
Abstract Program Slicings �

IN SANG CHUNG
School of Computer Engineering
Hansung University, Seoul, Korea
insang@hansung.ac.kr

BYEONG-MO CHANG
Department of Computer Science,

Sookmyung Women’s University, Seoul, Korea
chang@cs.sookmyung.ac.kr

BYEONG MAN KIM
School of Computer & Software Engineering,

Kumoh National University of Technology, Kumi, Korea
bmkim@se.kumoh.ac.kr

JANG-WU JO
Department of Computer Engineering

Pusan University of Foreign Studies, Pusan, Korea
jjw@taejo.pufs.ac.kr

Abstract

In this paper, we present a new slicing technique named
abstract program slicing that allows a decomposition of a
program for the set of initial states. We apply abstract inter-
pretation to the derivation of slices from existing programs.
Abstract interpretation allows us to yield safe information
about the run-time behavior of the program without having
to run it for all input data. Thus, we can statically com-
pute safe approximations of program slices on the slicing
criterion.

KEY WORDS
Software Engineering, Program Slicing, Abstract Interpre-
tation

1. Introduction

Program slicing has been used to provide solutions to many
software engineering areas including reverse engineering,
testing, debugging, reuse and complexity analysis. Pro-
gram slicing is carried out with respect to a slicing criterion
(p; V), where p is a program location and V is a subset of
the program’s variables. The major goal of program slicing
is to extract those statements which directly or indirectly
affect the values of variables at the slicing criterion [1].

Even though various slightly different notions of pro-
gram slices have been proposed, static slice and dynamic
slice provide the basis for many different definitions of
slices proposed in the literature. The difference between
static and dynamic slicing is that dynamic slicing assumes
a fixed input for a program, whereas static slicing does not
make assumptions regarding the input. A dynamic slic-
ing criterion specifies the input, and distinguishes between

�This work was supported in part by the Ministry of Information and
Communication of Korea(Support Project of University Research ’2000
supervised by IITA), KISTEP(grant No. 39-N6-02-01-A-02) and the
Basic Research Program of the Korea Science & Engineering Founda-
tion(grant No. 2000-1-30300-009-2) .

different occurrences of a statement in the execution his-
tory [2, 3]. The availability of run-time information makes
dynamic slices smaller than static slices.

Another interesting slicing definition has been intro-
duced in the literature, called conditioned slicing [4]. Con-
ditioned slicing is a generalization of both static and dy-
namic slicing. The conditioned slicing criterion augments
the static criterion with an input condition, which captures a
set of initial states. In [5], symbolic execution and theorem
proving techniques are used in order to compute a condi-
tioned slice. Using symbolic execution, state information
from the slicing criterion is propagated to all points in the
program. This information is passed to the theorem prover,
which identifies the statements which are never executed
under the condition imposed by the slicing criterion. How-
ever, the computed conditioned slice can be overly conser-
vative in cases where the theorem prover is not able to de-
cide the truth of propositions put to it.

In general, computing exact program slices on a slic-
ing criterion involves the semantic analysis of programs
such as determination of a suitable induction hypothesis or
fixed point calculations of the invariant conditions associ-
ated with each program point. It is often the case that these
tasks need human interaction or could be time-consuming
although tools such as theorem provers are employed [6, 7].

In this paper, we present a novel slicing technique
named abstract program slicing that produces approxi-
mate conditioned program slices. Abstract program slic-
ing, however, does not rely on theorem proving in reason-
ing about the effect of the conditions mentioned in the slic-
ing criterion. Instead, we apply abstract interpretation to
the derivation of slices. Abstract interpretation allows us
to yield “safe” information about the run-time behavior of
the program without having to run it for all input data [8].
The calculation will give approximate information, while
guaranteeing that the information is safe. By “safe”, we
mean that the results of all possible real executions of the
program are included in the calculated results. This char-
acteristic of abstract interpretation enables us to compute

0

=
 . .

+

+

0

Figure 1. A lattice of abstract values for sign analysis

slices which are safe approximations of program slices on
the conditioned slicing criterion.

2. Abstract Interpretation

Abstract interpretation focuses on a class of properties of
program executions, which is usually defined by a collect-
ing semantics. Intuitively, the collecting semantics is the
most precise semantics to provide a sound and complete
proof method for the class of properties of interest. Thus, it
can be conceived as a reference semantics which provides a
basis for proving the soundness of all other approximate or
abstract semantics. The correspondence between collecting
semantics and abstract semantics can be expressed with the
use of Galois connections, denoted by a pair of monotone
functions (�;), where there is a best way to approximate
any concrete property by an abstract one.

Suppose that we have a concrete domain (D;v),
which is a lattice. Then, we define an abstract domain
(DA

;vA) approximating the concrete domain, where
d
A
1 vA

d
A
2 means that dA1 is a more precise value than

d
A
2 . The purpose of the abstraction function � : D ! D

A

is to map elements in D to approximating elements in DA,
while respecting the partial order. The fact that dA is a valid
approximation of d can be expressed as: �(d) vA

d
A. The

concretization function : DA ! D is a meaning func-
tion, which maps an abstract value in D

A to its concrete
meaning in D. This mapping also should respect the par-
tial order. The fact that dA is a valid approximation of d
can also be stated as: d v (dA).

When these two soundness conditions are equivalent,
we have a Galois connection which is defined as a pair
of functions (�;) such that the partial order is preserved
while going back and forth between the two lattices. The
intuition behind Galois connection is that the best such ab-
stract approximation is defined by �. Formally, a Galois
connection between D and D

A is a pair (�;) of mono-
tone functions � : D ! D

A and : DA ! D such that

8d 2 D : 8dA 2 D
A : �(d) vA

d
A , d v (dA)

For example, an abstract interpretation may use abstract
values +, � and 0 to describe negative and positive inte-
gers, and zero rather than using concrete integer values.

When we construct the approximate or abstract se-
mantics of programs, we need to define abstract operations

over the abstract domain, that approximate concrete oper-
ations over the concrete domain. The idea is that the ab-
stract calculation “simulates” the concrete calculation, and
the concretization of the abstract calculation is a correct ap-
proximation of the values in the concrete result. For exam-
ple, by abstracting operations like addition or multiplica-
tion according to the “rule of signs”, the abstract interpre-
tation may establish certain properties of a program such
as“whenever this loop body is entered, a variable x is as-
signed a positive value”.

The concrete collecting semantics of a program P is
characterized by the least fixpoint lfp(FP) of the seman-
tic function FP : }(State) ! }(State) where State is
the set of all possible program states. The concrete col-
lecting semantics can be infinite, so we compute a safe
approximation (that is, abstract semantics) of the concrete
semantics by abstract interpretation. The abstract seman-
tics of a program P is characterized by the least fixpoint
lfp(FA

P) of FA
P , and it is a safe approximation of the con-

crete semantics if FA
P is a safe approximation of FP . This

can be illustrated by a Galois connection (�� ; �) between
the concrete domain (}(State);�) and the abstract do-
main (AbsState;v), where State and AbsState repre-
sent a set of possible concrete states and a set of abstract
states, respectively. Once an abstract domain AbsState is
selected, we can derive the abstract semantic function F A

P

from the concrete one. The abstract semantic function can
be built-up on a standard way from the abstract versions
of primitive operations, which are program independent.
Then, it is well known that if an abstract semantic func-
tion F

A
P is a safe approximation : �� Æ FP Æ � v F

A
P

of a semantic function FP , then the abstract semantics of
P defined by the least fixed point of F A

P is a safe approx-
imation of the the concrete collecting semantics, that is:
lfp(FP) � �(lfp(F

A
P))

3. Abstract Interpretation Based Program
Slicing

3.1 Abstract program slices

A traditional static slicing criterion is a set of variables at a
certain program point. As a result, traditional static slices
are computed in such a way that they preserve the behav-
ior of the original program at a program point for a sub-
set of the program’s variables with respect to any possible
program executions. Because, however, our slicing model
restricts the concept of preserving behavior to a specified
set of program executions, we need to take into account
the specification of initial states in the definition of slicing
criteria.

Definition 1 Let � be a predicate on the input variables
Vin which describes assumption about the input values. A
(concrete) slicing criterion of a program P is a triple C

= (�; p; V), where p is a program point in P and V is a
subset of the variables in P of interest.

Definition 2 Let D and DA be connected by a Galois con-
nection (�;). Then, an abstract slicing criterion of a pro-
gram P is defined by a triple CA = (�A; p; V), where �A

= �(�) for a (concrete) slicing criterion C = (�; p; V).

That is, �(�) is the representation of the least(best)
upper approximation of the initial condition � 2 D. For
example, let � be the input condition on variables x and y
defined by � = (x > y + 3) ^ (y � 0)

If we assume that the lattice of sign shown in Fig. 1 is
taken as an upper approximation of the predicates P 2 Z

! B where Z is the set of integers. Then, we can compute
�(�) by �1 and �2 defined by

�2 = �P 2 Z ! B: if P = �X :false then ?
elseif P) �X :X = 0 then 0
elseif P) �X :X < 0 then �
elseif P) �X :X > 0 then +

elseif P) �X :X � 0 then
:
�

elseif P) �X :X � 0 then
:
+

elseif P) �X :X 6= 0 then 6= 0
else > �

�1 = �P 2 Z2 ! B: < �2(9y : P(x; y)); �2(9x : P(x; y)) >

Thus, we have

�1(� < x; y > : ((x > y + 3) ^ (y � 0))

= < �2(�x:(x � 3)); �2(�y:(y � 0)) >

= < +;
:
+>

Consequently,

�
A = �(�) = (x = +) ^ (y =

:
+)

It is essential to observe that the connection between
abstract slicing criterion CA and concrete slicing criterion
C is established by a Galois connection (�;). This means
that CA is a safe approximation of the corresponding con-
crete slicing criterion C. Consequently, the (abstract) slice
of a program P with respect to C

A is required to include
the results of all possible real executions of the concrete
slice of P with respect to C for the set of variables V .

Let us assume that p0, p1, � � �, pk are the program
points in a program P For �i2 State, let �i be a state
which is assumed immediately before the execution of p i.
A state �i can be restricted to a specified set of variables
V , which is denoted by �ijV . We also introduce the notion
of state trajectory and the projection functions which are
useful to demonstrate the properties of slices [1].

Definition 3 A state trajectory of a program for ini-
tial state � is a finite sequence of ordered pairs � =
h(p0; �0); (p1; �1); � � � ; (pk; �k)i, where hp0; p1; � � � ; pki is
the program path to be traversed during execution.

Definition 4 Let � = h�0; �1; � � � ; �ki where �i(0 � i � k)
is the i-th pair of the sequence � , i.e., (pi; �i). Then,

Proj0(p;V)(�i) =

�
� if pi 6= p

h(pi; �ijV)i if pi = p

Definition 5 Proj is defined as an extension of Proj’ to en-
tire trajectories:

Proj(p;V)(�) = Proj0(p;V)(�0) � � �Proj
0
(p;V)(�k)

Let us now consider the relation between state trajec-
tories and condition � of a slicing criterion C. Assume
that the abstract condition �(�) is characterized by an ab-
stract state �A. It is important to observe that each abstract
state �A corresponds to a set of concrete states � 2 State

through the function � : AbsState ! }(State). Thus,
each state � such that � 2 �(�

A) identifies a state tra-
jectory � . An abstract slice is any subset of the program
statements that preserve the original behavior on each of
these trajectories.

Definition 6 Let a program P
0 be a portion of a program

P , denoted by P
0 � P , if it can be obtained by deleting

zero or more statements from P . An abstract slice of a
program P on a slicing criterion C = (�; p; V) is an ex-
ecutable program P

0 such that P 0 � P and whenever P
halts on initial state � where � 2 Æ �(�) with state tra-
jectory � , P 0 also halts on � with state trajectory � 0 and
Proj(p;V)(�) = Proj(p;V)(�

0).

One key factor for program slicing is safety. That is,
we have to guarantee that the resulting abstract slices pre-
serve the behavior of the original program for the slicing
criterion C. The “safety” property can be restated in terms
of the relation of the collecting semantics between the pro-
gram P and its slice P 0 on the slicing criterion C as shown
by Theorem 1. The proof of Theorem 1 is straightforward
from Definition 6 and the characteristics of abstract inter-
pretation.

Theorem 1 Let P 0 be an abstract slice of a program P on
a slicing criterion C = (�; pi; V). Then, for input condi-
tion �, the following holds:

if (pi; �i) 2 lfp(FP); then 9(pi; �
0) 2 lfp(FP 0)

such that �ijV = �
0jV .

3.2 Computation of abstract slices

In order to extract abstract slices from a program P , we
also need to identify control and data dependence relations
among program points of P [9]. To the ends, we take
advantage of dynamic properties of a program obtained
during abstract interpretation so that more precise depen-
dences can be captured than those used for computing static
slices. The dynamic properties produced by abstract inter-
pretation enable us to identify which program blocks are
infeasible for a set of initial states characterized by a given
input condition. The statements which are never executed
for the set of initial states can be safely ignored when de-
pendences are to be discovered. Identification of infeasible
statements can be done by computing abstract collecting

int n,i,a[100],sum,asum,psum,nsum;
int pos,neg,zero;

1 read(n);
2 read(a);
3 sum = asum = psum = nsum = 0;
4 pos = neg = zero = 0;
5 i = 1;
6 while (i <= n) do
7 if (a[i] > 0) then
8 psum = psum + a[i];
9 pos = pos + 1;
10 else
11 if (a[i] < 0) then
12 nsum = nsum + a[i];
13 neg = neg+1;
14 else
15 if (a[i] == 0) then
16 zero = zero + 1;
17 if (psum > -nsum) then
18 sum = psum+nsum;
19 else
20 sum = 0;
21 fi
22 fi
23 fi
24 fi
25 i = i +1;
26 end
27 if (neg ==0) then
28 sum = asum = psum;
29 else
30 sum = psum + nsum;
31 asum = psum - nsum;
32 fi
33 print(sum);
34 print(asum);

Figure 2. An example program for slicing

semantics of the program P . For example, consider an
example program in Figure 2. Let (L int

;vint) be an ab-
stract domain for intervals defined as

L
int = ?[f[l; u]jl 2 Z[f�1g^u 2 Z[f+1g^l � ug

We employ the abstract domain Lint for the program vari-
ables “i”and “n”, and Lsign for the other program variables
in Figure 2. We can intuitively compose those abstract
domains for the program variables by componentwise ab-
straction as in [10]. We associate each program point with
an abstract state by the system of equations, which is the
least fixed point equation �X = F

A
P (�X). For the program

variables hn, i, a, sum, asum, psum, nsum, pos, neg, zeroi,
then, we have

X1 = h>;>; � � � ;>i

X2 = [read(n)]A(X1)
X3 = [read(a)]A(X2)
X4 = hX3[n]; X3[i]; X3[a]; 0; 0; 0; 0; 0; 0; 0i
X5 = [i = 1]A(X4) tX25

X6 = hX5 [n]; [i <= n]A(X5)[i]u
[�1;max(X5[n])]; X5[a]; X5[sum]; � � � ; X5[zero]i
� � �

where, for example, [i <= n]A denotes the abstract test
primitive, which must satisfy,

[i <= n]A(X) w ��(f� 2 �(X)j�(i) � �(n)g)

X1 = h>;>; � � � ;>i
X2 = h[100; 100];>; � � � ;>i
X3 = h[100; 100];>; a;> � � � ;>i where a = h+; � � � ;+i
X4 = h[100; 100];>; a; 0; 0; 0; 0; 0; 0; 0i
X5 = h[100; 100]; [1;+1]; a; 0; 0; 0; 0; 0; 0; 0i
X6 = h[100; 100]; [1; 100]; a; 0; 0;+; 0;+; 0; 0i

� � �
X26 = h[100; 100]; [101;+1]; a; 0; 0;+; 0;+; 0; 0i

� � �

Figure 3. Solution for the system of equations

Abstract interpretation is finitely computable if the seman-
tic function is monotone and the abstract domain is finite
or ascending chain finite. Otherwise, it might have an in-
finite computation. For this case, speed-up techniques like
widening [8] can be employed to ensure finiteness when
necessary. In this way, we can compute an approximate
solution to the original system of equations in finite time
as well known in [8, 10]. If the input condition � is given
by “81 � i � n : a[i] > 0”, then its abstraction �

A is
“81 � i � n : a[i] = +”. Under this input condition,
the solution to the modified fixed point equations is sum-
marized in Figure 3 Once we have computed an abstract
collecting semantics of a program for an input condition,
we can identify infeasible statements of the program which
will not be taken into account for program slicing. In order
to define the transformation rules which simplify the orig-
inal program, we introduce a few definitions. The abstract
boolean restriction functionRA[b]�A can be defined as:

RA[b]�A = ��f� 2 �(�
A) j b is true in �g

where ��(�) = ?� if � = ;. Note that if there is no
possible value in the abstract state �A, the resulting state
will be ?�.

Let �A be an abstract state which is assumed before
the execution of the program component S. Then, the
transformation rules which enables us to find a simpler pro-
gram P

T from the program P are as follows:

Rule1 If S is a conditional statement of the form
if b then S1 else S2 fi and RA[:b]�A = ?� then
P [skip=S2], where P [Si=S] represents the replace-
ment of S by Si and skip represents a null statement.

Rule2 If S is a conditional statement of the form
if b then S1 else S2 fi and RA[b]�A = ?� then
P [skip=S1].

Rule3 If S is a conditional statement of the form
if b then S1 else S2 fi and RA[:b]�A 6= ?� and
RA[b]�A 6= ?� then S is not replaced with either S1

or S2. That is, P [S=S].

Rule4 If S is a while-loop statement of the form
while b do S1 end and RA[b]�A = ?� then
P [skip=S1].

Rule5 If S is a while-loop statement of the form
while b do S1 end and RA[b]�A 6= ?�, then S is
unchanged. That is, P [S=S].

Let us apply the rules to the program in Figure 2
on the input condition 8i : 1 � i � n; a[i] > 0 and
n = 100. Recall that Figure 3 shows the abstract states
�
A
i before the execution of each program statement i of

the program in Figure 2 on the input condition. Consider
X5 which shows the abstract state �

A
5 before the execu-

tion of the predicate in line 5. Because �A
5 (i) = [1;+1],

but �A5 (n) = [100; 100], two outcomes of the predicate in
line 5 are possible. This means that we could not discard
the loop body according to Rule 5. The abstract state �A

6 ,
however, is given by:

h[100; 100]; [1; 100]; a; 0; 0;+; 0;+; 0; 0i

This implies that the predicate in line 6 will always evalu-
ate to True. Therefore, the false branch can be discarded
according to Rule 1. Similarly, we can observe that the
false branch of the predicate in line 26 will never be ex-
ecuted because the program variable “neg” is equals to 0
in the corresponding abstract state �A26. Therefore, we can
also apply Rule 1 to this case which allows us to delete the
lines 29 and 30.

3.3 Abstract program dependence graph

Abstract program dependence graph for P , denoted byGA
P ,

is a program dependence graph which is defined in terms
of a program P

T obtained from P by the applications of
the transformation rules. The nodes of GA

P is the program
components such as the assignment statements and con-
trol predicates that occur in P

T , rather than in P . As in
the traditional program dependence graph [9], the edges of
G
A
P represent control dependences and data dependences.

We denote a control dependence edge from node u to v by
u!cA v and a data dependence edge by u!dA v in GA

P .
The definitions of control dependence and data depen-

dence in G
A
P make no difference from the one used in the

traditional program dependence graph [9]. However, the
existence of a data dependence edge between two nodes
of GA

P such as u !dA v implies the existence of the data
dependence from u to v. The opposite, however, is not
necessarily true. In order to clarify this, let us consider the
following data flow concepts.

The location or the l-value of a variable v is an
instance of v when it is evaluated as a target of an assign-
ment statement. And the current content of the location
is referred to as the r-value of v. Let D(pi) be the set of
variables whose l-values are used at node pi and U(pi)
be the set of variables whose r-values are used at node p i.
These sets differ from their static counterparts in that they
are of dynamic nature to a certain extent. As an example,
consider a program fragment:

� � �

pl1 : a[i] = a[j]*k;

pl2 : i= i+2;
pl3 : z = a[i];

� � �

Suppose that �Al1 (i) is [2::3] and �Al1 (j) is [3::5]. Then,
the following variables are used and defined:

D(pl1) = fa[2]; a[3]g andU(pl1) = fa[3]; a[4]; a[5]; i; j; kg

Similarly, we can compute D(pl3) and U(pl3) by consider-
ing the effect of the assignment statement at pl2 :

D(pl3) = fzg and U(pl3) = fa[4]; a[5]; ig

In contrast, traditional static slicing treats an entire array as
a single variable. This is due to the fact that static slicing
fails to take into account any information about particular
array elements. As a result, the slice can be unnecessarily
large. It is important to observe that the dependences used
in static slicing are defined for all possible initial states
whereas abstract slicing defines dependences in terms of
the specified set of initial states. Furthermore, abstract in-
terpretation enables us to determine which array elements
might be used or modified at every point of program exe-
cution. For example, the traditional static analysis of the
program fragment would lead to

D(pl1) = fag; U(pl1) = fa; i; j; kg;

D(pl3) = fzg; U(pl3) = fa; ig

1 2 3 4

5

27 32 33

7

8

24

Entry

6 26

Figure 4. An example abstract program dependence graph

From the static point of view, the data dependence
from pl1 to pl3 are represented on its program dependence
graph whereas the data dependence from p l1 to pl3 does
not exist in the corresponding abstract program dependence
graph. If, however, the program fragment lies in the loop
and the widening operation is performed at the index vari-
able “i”, then the precision might be reduced.

From this discussion, an abstract slice of a program
P with respect to a slicing criterion C = (�; p; V) can be
defined as a collection of statements corresponding to the

int n,i,a[100],sum,asum,psum,nsum;
int pos,neg,zero;

1 read(n);
2 read(a);
3 sum = psum = neq = 0;
4 i = 1;
5 while (i <= n) do
6 if (a[i] >0) then
7 psum = psum + a[i];
23 fi
24 i = i +1;
25 end
26 if (neq = 0) then
27 sum = psum;
31 fi
32 print(sum);

Figure 5. An example abstract slice

nodes v of GA
P on which p has a transitive control or data

dependence, i.e., v !�

cA;dA
p. Figure 4 shows the abstract

program dependence graph resulting from the application
of the transformation rules to the program in Figure 2 and
Figure 5 shows its abstract slice on the slicing criterion
C = (�; 32; fsumg), where � = 8i : 1 � i � n; a[i] > 0
and n is 100. In the present case, the resulting abstract
slice is identical to the dynamic slice on the slicing crite-
rion (8i : 1 � i � n; a[i] = 1; 32; fsumg). We can further
reduce the size of the slice by considering that the predi-
cates in line 6 and line 26 always evaluate to True. That is,
the predicates and the statements which might affect their
outcomes could be deleted.

4. Future Work

While the notion of abstract slices is new and our research
offers improvements weak sides of traditional slicing tech-
niques, there are some issues that are worthy of further
research. In theoretical aspects, we need to further iden-
tify other variants of abstract slices and their characteristics
and the relations between them. For example, abstract slic-
ing might yield more focused and precise slices by fully
utilizing the information present in the specification. In
the present case, we only consider the precondition which
specifies a subset of initial states. Usually, a secification
is denoted by a pre-post condition pair where the postcon-
dition represents the desired behaviour of the component
one wants to extract[11]. We are necessitated to map the
postcondition to the specification of the slicing criterion.
This can be done by the backward (approximate) semantic
analysis in determining at each program point an invariant
property which are the ascendants of the output states sat-
isfying a given postcondition[12]. Yet another important
research area is the application of abstract slicing to the
fields such as restructuring, program comprehension, and
software reuse. We need to extend abstract slicing to the
interprocedural level for a wider application.

References

[1] M. Weiser, Program slicing, IEEE Trans. on Software
Engineering, vol. 10, no. 4, 1984, 352-357.

[2] H. Agrawal and J. Horgan, Dynamic program slicing,
In Proc. of the ACM SIGPLAN’90 Conf. on Program-
ming Language Design and Implementation, 1990,
246-256.

[3] B. Korel and J. Laski, Dynamic program slicing, In-
formation Processing Letters, vol. 29, no. 3, 1988,
155-163.

[4] G. Canfora, A. Cimitile, and A. De Lucia, Condi-
tioned Program Slicing, Information and Software
Technology, vol. 40, 1998, 595-607.

[5] S. Danicic, C. Fox, M. Harman, and R. Hierons, Con-
SIT: A Conditioned Program Slicer, Proc. of Conf. on
Software Maintenance, S. Jose, CA, U. S. A., IEEE
CS Press, 2000, 216-226.

[6] I. S. Chung, W. K. Lee, G. S. Yoon, and Y. R. Kwon,
”Program Slicing Based on Specification”, 2001 ACM
Syposium on Applied Computing, 2001, 605-609.

[7] W. K. Lee, I. S. Chung, G. S. Yoon, and Y. R. Kwon,
Specification-based Program Slicing and Its Applica-
tions, Journal of Systems Architecture, 47(2001), 427-
443.

[8] P. Cousot and R. Cousot, Abstract interpretation: a
unified lattice model for static analysis of programs
by construction or approximation of fixpoints, Proc.
of 4th ACM Symp. on Principle of Programming Lan-
guages, ACM Press, 1977, 238-252.

[9] S. Horwitz, T.Reps, and D. Binkley, Interprocedural
slicing using dependence graphs, ACM Trans. on Pro-
gramming Languages and Systems, vol. 12, no. 1, Jan.
1990, 35-46.

[10] P. Cousot and R. Cousot, Systematic design of pro-
gram analysis frameworks, Proc. of 4th ACM Symp.
on Principle of Programming Languages,ACM Press,
1979, 269-282.

[11] A. Cimitile, A. De Lucia, and M. Munro, A Specifica-
tion Driven Slicing Process for Identifying Reusable
Functions, Journal of Software Maintenance: Re-
search and Practice, vol. 8, no. 3, 1996, 145-178.

[12] F. Bourdoncle, Abstract debugging of higher-order
imperative languages, Proceedings of ACM Symp. on
PLDI, 1993, 46-55.

