
Interprocedural Exception Analysis for Java ∗

Byeong-Mo Chang
Sookmyung Women’s

University
Seoul, Korea

chang@cs.sookmyung.ac.kr

Jang-Wu Jo
Pusan University
of Foreign Studies

Pusan, Korea
jjw@saejong.pufs.ac.kr

Kwangkeun Yi Kwang-Moo Choe
Korea Advanced Inst.

of Science & Technology
Taejon, Korea

{kwang,choe}@cs.kaist.ac.kr

Keywords: Java, class analysis, uncaught exception anal-
ysis, set-based analysis

ABSTRACT
Current JDK Java compiler relies too much on program-
mer’s specification for checking against uncaught exceptions
of the input program. It is not elaborate enough to re-
move programmer’s unnecessary handlers (when program-
mer’s specifications are too many) nor suggest to program-
mers for specialized handlings (when programmer’s speci-
fications are too general). We propose a static analysis of
Java programs that estimates their exception flows indepen-
dently of the programmer’s specifications. This analysis is
designed and implemented based on set-constraint frame-
work. Its cost-effectiveness is suggested by sparsely analyz-
ing the program at method-level (hence reducing the num-
ber of unknowns in the flow equations). We have shown
that our exception analysis can effectively detect uncaught
exceptions for realistic Java programs.

1. INTRODUCTION
Exception facilities in Java allow the programmer to de-

fine, throw and catch exceptional conditions. Exceptional
conditions are brought (by a throw expression) to the at-
tention of another expression where the thrown exceptions
may be handled. Because unhandled exceptions will abort
the program’s execution, it is important to make sure at
compile-time that the input program will have no uncaught
exceptions at run-time.

The current Java compiler does an intraprocedural analysis
by relying on the programmer’s specifications to check that
the input program will have no uncaught exceptions at run-
time. Programmers have to declare in a method definition

∗This work was supported by grant No. 2000-1-30300-009-
2 from the Basic Research Program of the Korea Science
& Engineering Foundation and by Creative Research Initia-
tives of the Korean Ministry of Science and Technology.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

any exception class whose exceptions may escape from its
body.

The problem is that the current compiler is not elaborate
enough to do “better” than as specified by the program-
mers. It cannot avoid programmer’s unnecessary handlers
nor suggest to programmers for specialized handlings. It
is foreseeable for careless (or inconfident) programmers to
excessively declare at every method that some exceptions
can be uncaught. Similarly, programmers can specify ex-
ceptions in too a broad sense. Programmers can declare
that a method throws exceptions of the most general class
Exception even if the actual exceptions are of much lower,
specific classes. Then its handler cannot offer proper treat-
ments specific to the exact classes of actual exceptions.

We propose an interprocedural static analysis of Java pro-
grams that estimates their exception flows independently of
the programmer’s specifications. Our exception analysis is
designed based on set-based framework and needs class (or
type) information Class(e) for expression e. Class informa-
tion can be obtained by type inference or class analysis as
in [3, 4, 9, 5]. The classes of uncaught exceptions from a
method call e1.m(e2) is then the classes of exceptions that
can be raised and unhandled during the execution of m’s
body for every class c in Class(e1).

We first design an exception analysis at expression-level
and then design a sparse exception analysis at method-level
for cost-effectiveness. We show theoretically that the sparse
exception analysis gives the same exception information for
every method as the expression-level analysis. In addition,
we show, through implementation and experiments, that our
sparse analysis can detect effectively uncaught exceptions for
realistic Java programs.

2. SOURCE LANGUAGE
For presentation brevity we consider an imaginary core of

Java with its exception constructs. Its abstract syntax is in
Figure 1. A program is a sequence of class definitions. Class
bodies consist of field variable declarations and method def-
initions. A method definition consists of the method name,
its parameter, and its body expression. Every expression’s
result is an object. Assignment expression returns the ob-
ject of its right hand side expression. Sequence expression
returns the object of the last expression in the sequence. A
method call returns the object from the method body. The
try expression

try e0 catch (c x e1)

P ::= C∗ program
C ::= class c ext c′ { var x∗ M∗} class definition
M ::= m(x) = e [throws c∗] method definition
e ::= id variable

| id := e assignment
| new c new object
| this self object
| e ; e sequence
| if e then e else e branch
| throw e exception raise
| try e catch (c x e) exception handle
| e.m(e) method call

id ::= x method parameter
| id.x field variable

c class name
m method name
x variable name

Figure 1: Abstract Syntax of a Core of Java

evaluates e0 first. If the expression returns a normal object
then this object is the result of the try expression. If an
exception is raised from e0 and its class is covered by c then
the handler expression e1 is evaluated with the exception
object bound to x. If the raised exception is not covered
by class c then the raised exception continues to propagate
back along the evaluation chain until it meets another han-
dler. Note that nested try expression can express multiple
handlers for a single expression e0 :

try (try e0 catch (c1 x1 e1)) catch (c2 x2 e2).

The exception object e0 is raised by throw e0. The program-
mers have to declare in a method definition any exception
class whose exceptions may escape from its body.

Note that exceptions are first-class objects in Java. Like
normal objects, they can be defined by classes, instantiated,
assigned to variables, passes as parameters, etc. Exception
facilities in Java allow the programmer to define, throw and
catch exceptional conditions.

For exception analysis, every expression e of the program
has a constraint: Xe ⊇ se. The Xe is for the exception
classes that the expression e’s uncaught exception belongs
to. The meaning of a set constraint X ⊇ se is intuitive: set
X contains the set represented by set expression se. Multiple
constraints are conjunctions. We write C for such conjunc-
tive set of constraints. Collected constraints for a program
guarantee the existence of its least solution (model) because
every operator is monotonic (in terms of set-inclusion) and
each constraint’s left-hand-side is a single variable [8]. We
write lm(C) for the least model of a collection C of con-
straints.

Set-based analysis consists of two phases [8]: collecting
set constraints and solving them. The first phase constructs
constraints by the derivation rules, that describe the data
flows between the expressions of the analyzed program. The
second phase finds the sets of values that satisfy the con-
straints. A solution is a table from set variables in the con-
straints to the finite descriptions of such sets of values.

Our implementation computes the solution by the conven-
tional iterative fixpoint method because our solution space is
finite: exception classes in the program. Correctness proofs

class Demo1 {

public static void main(String args[]) {

try {

demoproc();

} catch (Exception e) { ; }

}

void demoproc() throws Exception {

try {

throw new IOException("demo");

} catch (Exception e) {

throw e

}

}

}

Figure 2: The source code for a broad specification

class Demo2 {

public static void main(String args[]) {

try {

demoproc();

} catch (Exception e) { ; }

}

void demoproc() throws Exception {

try {

throw new IOException("demo");

} catch (IOException e) { ; }

}

}

Figure 3: The source code for a unnecessary speci-
fication

are done by the fixpoint induction over the continuous func-
tions that are derived [2] from our constraint system.

3. MOTIVATION
Because unhandled exceptions will abort the program’s

execution, the current JDK Java compiler does an intrapro-
cedural exception analysis relying on the programmer’s spec-
ifications to check that the input program will have no un-
caught exceptions at run-time.

However, programmers can declare that a method throws
exceptions of the most general class Exception even if the
actual exceptions are of much more specific classes. Then
its handler cannot offer proper treatments specific to the
actual exceptions. As well as that, programmers can also
write too broad catch clauses. These two cases are shown
in the source code in Figure 2.

Careless (or inconfident) programmers may also declare
with unnecessary specifications at method definition that
some exceptions can be uncaught.

The problem is that the current JDK compiler is not elab-
orate enough to do “better” than as specified by the pro-
grammers. This is mainly due to the intraprocedural ex-
ception analysis of JDK compiler relying on programmers’
specification.

We will devise an interprocedural exception analysis so
that it can report programmer’s unnecessary handlers or

suggest to programmers for specialized handlings.

4. UNCAUGHT EXCEPTION ANALYSIS
We present our exception analysis based on the set-constraint

framework [8]. We assume class information Class(e) is al-
ready available for every expression e in the exception anal-
ysis. There are several choices for class information. First,
we can approximate it using type information, since Java
is shown to be type sound [4, 9, 5]. Second, we can utilize
information from class analysis [3, 10]. The class analysis
estimates for each expression e the classes (including excep-
tion classes) that the expression e’s normal object belongs
to. Note that exception classes are normal classes in Java.
A set-based class analysis for Java is shown in [1].

In Section 4.1 we present a constraint system that an-
alyzes uncaught exceptions from every expression of the
input program. Because exception-related expressions are
sparse in programs, generating constraints for every expres-
sion is wasteful. The analysis cost-effectiveness need to be
addressed by enlarging the analysis granularity. Hence in
Section 4.2 we present a sparse constraint system that an-
alyzes uncaught exceptions at a larger granularity than at
every expression. Similar technique of enlarging constraint
granularity has already been successfully used in ML [11]’s
exception analysis [16]. Our analysis result is the solution
of this sparse constraints.

4.1 Exception Analysis at Expression-Level
Figure 4 has the rules to generate set constraints for the

object classes of every expression. For exception analysis,
every expression e of the program has a constraint: Xe ⊇ se.
The Xe is a set-variable for the exception classes that the
expression e’s uncaught exception belongs to. The subscript
e of set variables Xe denotes the current expression to which
the rule applies. The relation “¤ e : C” is read “constraints
C are generated from expression e.”

Consider the rule for throw expression:

[Throw]
¤ e1 : C1

¤ throw e1 : {Xe ⊇ Class(e1) ∪ Xe1} ∪ C1

It throws exceptions e1 or, prior to throwing, it can have
uncaught exceptions from inside e1 too.

Consider the rule for try expression:

[Try]
¤e0 : C0 ¤ e1 : C1

¤try eg catch(c1 x1 e1) :
{Xe ⊇ (Xeg − {c1}∗) ∪ Xe1} ∪ C0 ∪ C1

Raised exceptions from e0 can be caught by x1 only when
their classes are covered by c1. After this catching, excep-
tions can also be raised during the handling inside e1. Hence,
Xe ⊇ (Xe0 − {c1}∗) ∪ Xe1 , where {c}∗ represents all the sub-
classes of a class c.

Consider the rule for method call:

[MethCall]
¤e1 : C1 ¤ e2 : C2

¤e1.m(e2) :
{Xe ⊇ Xc.m|c ∈ Class(e1), m(x) = em ∈ c}

∪{Xe ⊇ Xe1 ∪ Xe2} ∪ C1 ∪ C2

Uncaught exceptions from the call expression first include
those from the subexpressions e1 and e2 : Xe ⊇ Xe1 ∪ Xe2 .
The method m(x) = em is the one defined inside the classes

[New] ¤new c : ∅

[FieldAss]
¤ e1 : C1

¤ id.x := e1 : {Xe ⊇ Xe1} ∪ C1
[ParamAss]

¤ e1 : C1
¤ x := e1 : {Xe ⊇ Xe1} ∪ C1

[Seq]
¤ e1 : C1 ¤ e2 : C2

¤ e1;e2 : {Xe ⊇ Xe1 ∪ Xe2} ∪ C1 ∪ C2
[Cond]

¤e0 : C0 ¤ e1 : C1 ¤ e2 : C2
¤if e0 then e1 else e2 :

{Xe ⊇ Xe0 ∪ Xe1 ∪ Xe2} ∪ C0 ∪ C1 ∪ C2
[FieldVar]

¤ id : Cid

¤ id.x : Cid

[Throw]
¤ e1 : C1

¤ throw e1 : {Xe ⊇ Class(e1) ∪ Xe1} ∪ C1
[Try]

¤e0 : C0 ¤ e1 : C1
¤try e0 catch(c1 x1 e1) :

{Xe ⊇ (Xe0 − {c1}∗) ∪ Xe1} ∪ C0 ∪ C1
[MethCall]

¤e1 : C1 ¤ e2 : C2
¤e1.m(e2) :

{Xe ⊇ Xc.m|c ∈ Class(e1), m(x) = em ∈ c}
∪{Xe ⊇ Xe1 ∪ Xe2} ∪ C1 ∪ C2

[MethDef]
¤ em : C

¤ m(x) = em : {Xc.m ⊇ Xem} ∪ C

[ClassDef]
mi : Ci, i = 1, · · · , n

class c = {var x1, · · · , xk, m1, · · · , mn} :
C1 ∪ · · · ∪ Cn

[Program]
¤ Ci : Ci, i = 1, · · · , n

¤ C1, · · · , Cn : C1 ∪ · · · ∪ Cn

Figure 4: Exception Analysis at Expression-Level

c ∈ Class(e1) of e1’s objects. Hence, Xe ⊇ Xc.m for un-
caught exceptions. (The subscript c.m indicates the index
for the body expression of class c’s method m.)

4.2 Exception Analysis at Method-Level
In our new, sparse constraint system, only two groups of

set variables are considered: set variables for class’ meth-
ods and try-blocks. The number of unknowns is thus pro-
portional only to the number of methods and try blocks,
not to the total number of expressions. For each method
m, set variable Xm is a set-variable for the classes of un-
caught exceptions during the call to m. The try-block eg in
try eg catch (c x e) also has a set variable Xg, which is
for uncaught exception classes in eg.

Figure 5 shows this new constraint system. The left-hand-
side m in relation m ¤ e : C indicates that the expression e
is a sub-expression of method m (or try-block g).

Consider the rule for throw expression:

[Throw]m
m ¤ e1 : C1

m ¤ throw e1 : {Xm ⊇ Class(e1)} ∪ C1

The classes Xm of uncaught exceptions from method m
include the exception classes of the expression e1.

[New]m m ¤ new c : ∅

[FieldAss]m
m ¤ e1 : C1

m ¤ id.x := e1 : C1
[ParamAss]m

m ¤ e1 : C1
m ¤ x := e1 : C1

[Seq]m
m ¤ e1 : C1 m ¤ e2 : C2

m ¤ e1;e2 : C1 ∪ C2
[Cond]m

m ¤ e0 : C0 m ¤ e1 : C1 m ¤ e2 : C2
m ¤ if e0 then e1 else e2 : C0 ∪ C1 ∪ C2

[FieldVar]m
m ¤ id : Cid

m ¤ id.x : Cid

[Throw]m
m ¤ e1 : C1

m ¤ throw e1 : {Xm ⊇ Class(e1)} ∪ C1
[Try]m

m ¤ eg : Cg m ¤ e1 : C1
m ¤ try eg catch(c1 x1 e1) :

{Xm ⊇ (Xg − {c1}∗)} ∪ Cg ∪ C1
[MethCall]m

m ¤ e1 : C1 m ¤ e2 : C2
m ¤ e1.m′(e2) :

{Xm ⊇ Xc.m′ |c ∈ Class(e1), m′(x) = em′ ∈ c}
∪C1 ∪ C2

[MethDef]m
m ¤ em : Cm

m ¤ m(x) = em : Cm

[ClassDef]m
mi : Ci, i = 1, · · · , n

class c = {var x1, · · · , xk, m1, · · · , mn} :
C1 ∪ · · · ∪ Cn

[Program]m
¤ Ci : Ci, i = 1, · · · , n

¤ C1, · · · , Cn : C1 ∪ · · · ∪ Cn

Figure 5: Exception Analysis at Method-Level

Consider the rule for try expression:

[Try]m
m ¤ eg : Cg m ¤ e1 : C1

¤try eg catch(c1 x1 e1) :
{Xm ⊇ (Xg − {c1}∗)} ∪ Cg ∪ C1

Some of the uncaught exceptions Xg from eg can be caught
and handled, if the exception’s classes are covered by c.
Hence the uncaught exceptions from this expression includes
the uncovered ones.

Consider the rule for method-call expression:

[MethCall]m
m ¤ e1 : C1 m ¤ e2 : C2

m ¤ e1.m′(e2) :
{Xm ⊇ Xc.m′ |c ∈ Class(e1), m′(x) = em′ ∈ c}

∪C1 ∪ C2

Thus, if m’s body has a method call e1.m
′(e2), raised

exceptions’ classes Xm include those Xc.m′ uncaught from
the called method c.m′.

It should be noted that the derivation rules for try-blocks,
for example eg, are the same as those in Figure 5, except that
m is replaced by g.

The least model of the sparse constraints C, which are de-
rived (¤pgm : C) from an input program pgm is our analysis
result. The solutions for Xm has the exception classes whose
exceptions might be thrown from m’s execution.

5. SOUNDNESS AND COMPLETENESS

We have designed a method-level exception analysis from
the expression-level analysis in Figure 4. In order to prove
the soundness and completeness of the method-level anal-
ysis, we first need to relate the expression-level analysis to
the method-level analysis.

To relate the expression-level exception analysis to the
method-level exception analysis, we can define the parti-
tioning function π : Expr → Expr ∪Method as follows :

π(e) = g if e is a sub-expression of eg

in an expression try eg catch(c1 x1 e1)
π(e) = m if e is a sub-expression of a method m,

which is not of a try-block.

This partitioning function specifies that there is one set
variable Xg for all sub-expressions of a try-block eg, and one
set-variable Xm for all sub-expressions of a method m, not
of a try-block.

In the following, we assume that C is the collection of set
constraints for a program pgm constructed by the rules in
Figure 4, and Cπ is the collection of set constraints for the
same program pgm constructed by the rules in Figure 5.

The least model of the method-level constraints Cπ is a
sound approximation of that of the original constraints C.
The proof is based on the observation in [2] that the least
model lm(C) is equivalent to the least fixpoint of the con-
tinuous function F derived from C.

Theorem 1. lm(Cπ)(π(X)) ⊇ lm(C)(X) for every set vari-
able X in C.

We show that the method-level analysis gives, for every
method and try-block, the same information on uncaught
exceptions as the expression-level analysis. We call Cπ is
equivalent to C with respect to every method and try-block :
if lm(Cπ)(Xf) = lm(C)(Xf) for every method and try-block
f .

Theorem 2. lm(Cπ)(Xf) = lm(C)(Xf) for every method
and try-block f .
Proof. See Appendix A. 2

6. EXPERIMENTAL RESULTS
This section evaluates exception analysis on realistic Java

programs. We have implemented the method-level excep-
tion analyzer. The analyzer is implemented in C by two
passes for setting up constraints and solving constraints, re-
spectively. Our testbed consists of UltraSPARC Enterprise
450 running Sun Solaris.

We have selected a set of 6 medium-sized benchmarks de-
scribed in Table 2 for our experiments.

No. Programs Descriptions

1 Statistician methods statistics for a class
2 JavaBinHex BinHex(.hqx) decompressor
3 JHLZIP ZIP compressor
4 JHLUNZIP ZIP uncompressor
5 com.ice.tar UNIX Tar Archive
6 Jess-Rete Reasoning engine of Jess

Table 1: Benchmarks programs

No
Total
classes

Total
methods

Lines
of Code

1 1 1 387
2 1 3 300
3 2 11 425
4 1 3 187
5 10 141 4045
6 1 98 1667

Table 2: Benchmarks programs

No
Kinds of

exceptions
throws
spec

catch
block

Uncaught
exceptions

1 3 1 24 1
2 2 0 8 0
3 3 4 8 4
4 2 1 3 1
5 6 40 21 41
6 7 38 10 33

Table 3: Uncaught exceptions

A prototype’s preliminary performance on the numbers
of total uncaught exceptions from all methods is shown in
Table 3. With the analysis result of every method, we have
counted the numbers of throws’s and catch’s which are un-
necessary, and similarly the numbers of throws’s and catch’s
which are broader than raised exceptions. They are shown
in Table 4. Our analysis has detected meaningful amount of
unnecessary and broader specifications and catch’s in real
Java programs. Execution times for constraints set-up and
solving are sufficiently fast and shown in Table 5.

Unnessesary Broader
No throws catch throws catch

1 0 1 0 0
2 0 0 0 1
3 0 0 2 1
4 0 0 1 1
5 4 0 3 4
6 6 0 1 3

Table 4: Analysis result

No Set-up time(sec) Solving time(sec)

1 0.02 0.01
2 0.02 0.01
3 0.02 0.01
4 0.01 0.01
5 0.18 0.03
6 0.05 0.02

Table 5: Analysis times

7. RELATED WORKS
In ML, exceptions are first class values that can be de-

clared, assigned and passed as parameters. These values
can be raised at any point once they are declared. Several
exception analyses have been introduced to trace uncaught
exceptions in ML [13, 16, 17, 7]. Yi first designed an excep-
tion analysis by abstract interpreation [13], which was too
slow, and then redesigned it based on set-based framework
and showed better speed. Fähndrich and Aiken [6] have ap-
plied their BANE toolkit to the analysis of uncaught excep-
tions in SML. Their system is based on equality constraints
to keep track of exception values. Fessaux and Leroy desiged
an exception analysis for OCaml based on type and effect
systems, and provides good performance for real OCaml pro-
grams [7].

In Java, the JDK compiler ensures by an intraprocedural
analysis, with programmers’s specifications of uncaught ex-
ceptions of each method, that raised exceptions are caught
or specified. In [12], they developed Jex tool based on JDK’s
approach, analyzed exception matching in catch clauses,
and showed a ratio of several classified exception matchings
in catch clauses. In [15], first exception analysis for Java
was designed and presented, but without experimental data
about its cost-effectiveness.

8. CONCLUSIONS
We have presented an exception analysis for Java, that

estimates their exception flows independently of the pro-
grammer’s specifications. We have designed two exception
analyses at expression-level and at method-level, and have
proven that the method-level exception analysis gives the
same analysis result as the expression-level analysis. This
situation is because we only consider exception flows. By an
implementation and its experiments, we have shown that
our exception analysis can effectively detect uncaught ex-
ceptions for realistic Java programs.

Our exception analysis’ hint about Java program’s excep-
tion flows help the programmers or the compilers to effi-
ciently handle exceptions in the source programs or in the
compiled codes.

9. REFERENCES
[1] B.-M. Chang, K. Yi and J. Jo, Constraint-based

analysis for Java, SSGRR 2000 Computer and
e-Business Conference, August 2000, L’Aquila, Italy.

[2] Patrick Cousot and Radhia Cousot. Compositional
and inductive semantic definitions in fixpoint,
equational, constraint, closure-condition, rule-based
and game-theoretic form. In Lecture Notes in
Computer Science, volume 939, pages 293–308.
Springer-Verlag, proceedings of the 7th international
conference on computer-aided verification edition,
1995.

[3] G. DeFouw, D. Grove, and C. Chambers, Fast
interprocedural class analysis, Proceedings of 25th
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages pages 222-236, Januaray
1998.

[4] S. Drossopoulou, and S. Eisenbach, Java is type
safe-probably, Proceedings of 97 ECOOP, 1997

[5] S. Drossopoulou, and T. Valkevych, Java type
soundness revisited. Techical Report, Imperial College,
November 1999. Also available from:
http://www-doc.ic.ac.uk/ scd.

[6] M. Fähndrich, J.S. Foster, A. Aiken,a nd J. Cu.
Tracking down exceptions in Standard ML programs.
Techical report, University of California at Berkeley,
Computer Science Division, 1998.

[7] X. Leroy and F. Pessaux, Type-based analysis of
uncaught exceptions. ACM Transactions on
Programming Languages and Systems, Vol.22, No. 2,
pp. 340-377, March 2000

[8] N. Heintze, Set-based program analysis. Ph.D thesis,
Carnegie Mellon University, October 1992.

[9] Java is type safe-definitely, Proceedings of 25th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages,January 1998.

[10] J. Palsberg and M. I. Schwarzbach, Object-oriented
type inference, Proceedings of ACM Conference on
OOPSLA, pp. 141-161, 1991.

[11] Robin Milner, Mads Tofte, Robert Harper, and David
MacQueen. The Definition of Standard ML (Revised).
MIT Press, 1997.

[12] M. P. Robillard and G. C. Murphy, Analyzing
exception flow in Java programs. Proceedings of 7th
European Software Engineering Conference and ACM
SIGSOFT Symposium on Foundations of Software
Engineering, 1999.

[13] Kwangkeun Yi. Compile-time detection of uncaught
exceptions in standard ML programs. In Lecture Notes
in Computer Science, volume 864, pages 238-254.
Springer-Verlag, Proceedings of the 1st Static Analysis
Symposium, September 1994.

[14] Kwangkeun Yi. An abstract interpretation for
estimating uncaught exception in Standard ML
programs. Science of Computer Programming,
31(1):147–173, 1998.

[15] Kwangkeun Yi and Byeong-Mo Chang. Exception
analysis for java. In A. Moreira and D. Demeyer,
editors, Object-Oriented Technology. ECOOP’99
Workshop Reader (Formal Techniques for Java
Programs), volume 1743 of Lecture Notes in Computer
Science, pages 111–112. Springer-Verlag, June 1999.
Extended version of this paper is available from
ropas.kaist.ac.kr/paper/99-ecoop-yich.ps.gz.

[16] Kwangkeun Yi and Sukyoung Ryu. Towards a
cost-effective estimation of uncaught exceptions in
SML programs. In Lecture Notes in Computer
Science, volume 1302, pages 98–113. Springer-Verlag,
Proceedings of the 4th Static Analysis Symposium,
September 1997.

[17] Kwangkeun Yi and Sukyoung Ryu. A cost-effective
estimation of uncaught exceptions in Standard ML
programs. Theoretical Computer Science, 273(1), 2001.

Appendix A. Proof
Theorem 2 Proof. As in [2], the continuous function F can
be defined from C, and Fπ can also be defined from Cπ like-
wise. We prove this theorem by showing that lfp(Fπ)(Xf) =
lfp(F)(Xf) for every method and try-block f . By the sound-
ness theorem, lfp(Fπ)(Xf) ⊇ lfp(F)(Xf). So, we just prove
that lfp(Fπ)(Xf) ⊆ lfp(F)(Xf) for every method and try-
block f .

The proof is by induction on the number of iterations in
computing lfp(Fπ).
Induction step : Suppose Iπ(Xf) ⊆ I(Xf) for every method
and try-block f . Let I′π = Fπ(Iπ). Then there exists I′
such that I′ = F i(I) for some i and I′π(Xf) ⊆ I′(Xf) for
every method and try-block f .
(1) For every set variable Xf , suppose I′π(Xf) = Iπ(Xf)∪α.
(2) Then, α must be added by some of the rules [Throw]m,
[Try]m, and [MethodCall]m in Figure 5.
(3) There must be the corresponding rules [Throw], [Try],
and [MethodCall] in Figure 4.
(4) By (3) and induction hypothesis, there must be Xe such
that F(I)(Xe) ⊇ α, which will be eventually included in
Xf in some more iterations F i(I) by the rules in Figure 4,
because e is in f . 2

