ I(Xe)}
I(X1 ∪X2) = {v | v ∈ I(X1)∪ I(X2)}

Rulese✄ C for constructing constraintsC from each expressione:

x ✄ {Xe ⊇ Xx} c✄ {Xe ⊇ c}

e1 ✄ C1

λx.e1 ✄ {Xe ⊇ λx.e1} ∪ C1

e1 ✄ C1 e2 ✄ C2

e1 e2 ✄ {Xe ⊇ app(Xe1,Xe2)} ∪ C1 ∪ C2

e1 ✄ C1 e2 ✄ C2 e3 ✄ C3

case e1 c e2 e3 ✄ {Xe ⊇ Xe2 ∪Xe3} ∪ C1 ∪ C2 ∪ C3

RulesS for solving set-constraints

X ⊇ X1 ∪X2

X ⊇ X1 X ⊇ X2

X ⊇ app(X1,X2) X1 ⊇ λx.e
X ⊇ Xe Xx ⊇ X2

X ⊇Y Y ⊇ ae

X ⊇ ae

Fig. 1. Set-constraints: syntax, semantics, derivation rules, and solving rules.

where every expression and variable is mapped to its
unique index. In the following, becauseIE is one-
to-one, we abuse notation by denotingXIE(e) just
by Xe.

To design an analysis at a larger granularity, we
first need an index function to determine indices
of set-variables. Instead of defining one set-variable
for one expression, we make one set-variable fora

set of expressions. One simple and extreme example
is to make one index for all expressions in a pro-
gram. That can be represented as an index function
IP : Expr → Index whereIP (e)= 1 for every expres-
sion e. This index function is used in the rapid type
analysis [1].

We can define an index function in terms of some
syntactic properties. For example, we can design a
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function-level analysis by defining one index for each
function.

Example 1. The index functionIF : Expr ∪ Var →
Index for a function-level analysis is defined as:

IF (x)= owner(x) whereowner(x)= f
if the variablex is an argument
of a functionf ,

IF (e)= f if the expressione appears
in a functionf ,

wheref denotes a function name or its unique index.

While every expression is mapped to its unique
index in IE , a set of expressions are mapped to one
index inIF if they appear in the same function. We can
generalize this idea by defining apartition as follows:

Definition 1. Let I1 andI2 be two index functions.I2
is a partition ofI1 if there exist a functionπ such that
I2 = π ◦ I1, whereπ is called a partition function from
I1 to I2.

It is easy to show thatIP andIF are partitions of
IE .

If we have designed a new index functionI for a
sparse analysis such thatI = π ◦ IE for a partition
functionπ , we then transform the original construc-
tion rules by applying the partition functionπ to the
original indices. The basic idea of this rule transfor-
mation is to replace the index of each set-variableXe
in the original construction rules by the new index
Xπ(e). This rule transformation can be formalized as
follows:

Definition 2. Let I be an index function such that
I = π ◦ IE . Consider a generic expressione = κ(e1,
. . . , en), whereκ is a language construct. Ifr is a
construction rule of the form:

e1 ✄1 C1, . . . , en ✄1 Cn
κ(e1, . . . , en)✄1

⋃
1�i�n Ci ∪ {Xe ⊇ se} ,

then the transformed ruler/π by applying the partition
functionπ is defined as:

e1 ✄2 C1, . . . , en ✄2 Cn
κ(e1, . . . , en)✄2

⋃
1�i�n Ci ∪ {Xπ(e) ⊇ se/π} ,

wherese/π is obtained by replacing every set-variable
Xe′ in se by Xπ(e′).

For example, we can design a new function-level
0-CFA by transforming the original rules in Fig. 1. We
assume all functions are uniquely named asf,g,h,
etc., and subscripted asλf .

Example 2. Let IF be an index function for a function-
level analysis andπ be a partition function such that
IF = π ◦ IE . Consider the construction rule for case
expressione in Fig. 1:

e1 ✄1 C1 e2 ✄1 C2 e3 ✄1 C3

case e1 c e2 e3 ✄1 {Xe ⊇ Xe2 ∪Xe3} ∪ C1 ∪ C2 ∪ C3

If this expressione appears in a functionf , thene1
ande2 are also inf . So, we can transform this rule
into:

e1 ✄2 C1 e2 ✄2 C2 e3 ✄2 C3

case e1 c e2 e3 ✄2 {Xf ⊇Xf ∪Xf } ∪ C1 ∪ C2 ∪ C3

which can be simplified to:

e1 ✄2 C1 e2 ✄2 C2 e3 ✄2 C3

case e1 c e2 e3 ✄ C1 ∪ C2 ∪ C3

Consider the construction rule for function application
e in Fig. 1:

e1 ✄1 C1 e2 ✄1 C2

e1 e2 ✄1 {Xe ⊇ app(Xe1,Xe2)} ∪ C1 ∪ C2

If this expressione appears in a functionf , then so do
e1 ande2. So, we can transform this rule to:

e1 ✄2 C1 e2 ✄2 C2

e1 e2 ✄2 {Xf ⊇ appπ(Xf ,Xf )} ∪ C1 ∪ C2

whereappπ is a modified set-expression by applying
π to app, and its semantics is defined as

I
(
appπ(X1,X2)

) = {
v | λgx.e ∈ I(X1), v ∈ I(Xg),

I(Xg)⊇ I(X2)
}
.

If a function applicatione1e2 is analyzed with this
transformed rule, every function in the functionf will
be considered for this function application.

An analysis is designed by a set of construction
rules. So, we can design a sparse version of an
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analysis by a set of the transformed rules. This can be
formalized as follows:

Definition 3. LetR be a set of construction rules. The
setR/π of transformed rules by a partition functionπ
is defined as

R/π = {r/π | r ∈ R}.

To solve the constraints constructed by the trans-
formed rule in Definition 2, we can use the same solv-
ing rules as in Fig. 1, but the solving rule for function
applications must be modified by applyingπ as:

X ⊇ app(X1,X2) X1 ⊇ λx.e
X ⊇Xπ(e) Xπ(x) ⊇X2

We denote byR(p) (or (R/π)(p)) the set of set-
constraints constructed by applying the construction
rules inR (orR/π ) to a programp. We can prove the
soundness of the transformed rules by showing that the
least model of the transformed constraintsR/π(p) is a
sound approximation of that of the original constraints
R(p) for every programp. The proof is based on
the observation in [4] that the least modellm(C)
is equivalent to the least fixpoint of the continuous
functionF derived fromC.

Theorem 1. Let p be a program, R be a set of
construction rules, and π be a partition function. Let
C = R(p) and Cπ = R/π(p). Then, lm(Cπ)(Xπ(e)) ⊇
lm(C)(Xe) for every expression e.

Proof. See Appendix A. ✷

4. Applications

To show the usefulness of the rule transformation,
we provide two instances of analysis design by rule
transformation. The first one designs a sparse version
of an exception analysis and the second one deals with
a side-effect analysis. We assume that these analyses
are done after CFA and a safe call tableLam is
available from CFA.

4.1. Exception analysis

We first extend the source language for handling
exceptions as

e ::= . . .

| raise s exception raise
| handle s as e1in e2 exception handle

For simple presentation, we consider exceptions as
constants instead of introducing a data constructor
to define exceptions. “raise s” raises a constant
exceptions. The handle-expression “handle s as
e1 in e2”, evaluatese2 first, which is called ahandlee-
expression. Ife2’s result is a normal value, then the
value is returned. Ife2 raises some exceptions′, then
it will catch the exception in cases = s′ ande1 will
be executed; the exception will be propagated in case
s �= s′.

The aim of exception analysis is to determine
what exceptions might be resulted from evaluating
each expression. To design an exception analysis at
expression level, every expressione needs one set-
variablePe for uncaught exceptions such that:

s ∈ Exn = {s1, . . . , sn}
exception names in programp

s ∈ Packet = Exn
raised exceptions

Pe ⊆ Packet
set-variable for expressione

We first define an exception analysis at expression-
level by the rules in Fig. 2. Then, we design a sparse
version of the exception analysis by rule transforma-
tion. In our new sparse version, only two groups of set-
variables are considered: set-variables for functions
(lambdas) and handlee-expressions. We assume that
all functions and handlee-expressions are uniquely
named asf,g,h, etc., and they are subscripted as
λf , or eg if necessary. The number of set-variables is
thus proportional only to the number of functions and
handlee-expressions, not to the number of expressions.
For each functionf , Xf is a set-variable for the un-
caught exceptions inside the functionf . The handlee-
expressioneg in “handle s as e1 in eg” also
has a set-variableXg , which is for uncaught excep-
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Rulese✄1 C for constructing constraintsC from each expressione:

[VAR1] x ✄1 ∅ [C1] c ✄1 ∅ [ABS1]
e1 ✄1 C1
λx.e1 ✄1 C1

[APP1]
e1 ✄1 C1 e2 ✄1 C2

e1 e2 ✄1 {Pe ⊇ ⋃
λx.e′∈Lam(e1)Pe′ ∪Pe1 ∪Pe2} ∪ C1 ∪ C2

[CASE1]
e1 ✄1 C1 e2 ✄1 C2 e3 ✄1 C3

case e1 c e2 e3 ✄1 {Pe ⊇ Pe1 ∪Pe2 ∪Pe3} ∪ C1 ∪ C2 ∪ C3

[RS1]
e1 ✄1 C1

raise s ✄1 {Pe ⊇ s} ∪ C1

[HNDL1]
e1 ✄1 C1 e2 ✄1 C2

handle s as e1 in e2 ✄1 {Pe ⊇ Pe1 ∪ (Pe2 − {s})} ∪ C1 ∪ C2

Fig. 2. Constructing exception constraints:✄1.

Rulese✄2 C for constructing constraintsC from each expressione:

[VAR2] x ✄2 ∅ [C2] c✄2 ∅ [ABS2]
e1 ✄2 C1✄2 λgx.e1 ✄2 C1

[APP2]
e1 ✄2 C1 e2 ✄2 C2

e1 e2 ✄2 {Pf ⊇ ⋃
λgx.e′∈Lam(e1)Pg} ∪ C1 ∪ C2

[CASE2]
e1 ✄2 C1 e2 ✄2 C2 e3 ✄2 C3
case e1 c e2 else e3 ✄2 C1 ∪ C2 ∪ C3

[RS2] raise s ✄2 {Pf ⊇ {s}}

[HNDL2]
e1 ✄2 C1 eg ✄2 C2

handle s as e1 in eg ✄2 {Pf ⊇ (Pg − {s})} ∪ C1 ∪ C2

Fig. 3. Constructing sparse exception constraints:✄2.

tions fromeg . This design decision can be represented
by an index function as follows.

Definition 4. An index functionI1 : Expr → Index is
defined as follows:

I1(e)=


g if e is a handlee-expressioneg or

e’s nearest enclosing handlee iseg ,

f if e’s nearest enclosing function isf .

Let π be a partition function such thatI1 = π ◦ IE .
To design an sparse analysis, we transform the original
construction rules by applying this partition function
π to them. Fig. 3 shows the transformed rules for
each expressione, assuming that eache appears in a
functionf , i.e.,π(e)= f .

We first consider the rule for the expressionraise
s. The set-constraintPe ⊇ s is simply transformed
into Pf ⊇ s, sinceπ(e) = f . In case of a handle-
expression “e = handle s as e1 in eg”, because
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π(e) = π(e1) = f and π(eg) = g, its original set-
constraintPe ⊇ Pe1 ∪ (Peg − {s}) is transformed into
Pf ⊇ Pf ∪ (Pg − {s}), which can be simplified to
Pf ⊇Pg−{s}. In case of a function application, since
π(e)= π(e1)= π(e2)= f , its set-constraint

Pe ⊇
⋃

λgx.e′∈Lam(e1)

Pe′ ∪Pe1 ∪Pe2

is transformed into

Pf ⊇
⋃

λgx.e′∈Lam(e1)

Pg ∪Pf ∪Pf ,

which can be simplified to

Pf ⊇
⋃

λgx.e′∈Lam(e1)

Pg.

The two analyses designed by Figs. 3 and 2 are
shown to give the same information on uncaught
exceptions for every function and handlee-expression.

Theorem 2. Let p be a program and π be a partition
function such that I1 = π ◦ IE . Let C = R(p) for
the rules R in Fig. 2 and Cπ = R/π(p). Then,
lm(Cπ)(Xf )= lm(C)(Xef ) for every function λf x.ef
and handlee ef .

Proof. See Appendix A. ✷

4.2. Side-effect analysis

We first extend the source language for reference
variables as:

e ::= · · ·
| newg x := e1 in e2

creating reference-variable
| !x accesing reference-variable
| x := e0 assignment

The expression “newg x := e1 in e2” creates a new
reference-variable calledx and initializes it to the
value ofe1. The value of the reference-variablex can
be obtained by!x and it may be set to a new value by
the assignment.

The aim of the side-effect analysis is to record,
for each subexpression, which locations have been
created, accessed and assigned [10]. In this analysis,
a location will be represented by the program point
where it could be created. As in [10], we shall define
the annotationsϕ ∈ Ann by:

ϕ ::= {!�} | {� :=} | {new �} | ϕ1 ∪ ϕ2 | ∅.
The annotation!� means that the value of a location
created at� is accessed,� := means that a location
created at� is assigned, andnew � that a new location
has been created at�.

Rulese✄1 C for constructing constraintsC from each expressione:

[VAR1] x ✄1 ∅ [C1] c✄1 ∅ [ABS1]
e1 : C1

λx.e1 ✄1 C1

[APP1]
e1 ✄1 C1 e2 ✄1 C2

e1 e2 ✄1 {Ze ⊇ ⋃
λx.e′∈Lam(e1)Ze′ ∪Ze1 ∪Ze2} ∪ C1 ∪ C2

[CASE1]
e1 ✄1 C1 e2 ✄1 C2 e3 ✄1 C3

case e1 c e2 e3 ✄1 {Ze ⊇ Ze1 ∪Ze2 ∪Ze3} ∪ C1 ∪ C2 ∪ C3

[NEW1]
e1 ✄1 C1 e2 ✄1 C2

newg x := e1 in e2 ✄1 {Ze ⊇ {new g} ∪Ze1 ∪Ze2,Zx ⊇ {g}} ∪ C1 ∪ C2

[DEREF1] !x ✄1 {Ze ⊇ {!g | g ∈ Zx }}

[ASS1]
e1 ✄1 C1

x := e1 ✄1 {Ze ⊇ {g := | g ∈ Zx }} ∪ C1

Fig. 4. Construction rules for side-effects:✄1.
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Rulese✄2 C for constructing constraintsC from each expressione:

[VAR2] x ✄2 ∅ [C2] c : ∅ [ABS2]
e1 ✄2 C1

λgx.e1 ✄2 C1

[APP2]
e1 ✄2 C1 e2 ✄2 C2

e1 e2 ✄2 {Zf ⊇ ⋃
λgx.e′∈Lam(e1)Zg} ∪ C1 ∪ C2

[CASE2]
e1 ✄2 C1 e2 ✄2 C2 e3 ✄2 C3
case e1 c e2 e3 ✄2 C1 ∪ C2 ∪ C3

[NEW2]
e1 ✄2 C1 e2 ✄2 C2

newg x := e1 in e2 ✄2 {Zf ⊇ {new g},Zx ⊇ {g}} ∪ C1 ∪ C2

[DEREF2] !x ✄2 {Zf ⊇ {!g | g ∈ Zx }}

[ASS2]
e1 ✄2 C1

x := e1 ✄2 {Zf ⊇ {g := | g ∈ Zx }} ∪ C1

Fig. 5. Constructing sparse constraints for side-effects:✄2.

For the analysis at expression-level, every expres-
sione needs one set-variableZe for side-effects of an
expressione and every reference variablex needs one
set-variableZx for program points where its location
is created. The construction rules for this analysis is
shown in Fig. 4.

We design a sparse version of this side-effect
analysis by transforming the original construction
rules in Fig. 4. Instead of making one set-variable for
each expression, we make one set-variableZf for each
function f , and one set-variableZx for each refer-
ence-variablex. This design decision is represented by
an index function as follows:

Definition 5. An index function

I1 : Expr ∪ ReferenceVar → Index

is defined as follows:

I2(x)= x if x is a reference-variable,

I2(e)= f if e appears in a functionf.

Let π be a partition function such thatI2 = π ◦ IE .
Then, we can transform the original construction rules
in Fig. 4 into the new construction rules in Fig. 5 by
applying the partition functionπ . We assumeπ(e)=
f for each expressione.

We show that the sparse analysis in Fig. 5 gives the
same information for every function as the expression-
level analysis in Fig. 4.

Theorem 3. Let p be a program and π be the
partition function such that I2 = π ◦ IE . Let C =
R(p) for the rules R in Fig. 4 and Cπ = R/π(p).
Then, lm(Cπ1)(Xf ) = lm(C)(Xef ) for every function
λf x.ef .

Proof. See Appendix A. ✷

5. Discussion

In case of 0-CFA, the analysis has an O(n3) time
bound wheren is the number of expressions and
variables in a program. Even if we consider the
function-level analysis in Example 2, the order of
time complexity may not change, but the number
of set-variables to be constructed is the same as
the size ofIF (Expr ∪ Var), which is the number of
functions and usually much smaller. In case of the
sparse exception analysis, the number of set-variables
is proportional only to the number of functions and
handlee-expressions, not to the number of expressions.
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In general, ifI is the index function for a new sparse
analysis, then the number of set-variables is the same
as the size ofI (Expr ∪ Var).

There have been several research directions to im-
prove efficiency of set-based analysis. The first direc-
tion is to improve analysis time by simplifying set-
constraints after constructing the whole constraints [5–
7,12]. They usually simplify set-constraints without
losing the precision of the original analysis. Basic idea
of congruence partitioning in [5] is to partition set-
variables based on idempotence and common subex-
pression relation. Componential set-based analysis has
added more relations for partitioning over congruence
partitioning [7].

The second direction is to design analyses at a
larger granularity. Sparse exception analyses, called
function-level analyses, weremanually designed for
SML and Java, respectively [14,13]. The function-
level analysis for ML is shown to be competitive in
speed and precision by experiments [14]. Recently,
several sparse versions of 0-CFA have been designed
for Java [11]. They make analysis scalable by making
set-variables for methods, fields, or classes. The basic
idea of designing analyses at a larger granularity has
also been applied in data flow analysis [9], where
syntactic tokens are used to group execution traces and
coalesce the memory states associated with them, and
abstract interpretation [2,3], where a semantic function
for every control point is approximated by partitioning
control points and defining a new semantic function
over it.

In this paper, we assume that the original analy-
sis is designed at expression-level and index determi-
nation functions are defined in terms of expressions.
However, this idea need not be confined to expres-
sions. We can assume an original analysis is designed
at any level. For example, an original analysis can
be defined for every expression and context as ink-
CFA analysis. Then, 0-CFA can also be derived by
transforming the rules ofk-CFA. Another further re-
search topic is on equivalence of analysis information.
As in exception analysis, the sparse version can give
the same information for some syntactic constructs
like function as the original analysis. It is interesting
and open to find general conditions for this equiva-
lence.

Appendix A. Proofs

Proof of Theorem 1. As in [4], the continuous
functionF can be defined fromC, andFπ can also
be defined fromCπ likewise. So, we will prove this
theorem by showingγ ◦ lfp(Fπ)⊇ lfp(F).

We can prove this by showing that:
(1) Galois insertion: Let ∆ = Vars(C) and∆π =

Vars(Cπ). Let D =∆→ ℘(Val) be the domain of in-
terpretationsI andDπ = ∆π → ℘(Val) be the do-
main of partitioned interpretationsIπ . For every inter-
pretationI, we defineα(I) = Iπ whereIπ :∆π →
℘(Val) is defined as(Iπ )(Xm) = ⋃

e∈f I(Xe) for
every functionf ∈ ∆π . We defineγ (Iπ) = I ′ such
that I ′(Xe) = Iπ (Xπ(e)) for every set-variableXe ∈
∆. Then, (D, α,Dπ , γ ) is a Galois insertion, since
α(γ (Iπ ))= Iπ .

(2) Soundness of the operation γ ◦ Fπ(Iπ) ⊇
F ◦ γ (Iπ ): Note that the sparse derivation rules
are obtained by replacing every set-variableXe by
Xπ(e) in the corresponding original rules. So, if there
is a constraintXe ⊇ se constructed by an original
rule, then there must be a constraintXπ(e) ⊇ se/π .
Let the functionF be defined as a collection of
equations of the form:Xe = se for every Xe ∈ ∆,
and Fπ as a collection of equations of the form:
Xπ(e) = se/π for everyXπ(e) ∈ π(∆). Assume that,
for each set-variableXe′ in se, γ (Iπ)(Xe′)= S. Then
Iπ(Xπ(e′))= S by the definition ofγ . Xe′ is replaced
by Xπ(e′) in Xπ(e) = se/π in Fπ , and every set-
expression is monotone. Therefore,Fπ(Iπ )(Xπ(e))⊇
F ◦ γ (Iπ)(Xe) for every set-variableXe, and γ ◦
Fπ(Iπ)⊇F ◦ γ (Iπ) by the definition ofγ . ✷
Proof of Theorem 2. As in the soundness proof, the
continuous functionsF andFπ can be defined. We
prove this theorem by showing thatlfp(Fπ)(Xf ) =
lfp(F)(Xef ) for every function λf x.ef and han-
dlee ef . By the soundness theorem,lfp(Fπ)(Xf ) ⊇
lfp(F)(Xef ). So, we just prove thatlfp(Fπ)(Xf ) ⊆
lfp(F)(Xef ).

The proof is by induction on the number of itera-
tions in computinglfp(Fπ).

Induction hypothesis: SupposeIπ(Xf ) ⊆ I(Xef )
for every function and handleef .
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Induction step: Let I ′
π =Fπ(Iπ ). Then there exists

I ′ such thatI ′ = F i (I) for somei and I ′
π(Xf ) ⊆

I ′(Xef ) for everyf .
(1) For every set-variableXf , supposeI ′

π (Xf ) =
Iπ (Xf )∪ α.

(2) Then,α must be added by some of the rules [RS2],
[HNDL 2], and [APP2] in Fig. 3.

(3) There must be the corresponding rules [RS1],
[HNDL 1], and [APP1] in Fig. 3.

(4) By (3) and induction hypothesis, there must beXe
such thatF(I)(Xe)⊇ α, which will be eventually
included inXef in some more iterationsF i (I) by
the original rules in Fig. 3, becausee is in f . ✷

Proof of Theorem 3. As in the proof of Theorem 2,
this theorem can be proved by induction on the number
of iterations in computinglfp(Fπ). ✷
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