N,

Information
?ﬁ% Processing
Letters

ELSEVIER Information Processing Letters 83 (2002) 79-88

www.elsevier.com/locate/ipl

Managing the granularity of constraint-based analyses by
rule transformation

Byeong-Mo Chang

Department of Computer Science, Sookmyung Women's University, Yongsan-ku, Seoul 140-742, Republic of Korea

Received 4 October 2001; received in revised form 16 October 2001
Communicated by M. Yamashita

Abstract

This paper proposes a transformation-based approach to design efficient constraint-based analysis at a larger granularity. |
this approach, we can design a less or equally precise but more efficient version of an original analysis by rule transformation.
To do this, we first define or design an index determination rule for a new sparse analysis based on some syntactic properties

so that it can partition the original indices, and then transform the original construction rules into new ones by applying the

partition. As applications of this approach, we presents sparse versions of side-effect analysis and exception analysis, which

give equally precise information for functions as the original one8001 Elsevier Science B.V. All rights reserved.

Keywords: Set-constraints; Set-based analysis; Rule transformation

1. Introduction be satisfactory for large practical programs [14,11].
In addition, some analyses (like side-effect analysis,
Set-based analysis is a static analysis framework exception analysis, and synchronization analysis [10,
that is applicable to functional, logic and object- 14]) are not interested in properties of all expressions.
oriented languages [8,4,7]. In set-based analysis frame-So, it is wasteful to define one set-variable for every
work, a specific analysis is designed in terms of set- expression for this kind of analyses.
constraint construction rules. Set-based analysis first This paper proposes a transformation-based ap-
constructs set-constraints for input programs using the proach to design analyses at a larger granularity than at
construction rules, and then computes the least solu-expression-level, in terms of a simple functional lan-
tion or model of them. guage. In this approach, we design a less or equally
As noted in [3,4], the precision of the analysis de- precise but more efficient version of an original analy-
pends upon the choice of the finite set of indices of set- Sis by transforming the original construction rules into
variables. We usually design an analysis theoretically new ones. This is done by two steps. The first is to de-
at expression-level, that has one set-variable (or index) fine or design an index determination rule for a new
for every expression. However, its efficiency may not sparse analysis based on some syntactic properties, so
that it can partition the original indices. The second is
"7 This work was supported by a grant No. RO1-2000-00286 from © transform thg original_cpnst_ruction rules into new
Korea Science & Engineering Foundation. ones by replacing the original index of each set vari-
E-mail address: chang@cs.sookmyung.ac.kr (B.-M. Chang). able by the new index.

0020-0190/01/$ — see front mattér 2001 Elsevier Science B.V. All rights reserved.
PIl: S0020-0190(01)00314-3

80

As applications of this rule transformation, we

B.-M. Chang / Information Processing Letters 83 (2002) 79-88

applications of functions ¥y to parameters imt>.

provide two instances of analysis design by rule The formal semantics of set-expressions is defined by
transformation. The first one designs a sparse versionan interpretatiorf that maps from set-expressions to
of an uncaught exception analysis and the second onesets of values (see Fig. 1). We call an interpretafion
deals with a side-effect analysis. Both are basically amodel (a solution) of a conjunctiod of constraints
based on function-level and they are shown to give if, for each constraink’ > sein C, Z(X) 2 Z(se).

the same information for each function as the original
analyses.

Our static analysis is defined to be the least model
Im(C) of a collectionC of constraints. The constraint

Section 2 presents basic definitions. Section 3 pres- system guarantees the existence of the least model
ents a systematic way to design sparse analyses by rulebecause every operator is monotonic and each con-
transformation. Section 4 presents some applicationsstraint’s left-hand side is a single variable [8]. The
of this rule transformation. Section 5 discusses related solving phase closes the initial constraint-Setin-

work and future research directions.

2. Preliminaries

For presentation brevity, we consider a simple
call-by-value functional language whose termare
defined by

e =c constant
| x variable
| Ax.e function
| e1e2 application
|

case eicezxez branch

der the solving rules in Fig. 1. Intuitively, the rules
propagate values along all the possible data flow paths
in the program. Each propagation rule dissolves com-
pound set-constraints into smaller ones, which approx-
imate the steps of the value flows between expressions.
Consider the rule for applicatior 2 app(X1, X2) in

Fig. 1. It introducest 2 X, if a function to call has
body-expressiomr, and if so, addst, 2 X> to sim-
ulate the parameter binding. Other rules are similarly
straightforward from the semantics of corresponding
set-expressions.

3. Ruletransformation

In this section, we describe how to design an

Expressions in the language are either constants, analysis at a larger granularity by rule transformation.
variables, functions, function applications, conditional \we first define or design an index determination rule
branches. Values are either constants or functions. Thefor g new sparse analysis based on some syntactic

case expressiorcase ej c¢ ez e3” branches tae, or
e3 depending on the value ef. Let Var be a set of
program variables.

We review basics for constraint-based analysis in

terms of 0-CFA. Each expression and program
variablex has set-variableg, and X, respectively

properties, so that it partitions the original indices,
and then transform the original construction rules by
applying the partition.

As noted in [3,4], the precision of the analysis
depends upon the choice of the finite set of indices
of set-variables. We represent index determination as

representing expression’s values and variable’s boundinqex function

values. Each set-constraint is of the forkh D se,

where X' is a set-variable anee is a set-expression.
The constraint indicates that the s&t must have
the setse. The set-expressiose has six kinds, each

of which corresponds to each program construct (see

Fig. 1). We writeC for a finite collection of set-
constraints.

Semantics of set-expressions naturally follows from
their corresponding language constructs. For example,

I :Expr U Var — Index,

where Expr is a set of expression&ar is a set of
variables, andndex is a set of indices (natural num-
bers). We assume an original analysis is designed at
expression-level, that is, one set-variable (or index) is
defined for every expression. This index determination
can be represented as an index function

app(X1, X») represents the set of values returned from Iz : Expr U Var — Index,

B.-M. Chang / Information Processing Letters 83 (2002) 79-88 81

Syntax of set-expressions:

se =X set variables
c constants
AX.e lambdas

|
|
| app(X1, Xp) sets from function call
| X1UX> sets from switch

|

T universe set

Semantics of set-expressions:

Z(X) C Val
Z(T) = \Val
Z(c) = {c}

Z(Ax.e) = {Ax.e}
Z(app(X1, X2)) = {v|Ax.e € T(X1), T(Xx) 2 L(A2), v € Z(Xe)}
T(X1U X)) = {v]vel(X) UL(X)}
Rulese > C for constructing constraints from each expressiosn

x> {Xe 2 Xy} c> {Xe D¢}

e1>Cq e1>Cp ea>Co
Ax.eq > {Xe 2 Ax.e1} UCy e1 ep > {Xe 2 app(Xy,, Xep)} UCLUC

e1>Cp ea>Co e3>>C3
case e cepez D> {Xe D Xep, UA,JUCLUC2UCS

Ruless for solving set-constraints

X2 UX X 2Dapp(Xy,Ap) AX12ixe X2V Y2Dae
XDX, XD XDX, XeDAp X Dae

Fig. 1. Set-constraints: syntax, semantics, derivation rules, and solving rules.

where every expression and variable is mapped to its set of expressions. One simple and extreme example

unique index. In the following, becaudg is one- is to make one index for all expressions in a pro-
to-one, we abuse notation by denotidg,) just gram. That can be represented as an index function
by X,. Ip :Expr — Index wherelp(e) = 1 for every expres-

To design an analysis at a larger granularity, we sione. This index function is used in the rapid type
first need an index function to determine indices analysis [1].
of set-variables. Instead of defining one set-variable We can define an index function in terms of some
for one expression, we make one set-variabledor syntactic properties. For example, we can design a

82

function-level analysis by defining one index for each
function.

Example 1. The index function/r : Expr U Var —
Index for a function-level analysis is defined as:

Ir(x) =owner(x) whereowner(x)= f

if the variablex is an argument
of a functionf,

if the expressior appears

in a functionf,

Ir(e)=f

where f denotes a function name or its unique index.

While every expression is mapped to its unique
index in Ir, a set of expressions are mapped to one
indexinIr if they appear in the same function. We can
generalize this idea by definingpartition as follows:

Definition 1. Let I and/» be two index functionsl,
is a partition ofl; if there exist a functiomr such that
I> = 7 o I1, wherer is called a partition function from
I to I>.

It is easy to show thafp andIr are partitions of
IE.

If we have designed a new index functiérfor a
sparse analysis such that=n o Ig for a partition
function r, we then transform the original construc-
tion rules by applying the partition function to the
original indices. The basic idea of this rule transfor-
mation is to replace the index of each set-variakile
in the original construction rules by the new index
Xz (e)- This rule transformation can be formalized as
follows:

Definition 2. Let I be an index function such that
I = o Ig. Consider a generic expressien= « (e1,
...,ey), Wherek is a language construct. i is a
construction rule of the form:

e1>1C1,...,e,>1Cy
K(ers .- en) >1Urgicn G U (A 2 se}’
then the transformed rulg s by applying the partition
functionr is defined as:
e1>2C1,...,e,>2C,
K(ers s en) >2Urcicn Ci Ul 2 se/m})’

B.-M. Chang / Information Processing Letters 83 (2002) 79-88

wherese/m is obtained by replacing every set-variable
X, inse by Xn’(e’)-

For example, we can design a new function-level
0-CFA by transforming the original rules in Fig. 1. We
assume all functions are uniquely namedfag, #,
etc., and subscripted ag.

Example2. LetIr be anindexfunction for a function-
level analysis and be a partition function such that
Ir =7 o Ig. Consider the construction rule for case
expressiore in Fig. 1:

e1>1C1 ep>1Cp e31>1C3
caseegcepea>q {Xe D X, UA}UCLUC2UCS

If this expressiore appears in a functiorf, thene;
andey are also inf. So, we can transform this rule
into:

e1>2C1 ea>2C2 e3>2C3
caseejcerezD2{Xf 2 X UXJUCLUC2UCS

which can be simplified to:

e1>2C01 ea>2C2 e3>2C3
caseejcepez>C1UC2UCS

Consider the construction rule for function application
e in Fig. 1:

e1>1C1 ear>1C2
e1 ez >1 {X, D app(Xe,, A,)} UCLUC

If this expressior appears in a functioyf, then so do
e1 andey. So, we can transform this rule to:

e1>2C1 ex>2C2
e1e2>2{Xr 2 app, (Xr, Xp)}UCLUC

whereapp, is a modified set-expression by applying
7 to app, and its semantics is defined as

Z(app, (X1, X2)) = {v | Agx.e € T(X1), v € T(Xy),
I(Xy) 2 T(X2)}.

If a function applicatiorejes is analyzed with this
transformed rule, every function in the functigrwill
be considered for this function application.

An analysis is designed by a set of construction
rules. So, we can design a sparse version of an

B.-M. Chang / Information Processing Letters 83 (2002) 79-88 83

analysis by a set of the transformed rules. This can be 4.1. Exception analysis
formalized as follows:

We first extend the source language for handling
Definition 3. Let R be a set of construction rules. The exceptions as

setR/m of transformed rules by a partition functian
is defined as e = ...
| raises exception raise
R/m ={r/m |r€R} | handl e s as e1i ne; exception handle
To solve the constraints constructed by the trans- FO" Simple presentation, we consider exceptions as
formed rule in Definition 2, we can use the same solv- constants instead of introducing a data constructor

ing rules as in Fig. 1, but the solving rule for function 0 define exceptions.r'ai se s” raises a constant

applications must be modified by applyingas: exceptions. The handle-expressiorhandl e s as
e11 n ep”, evaluates? first, which is called dandlee-

expression. Ifex’s result is a normal value, then the
value is returned. I&; raises some exception, then
it will catch the exception in case= s’ ande; will

be executed; the exception will be propagated in case
We denote byR(p) (or (R/)(p)) the set of set- s),(u xception will be propagated |

constraints constructed by applying the construction
rulesinR (or R/x) to a progranmp. We can prove the
soundness of the transformed rules by showing that the
least model of the transformed constraiRisr (p) is a
sound approximation of that of the original constraints
R(p) for every programp. The proof is based on
the observation in [4] that the least modeh(C) s €EXN={s1,....5)

is eq.uivalent ?o the least fixpoint of the continuous exception names in program
function F derived fromC. s € Packet — Exn

raised exceptions
Theorem 1. Let p be a program, R be a set of P, C Packet

X Dapp(Xy, A2) A1DAxee
) Xn(e) Xn(x) B)

The aim of exception analysis is to determine
what exceptions might be resulted from evaluating
each expression. To design an exception analysis at
expression level, every expressiemeeds one set-
variableP, for uncaught exceptions such that:

construction rules, and m be a partition function. Let set-variable for expressian

C=R(p) and Cx = R/7(p). Then, IM(Cz)(Xr () 2

Im(C)(X,) for every expression e. We first define an exception analysis at expression-
level by the rules in Fig. 2. Then, we design a sparse

Proof. See Appendix A. O version of the exception analysis by rule transforma-

tion. In our new sparse version, only two groups of set-
variables are considered: set-variables for functions
o (lambdas) and handlee-expressions. We assume that
4. Applications all functions and handlee-expressions are uniquely
named asf, g, h, etc., and they are subscripted as
To show the usefulness of the rule transformation, A, or e, if necessary. The number of set-variables is
we provide two instances of analysis design by rule thus proportional only to the number of functions and
transformation. The first one designs a sparse versionhandlee-expressions, not to the number of expressions.
of an exception analysis and the second one deals withFor each functionf, X; is a set-variable for the un-
a side-effect analysis. We assume that these analysesaught exceptions inside the functign The handlee-
are done after CFA and a safe call talllam is expressione, in “handl e s as e1 in e;” also
available from CFA. has a set-variablet,, which is for uncaught excep-

84

tions frome,. This design decision can be represented

B.-M. Chang / Information Processing Letters 83 (2002) 79-88

Rulese >1 C for constructing constraintS from each expressio

[VAR1] x >1 0 [Cilc>10

[APP1]

110y

[ABS1] Ax.ep>1C1

10 10

e1e2>1{P. 2 U)ine’eLam(el) Por UPey UPe,} UCLUCo

[CASE] e1>1C1 e2>1Co e3>1C3
U caseeicep e3>1(Pe 2 Poy UPe, UPey) UCLUC,UCS
e1>1C1
[RS1] raisescq1{P.2s}UCy
[HNDL] e1>1C1 ea>10)

handl esas ejiney>q{Pe2Pey U(Pe, —{sHIU C1UC

Fig. 2. Constructing exception constraints; .

Rulese >, C for constructing constraintS from each expressio#

[VARZ] x>0 0 [Co] c>p0

[APP5]

e1>oCy

e1>2C1
AB _—
[ABS2] D>p Agx.eq >2Cq

ep>2C)

e1ea>2{Pr2 ngx.e’eLaln(el) PetUCLUCo

e1>2C1 eaP2Cp e3>2C3
[CASE,] caseejcezel seez>2C1UC2UCS
[RS)] raises >2{Pr2({s}}
[HNDL] e1>2Cq eg >2Co

handlesas erineg >2 {Pr2(Pg—{sh} U C1UC2

Fig. 3. Constructing sparse exception constraints:

by an index function as follows.

Definition 4. An index function/y : Expr — Index is

defined as follows:

I1(e) =

8

f

if e is a handlee-expressien or
e’s nearest enclosing handleecis
if e's nearest enclosing function j&

Let 7 be a partition function such théf = 7 o If.
To design an sparse analysis, we transform the original
construction rules by applying this partition function
7 to them. Fig. 3 shows the transformed rules for
each expression, assuming that eachappears in a
function f, i.e.,m(e) = f.

We first consider the rule for the expressicai se
s. The set-constrainP, 2 s is simply transformed
into Py O s, sincem(e) = f. In case of a handle-
expression & = handl e s as ey i n e,”, because

B.-M. Chang / Information Processing Letters 83 (2002) 79-88 85

w(e) =m(er) = f and mw(eg) = g, its original set-
constraintP, 2 P, U (Pe, — {s}) is transformed into
Pr 2Py U (P, — {s}), which can be simplified to
Pr 2P, —{s}. In case of a function application, since
(e) =m(e1) = m(e2) = f, its set-constraint

P. 2 U Per UPey UPe,
Agx.e’eLam(ey)

is transformed into

Pr2 U P, UPrUPy,
Agx.e'elLam(ey)

which can be simplified to

U 7.

Agx.e’elLam(ey)

Pr2

4.2. Sde-effect analysis

We first extend the source language for reference
variables as:
e ::: ..
| new, x:=eyinep
creating reference-variable
| Ix accesing reference-variable
| x:=ep assignment

The expressionriew, x :=e1 i n ep” creates a new
reference-variable called and initializes it to the
value ofeq. The value of the reference-variablean
be obtained byx and it may be set to a new value by
the assignment.

The aim of the side-effect analysis is to record,

The two analyses designed by Figs. 3 and 2 are for each subexpression, which locations have been
shown to give the same information on uncaught created, accessed and assigned [10]. In this analysis,
exceptions for every function and handlee-expression. a location will be represented by the program point

Theorem 2. Let p beaprogramand = be a partition
function such that I1 = w o Ig. Let C = R(p) for
the rules R in Fig. 2 and C; = R/m(p). Then,
IM(Cr) (Xy) =IM(C) (X,) for every function A s x.e s
and handlege;.

Proof. See Appendix A. O

where it could be created. As in [10], we shall define
the annotationg € Ann by:

pu={l}[{€:=} | {new} |p1Ugz | 4.

The annotatiori¢ means that the value of a location
created at is accessed! := means that a location
created at is assigned, andew ¢ that a new location
has been created at

Rulese >1 C for constructing constraintS from each expressio

_aG
[VAR1] x >10 [Ci] c>10 [ABS1] 5 o &
e1>1C1 e 0o
APP;
[1] e1ea>1{Z. 2 UAXAe’eLam(el) ZyUZe; UZe,}UCLUCS
e1>1C1 ex>1Co e3>1C3
[CASEd] caseejcep e3>1{Ze 2D 2oy UZp, UZy}UCLUC2UCS
INEW{] _ e1>1C1 e 0o
newg x:=epiNex>1 {2 2{NeWglU Z, U Z,,, 2y 2 {g}}UCLUCo
[DEREF] x> {Z.2{lglge Z}}
[ASSy] aril

xi=e1>1{Ze 2{g:=1g€ Z VU1

Fig. 4. Construction rules for side-effects; .

86 B.-M. Chang / Information Processing Letters 83 (2002) 79-88

Rulese >, C for constructing constraintS from each expressio#t

[VAR] x 17 ¢ [Co] c: [ABS,] Agi%lecl
[APP,] e1 €2 > {zﬁlgbaf:x.e,;:mizl)czzg} UCLUCs
[CASE,] e

[NEW2] new, x :==egin ezlb‘zz{;; D {r:évliz}czzx D {gl}uCiLUCo
[DERER)] x>2{Zr2{lglge 2}

[ASS,] 121

¥ =102 (27 2{8i=18 € Z:)1UCy

Fig. 5. Constructing sparse constraints for side-effests:

For the analysis at expression-level, every expres- We show that the sparse analysis in Fig. 5 gives the
sione needs one set-variablg, for side-effects of an ~ same information for every function as the expression-
expressiore and every reference variabteneeds one level analysis in Fig. 4.
set-variableZ, for program points where its location
is created. The construction rules for this analysis is Theorem 3. Let p be a program and = be the
shown in Fig. 4. partition function such that I = 7 o Ig. Let C =

We design a sparse version of this side-effect R(p) for the rules R in Fig. 4 and C; = R/7(p).

analysis by transforming the original construction Then, Im(Cy,)(Xf) = Im(C)(X,,) for every function
rules in Fig. 4. Instead of making one set-variable for i ;x.e.

each expression, we make one set-variatldor each

function f, and one set-variablg, for each refer- Proof. See Appendix A. O
ence-variable . This design decision is represented by

an index function as follows:

Definition 5. An index function 5. Discussion

11 Expr U ReferenceVar — Index In case of 0-CFA, the analysis has at€) time
bound wheren is the number of expressions and

variables in a program. Even if we consider the
function-level analysis in Example 2, the order of

is defined as follows:
I>(x) = x if x is areference-variahle

I>(e) = f if e appears in a functiorf. time complexity may not change, but the number
of set-variables to be constructed is the same as
Let 7 be a partition function such thdt = 7 o I. the size ofIr(Expr U Var), which is the number of

Then, we can transform the original construction rules functions and usually much smaller. In case of the
in Fig. 4 into the new construction rules in Fig. 5 by sparse exception analysis, the number of set-variables
applying the partition functiorr. We assumer (e) = is proportional only to the number of functions and
f for each expression handlee-expressions, not to the number of expressions.

B.-M. Chang / Information Processing Letters 83 (2002) 79-88 87

In general, iff is the index function for a new sparse Appendix A. Proofs
analysis, then the number of set-variables is the same
as the size of (Expr U Var).

There have been several research directions to im-
prove efficiency of set-based analysis. The first direc-
tion is to improve analysis time by simplifying set-
constraints after constructing the whole constraints [5—
7,12]. They usually simplify set-constraints without

Ic;smg the preC|S|ont.(:.fth.e orllglngl gnz;tlyss.igsm |dtea Vars(Cy). Let D = A — g (Val) be the domain of in-
of congruence partitioning in [5] is to partition set- terpretationsZ and D, = A, — g (Val) be the do-

varlaples bas_ed on |dempotepce and common S.Ubex'main of partitioned interpretatior’s, . For every inter-
pression relation. Componential set-based analysis has

added more relations for partitioning over congruence pretationZ, we definea(Z) = I, whereZy:Ar —
partitioning [7]. p (V) is defined as(Zz)(Xn) = U, Z(X,) for

1 1 — 7
The second direction is to design analyses at a every functionf € Ay. We definey (Z) = I* such

. : hat 7' (X,) = 7, (X, for ever -variabl
larger granularity. Sparse exception analyses, calledt atZ'(%e) 7 (o) or eve y.se't a ?‘b e’(e.e
. . A. Then, (D, a, Dy, y) is a Galois insertion, since
function-level analyses, wemmanually designed for «(y (L) =T,
SML and Java, respectively [14,13]. The function- **% 7 i .
. ; e (2) Soundness of the operation y o Fr(Z;) 2
level analysis for ML is shown to be competitive in) L
.. . F o y(Z;): Note that the sparse derivation rules
speed and precision by experiments [14]. Recently, .) .
. . re obtained by replacing every set-variabifg by
several sparse versions of 0-CFA have been designe . . o .
. . X (e in the corresponding original rules. So, if there
for Java [11]. They make analysis scalable by making . . -
. . . is a constraintX, 2 se constructed by an original
set-variables for methods, fields, or classes. The basic .
. - . rule, then there must be a constraikit) > se/x.
idea of designing analyses at a larger granularity has . . .
S . Let the functionF be defined as a collection of
also been applied in data flow analysis [9], where .
i . quations of the formX, = se for every X, € A,
syntactic tokens are used to group execution traces an . .
) ; nd 7, as a collection of equations of the form:
coalesce the memory states associated with them, an
. - : X = se/m for every Xy () € m(4). Assume that,
abstract interpretation [2,3], where a semantic function . .
- - s for each set-variablg, in se, y (Z;)(X,) = S. Then
for every control point is approximated by partitioning

control points and defining a new semantic function Lr (X)) - S by the def|n|t_|on Ofy. e is replaced
overit. by Xpen in Xy = se/m in Fr, and every set-

. . ion i)
In this paper, we assume that the original analy- S<P'essSIon1s monotone. Therefo, (Zr) (Ax () 2

sis is designed at expression-level and index determi-j: o y(Tx) (%) for every set-\./grllableXe, andy o
nation functions are defined in terms of expressions. Fx(Ix) 2 F oy (Ix) by the definition ofy. O
However, this idea need not be confined to expres-

sions. We can assume an original analysis is designedProof of Theorem 2. As in the soundness proof, the
at any level. For example, an original analysis can continuous functionsF and 7, can be defined. We
be defined for every expression and context as-in prove this theorem by showing thHp(F;)(X;) =
CFA analysis. Then, 0-CFA can also be derived by Ifp(F)(X,,) for every functionisx.e; and han-
transforming the rules of-CFA. Another further re- dleeey. By the soundness theoretfip(F,)(Xr) 2
search topic is on equivalence of analysis information. Ifp(F)(X,,). So, we just prove thalfp(F)(Xr) <
As in exception analysis, the sparse version can give Ifp(F)(&Xe,).

the same information for some syntactic constructs The proof is by induction on the number of itera-
like function as the original analysis. It is interesting tions in computindfp(Fx).

and open to find general conditions for this equiva- Induction hypothesis: SupposeZ, (Xy) € Z(X.,)
lence. for every function and handleg.

Proof of Theorem 1. As in [4], the continuous
function F can be defined fron®, and 7,; can also
be defined fronC,; likewise. So, we will prove this
theorem by showing o Ifp(F) 2 Ifp(F).

We can prove this by showing that:

(1) Galois insertion: Let A = Vars(C) and A, =

88 B.-M. Chang / Information Processing Letters 83 (2002) 79-88

Induction step: LetZ!, = F, (Z). Then there exists
7’ such thatz’ = F(Z) for somei andZ.,(Xy) C
T'(X,,) forevery f.

(1) For every set-variablet’s, supposeZ, (Xy) =
T (Xf) Ua.

(2) Thena must be added by some of the rules RS
[HNDL 2], and [APR] in Fig. 3.

(3) There must be the corresponding rules {RS
[HNDL 1], and [APR] in Fig. 3.

(4) By (3) and induction hypothesis, there musttie
such thatF(Z)(X,) 2 «, which will be eventually
included inX,, in some more iterationg’ (7) by
the original rules in Fig. 3, becaugésin f. O

Proof of Theorem 3. As in the proof of Theorem 2,

this theorem can be proved by induction on the number

of iterations in computindfp(F,). O

References

[1] D.F. Bacon, P.F. Sweeney, Fast static analysis of C++ virtual
function calls, in: Proceedings of ACM Conference on OOP-

SLA, October 1996.

[2] F. Bourdoncle, Abstract interpretation by dyanamic partition-

ing, J. Funct. Programming 2 (4) (1992) 407-435.

[3] P.Cousot, R. Cousot, Abstract interpretation and application to
logic programs, J. Logic Programming 13 (2-3) (1992) 103-

179.

[4] P. Cousot, R. Cousot, Formal language, grammars and set-
constraint-based program analysis by abstract interpretation,

in: Proceedings of '95 Conference on Funtional Programming
Languages and Computer Architecture, June 1995, pp. 25-28.

[5] E. Duesterwald, R. Gupta, M.L. Soffa, Reducing the cost of
data flow analysis by congruence partitioning, in: Proceedings
of International Conference on Compiler Construction, April
1994.

[6] M. Fahndrich, J.S. Foster, Z. Su, A. Aiken, Partial online cycle
elimination in inclusion constraint graphs, in: ACM SIGPLAN
Conference on PLDI, June 1998.

[7] C. Flanagan, M. Felleisen, Componential set-based analysis,
in: Proceedings of ACM Symposium on Principles of Pro-
gramming Languages, January 1997.

[8] N. Heintze, Set-based program analysis, Ph.D Thesis, School
of Computer Science, Carneige Mellon University, Pittsburgh,
PA, 1992.

[9] N.D. Jones, S. Muchnick, A flexible approach interprocedural
data flow analysis and programs with recursive data structures,
in: Proceedings of the 9th ACM Symposium on Principles of
Programming Languages, 1982.

[10] F. Nielson, H. Nielson, C. Hankin, Principles of Program

Analysis, Springer, Berlin, December 1999.

[11] F. Tip, J. Palsberg, Scalable propagation-based call graph

construction algorithms, in: Proceedings of ACM Conference
on OOPSLA, October 2000.

[12] Z. Su, M. Fahndrich, A. Aiken, Projection merging: Reducing

redundancies in inclusion constraint graphs, in: Proceedings of
ACM Symposium on Principles of Programming Languages,
January 2000.

[13] K.Yi, B.-M. Chang, Exception analysis for Java, in: Proceed-

ings of 1999 ECOOP Workshop on Formal Techniques for
Java Programs, Lisbon, Portugal, June 1999.

[14] K. Yi, S. Ryu, A Cost-effective estimation of uncaught excep-

tions in Standard ML programs, Theoret. Comput. Sci. 237 (1)
(2000).

