
A Type System for Checking Consistencies of a Policy Specification Used in
Ubiquitous Programming Environment∗

Ki-Hwan Choi, Hye-Ryeong Jeong, and Kyung-Goo Doh†

Hanyang University
Ansan, 426-791, Korea

{khchoi, hrjeong, doh}@pllab.hanyang.ac.kr

Joonseon Ahn
Hankuk Aviation University

Koyang, 412-791, Korea
jsahn@hau.ac.kr

Byeong-Mo Chang
Sookmyung Women’s University

Seoul, 140-742, Korea
chang@sookmyung.ac.kr

Abstract

The high-level policy description language used for
ubiquitous programming framework specifies context entity
relations, as well as context-based access control and adap-
tation rules. Then the specification in the policy description
language is translated into the code in a general-purpose
language, which is to be used in ubiquitous environment.
However, the inconsistencies and errors in the policy spec-
ification are all passed into the translated code, potentially
resulting disastrous malfunction. This paper introduces a
type system that checks the consistency of a policy spec-
ification so that the specification is free from type-related
errors and inconsistencies.

1. Introduction

Along with the development of hardware for ubiquitous
computing, the software technology for the effective and
secure ubiquitous programming environment should also be
advanced [6].

Several research works have been done to provide soft-
ware solutions for ubiquitous programming environment,
which includes context-aware middleware [3] and program-
ming environment for ubiquitous service [2, 8]. However,
they lack an effective medium to specify policies regarding
access control and adaptation rules. To fill up this efficiency,
a Policy Description Language[1] is developed to specify

∗This work was supported by grant No. R01-2006-000-10926-0 from
the Basic Research Program of the Korea Science and Engineering Foun-
dation.

†Corresponding author.

access control and adaptation policies for ubiquitous com-
puting environment.

The high-level policy description language used for
ubiquitous programming framework specifies context en-
tity relations, as well as context-based access control and
adaptation rules. Access control rules specify the access
privileges of an entity in a given context. Adaptation rules
specify an action to perform when a certain condition is
met in a given dynamic context. Using the policy descrip-
tion language, programmers can describe a high-level pol-
icy specification for ubiquitous application programs. Then
the specification in the policy description language is trans-
lated into the code in a general-purpose language, which
is to be used in ubiquitous environment. However, the in-
consistencies and errors in the policy specification are all
passed into the translated code, potentially resulting disas-
trous malfunction. This paper introduces a type system that
checks the consistency of a policy specification so that the
specification is free from type-related errors and inconsis-
tencies, which facilitates the development of secure and re-
liable ubiquitous software.

The rest of the paper is organized as follows. Section
2 presents the policy description language. Section 3 dis-
cusses entity types and Section 4 explains our typing algo-
rithm. Section 5 describes some related works. Section 6
concludes this paper and outlines future works.

2. Policy Description Language

A policy specification consists of three parts: entity re-
lation definitions, access control rules, and adaptation rules.
Defined first are relations between context entities to be
used in the specification, and then access control rules and

2007 International Conference on Convergence Information Technology

0-7695-3038-9/07 $25.00 © 2007 IEEE
DOI 10.1109/ICCIT.2007.260

444

adaptation rules follow.

2.1. Entity Relation Definition

A context entity in ubiquitous environment is either a
physical or logical space, a fixed object, or a moving ob-
ject. The locations of space entities and fixed entities are
not changed and thus static, while those of moving objects
may be changed and thus dynamic. Each entity of the real
world corresponds to an instance of an entity class in a pro-
gram.

The type of a relation between entities in policy spec-
ification must be defined before its use. The general
form of entity relation definition is a quadruple of form
id1(id2, id3, id4), where id1 is the kind of a relation, id3 is
the name of a relation, and id2, id4 are the names of entity
classes. For example, Location(Pda,IsIn,PCRoom)
defines that IsIn is the name of a relation of Location
kind between Pda entity and PCRoom entity.

Among entity relations, space entities may have inclu-
sion relations (such as the IsIn relation above). Since re-
lations on space entities are transitive, i.e., space entities
have other space entities and fixed objects nested inside, it
is convenient to represent them alternatively as a tree-like
structure. For example, the following definition represents
the hierarchical inclusion relations among space entities in
School.

School[Floor[PCRoom[Printer+Projector]
+Lounge[]
+Laboratory[Desktop+Printer]
+MeetingRoom[Projector]
+Toilet]

+Lobby[Printer]]

This representation can be viewed pictorially as in Fig-
ure 1, which indicates that: (1) a School entity
can have Floor and Lobby entities inside; (2) a
Floor entity can have PCRoom, Lounge, Laboratory,
MeetingRoom, and Toilet entities inside; (3) a
PCRoom entity can have Printer and Projector enti-
ties inside; (4) a Laboratory entity can have Desktop
and Printer entities inside; (5) a MeetingRoom can
have Projector entities inside; and (6) a Lobby entity
can have Printer object inside. This tree-like representa-
tion helps check the transitivity in space inclusion relations
with ease.

When statically determinable and necessary, the specific
instance name of a space entity class can be declared along
with its class name as follows:

School:ubischool
[Floor[PCRoom[Printer+Projector]

+Lounge[]

+Laboratory[Desktop+Printer]
+MeetingRoom[Projector]
+Toilet]

+Lobby[Printer]]

which declares that the space inclusion relation defined is
for a School instance named ubischool.

The formal syntax for entity relation definition is as fol-
lows:

id ∈ Identifier
c ∈ Context-Relation ::= id1(id2, id3, id4) | c1, c2 | s
s ∈ Space-Relation ::= id | id1 : id2 | id[s] | id1 : id2[s]

| s1 + s2 | s1, s2 | ε

2.2. Entity Expression

An entity expression describes one or more entity in-
stances of an entity class in context. An entity expression,
id1 : id2, represents an entity instance id2 of class id1. $id
represents the set of all instances of a class id. For space en-
tities, the complete route through the space entity hierarchy
from the root must be shown in an entity expression, which
is represented as the sequence of space entity expressions
starting from the root separated by ‘/’. We call the route a
path expression. For example, a path expression,

School:ubischool/Floor:f2/PCRoom:pcrm203

represents a PCRoom entity named pcrm203 in the f2
floor in the ubischool building.

Entity expressions employ regular expression-like nota-
tion to effectively name some space entities. For example,
a path expression,

School:ubischool/Floor:f1/*

represents the set of all instances in the f1 floor in the
ubischool school.

School:ubischool/.../$PCRoom

indicates the set of all PCRoom instances in ubischool.
That is, p1/.../p2 is the convenient form of expressing
multiple paths in a single path expression.

The formal syntax for path expression is defined as fol-
lows:

id ∈ Identifier
n ∈ Number
p ∈ Entity-Expression ::= q/p | q
q ∈ Factor ::= id1 : id2 | $id | $id n | ∗ | . . . /q

445

Figure 1. A Tree Representation

2.3. Access Control Rules

An access control rule specifies that the given set of en-
tities has the given right to the given object when the given
condition is met. The syntax of access control rules is as
follows:

x ∈ Access-Rule ::= (p1, p2.id, r) | x1 ; x2

r ∈ Relation-Expression ::= id1(p1, id2, p2) | ∼ r |
r1 ∧ r2 | true

We describe the rule to be a triple consisting of the sub-
ject, the object, and the condition. The subject is the set of
entities; the object is either an entity’s method name or a re-
lation name; and the condition is a dynamic context relation
which needs to be met in order for the access to be granted.
For example, an access control rule,

(School:ubischool/$Lobby/$Pda,
$Lobby/$Printer.print,true)

represents any PDA located in any lobby in the
ubischool building has the permission to use a printer
at the lobby.

A context relation expression, r, describes relations be-
tween entities in context. A relation expression is inter-
preted as either true or false. For example, a relation “a
PDA is in PCRoom 103” can be expressed as:

Location($Pda,IsIn,PCRoom:pcrm103)

We employ a logical “not” operator, ∼, to express the nega-
tion of a relation, and a logical “and” operator, ∧, to express
the conjunction of two relations.

2.4. Adaptation Rules

An adaptation rule specifies how to respond when an
event occurs in a given context. The syntax of adaptation
rules is as follows:

d ∈ Adaptation-Rule ::= r ⇒ a | d1 ; d2

a ∈ Action ::= p1.id(p2) | id1(p1, id2, p2) | a1 ; a2

For example, consider that if a PDA enters a PCroom, set
the printer in the PCroom as a main printer of the PDA. In
this example, an event, ”a Pda enters a PCroom”, will set the
relation Location($Pda,IsIn,$PCRoom) to true.

Location($Pda,IsIn,$PCRoom)
ˆ Location($Printer,IsIn,$PCRoom)

=> $Pda.setMainPrinter($Printer)

3. Entity Types

An entity type consists of the entity’s class name and
its location. Thus the entity type must contains the path
from the root in order to indicate the entity’s location. For
example, consider the following path expression:

School:ubischool/Floor:f2/PCRoom:pcrm201

Its class name is PCRoom, and its location information,
School/Floor/PCRoom, can be derived by listing the
class names attached throughout the path. Since a path ex-
pression can represent the set of entity instances, its type
must include its type as well as the collection of locations
showing where each entity instance is. In this paper, the
type of a path expression is described as the set of all possi-
ble paths from the root to its entity class. For example, for
the following expression:

School:ubischool/.../$Projector

its type according to the context in Figure 1 is:

{School/Floor/PCRoom/Projector,
School/Floor/MeetingRoom/Projector}

Let’s look at some more examples of path expressions with
their corresponding types:
School:ubischool : {School}

$Floor : {School/Floor}
School:ubischool/$Floor/* :

{School/Floor/PCRoom,
School/Floor/Lounge,
School/Floor/Laboratory,
School/Floor/Toilet,
School/Floor/MeetingRoom}

446

4. Typing Algorithm

4.1. Environments

The environments needed to check type consistency in
a policy specification are a class tree (e.g., Figure 2) and
an instance tree (e.g., Figure 3). From the entity relation

Figure 2. Class Tree

definition of a policy specification, a class tree can be built
straightforwardly as in Figure 2. When a new instance vari-
able is encountered, an instance tree grows with the variable
attached to the tree. When an existing instance variable is
encountered, the type consistency is checked.

Figure 3. Instance Tree

4.2. Typing Entity Expression

Given the set of class trees and instance trees, the type
of an entity expression is determined. First, the class tree
is traversed to see whether or not the path expression con-
forms the inclusion relation. Second, the instance tree is
traversed to check the type consistency of the instance vari-
able. If the instance variable is found in the instance tree,
then check the type consistency of the variable. Otherwise,
the proper branch is attached to the tree. One that makes
the typing complicated is the ellipsis in the middle of a path

expression. Since we need to collect all the paths matched
in the tree, we use a tag, Ellipsis or Full, to indicate that the
path information in the middle is missing. The typing rules
for an entity expression is shown in Figure 4 and Figure 5.

τ ∈ P(ClassTree)
η ∈ P(InstanceTree)
π ∈ P(Path-Type)
t ∈ Tag = {Full, Ellipsis}

F : P(ClassTree) × P(InstanceTree) × Entity-Expression
→ P(String list) × P(InstanceTree)
τ, η � F(p, τ, η) : {πt | πt ∈ P}, η′

τ, η � p : {π}, η′ (MainFun)

Figure 4. Main Rule for an Entity Expression

The typing rules in Figure 5 are mostly self-explanatory.
The function ‘declared’ checks the given class name is de-
fined in the class tree. The function ‘build’ takes a class
and instance name pair, checks if the instance name is in
the instance tree, and returns the updated instance tree if
it is not in the tree, or checks the consistency otherwise.
The function ‘parentOf’ takes two entity names and checks
if one is the parent of the other in the class tree, and the
function ‘ancestorOf’ takes two entity names and checks if
one is the ancestor of the other in the class tree. The func-
tion ‘connectPath’ takes two paths and returns all complete
paths that connect the two.

4.3. Typing Relation Expressions

Typing relation expressions is merely to check the type
of entity expressions in the relation expressions, and thus is
straightforward. The type rules are shown in Figure 6. The
function ‘lookup’ checks if the relation is defined.

τ ∈ P(ClassTree)
η ∈ P(InstanceTree)
σ ∈ P(Context)

, , �r : : P(ClassTree) × P(InstanceTree)
× P(Context) × Relation-Expression × Unit

τ, η � p1 : P1, η1 τ, η1 � p2 : P2, η2

lookup(id1, last(π1), id2, last(π2), σ) = true

τ, η, σ �r id1(p1, id2,p2) : ()
where π1 ∈ P1, π2 ∈ P2

(Relation)

τ, η, σ �r r : ()

τ, η, σ �r ∼ r : ()
(Neg)

τ, η, σ �r r1 : () τ, η, σ �r r2 : ()

τ, η, σ �r r1 ∧ r2 : ()
(And)

τ, η, σ �r true : ()(True)

Figure 6. Type Rules of Relation Expression

447

τ ∈ P(ClassTree)
η ∈ P(InstanceTree)
π ∈ P(Path-Type)
t ∈ Tag

, � : , : P(ClassTree) × P(InstanceTree) × Entity-Expression ×
P(Path-Type) × P(InstanceTree)

τ, η � q : Q, η′ τ, η′ � p : P, η′′

τ, η � q/p : {case πt2
2 of

πFull
2 ⇒ if parentOf(last(π1), first(π2), τ)

then (π1@ π2)
Full

πEllipsis
2 ⇒ if ancestorOf(last(π1), first(π2), τ)

then connectPath(π1, π2, τ)Full

| πt1
1 ∈ Q, πt2

2 ∈ P}, η′′

(PathEntity)

τ, η � q : {πt | πt ∈ Q}, η′(Factor) τ, η � id1 : id2 : {[id1]
Full}, build(id1, id2, η) if declared?(id1,τ)(EntInstance)

τ, η � $id : {[id]Full}, η if declared?(id,τ)(EntSet)

τ, η � $id n : {[id]Full}, η if declared?(id,τ)(EntWithNum)

τ, η � ∗ : {entityFull | entity ∈ τ}, η(Star)
τ, η � q : Q, η′

τ, η � . . . /q : {πEllipsis | πt ∈ Q}, η′ (PathEntAll)

Figure 5. Type Rules of Entity Expression

4.4. Typing Access Control and Adaptation
Rules

The typing rules for access control and adaptation rules
also merely checks if the entity expressions and the rela-
tion expressions are typable. They are shown in Figure
7 and in Figure 8, and are self-explanatory. The function
‘checkMethod’ is to check if the give class has the given
method.

τ ∈ P(ClassTree)
η ∈ P(InstanceTree)
σ ∈ P(Context)

, , � : : P(ClassTree) × P(InstanceTree)
× P(Context) × Access-Rule × Unit

τ, η � p1 : P1, η1 τ, η1 � p2 : P2, η2

checkMethod(last(π2), id) = true τ, η2, σ � r : ()

τ, η, σ � (p1,p2.id, r) : ()
where π2 ∈ P2

(AccRule)

τ, η, σ � x1 : () τ, η, σ � x2 : ()

τ, η, σ � x1;x2 : ()
(AccRuleSeq)

Figure 7. Type Rules of Access Control Rule

5. Related Works

There are some research works done in developing pro-
gramming environment for ubiquitous computing.

Cho and Lee described a security policy description
model based on an ubiquitous language called PLUE [4],
and a static checker to extract the rules that will be possibly
fired under a given credential and a policy.

τ ∈ P(ClassTree)
η ∈ P(InstanceTree)
σ ∈ P(Context)

, , � : : P(ClassTree) × P(InstanceTree)
× P(Context) × Adaption-Rule × Unit

, , �a : : P(ClassTree) × P(InstanceTree)
× P(Context) × Action × Unit

τ, η, σ � r : () τ, η, σ �a a : ()

τ, η, σ � r ⇒ a : ()
(AdapRule)

τ, η, σ � d1 : () τ, η, σ � d2 : ()

τ, η, σ � d1;d2 : ()
(AdapRuleSeq)

τ, η � p1 : P1, η1 τ, η1 � p2 : P2, η2

checkMethod(last(π1), id) = true

τ, η, σ �a p1.id(p2) : ()
where π1 ∈ P1

(MethodCall)

τ, η � p1 : P1, η1 τ, η1 � p2 : P2, η2

lookup(id1, last(π1), id2, last(π2), σ) = true

τ, η, σ �a id1(p1, id2,p2) : ()
where π1 ∈ P1, π2 ∈ P2

(Relation)

τ, η, σ �a a1 : () τ, η, σ �a a2 : ()

τ, η, σ �a a1;a2 : ()
(ActionSeq)

Figure 8. Type Rules of Adaptation Rule

A. Ranganathan and Roy H. Campbell developed a
context-aware system called Gaia [7]. This system gathers
various context information according to kind of relation
and this information is analyzed and disposed using first-
order logic. This system reacts to context circumstance with
context defined in configuration file. However, in this con-
figuration file, only instance values can be used.

448

Scott proposed the approach of using new application
level security policy languages in combination to protect
vulnerable applications [9]. Policies are abstracted from
main application code, facilitating both analysis and future
maintenance. They proposed three new application-level
policy description languages for preventing application-
level vulnerabilities.

Kagal, Finin, and Joshi suggests a middle-ware which
enables access control policy description to define users’
view [5]. But they elaborated only on the data model with-
out consideration of application development.

However, no work has been done for checking the con-
sistency of a policy specification, which enables program-
mers to make sure that their policy specification is consis-
tently described and error free.

6. Conclusion and Future Works

This paper proposes a type system that automatically
checks the consistency of types and space inclusion rela-
tions defined in a policy specification for ubiquitous pro-
gramming environment. The system relieves programmers
from battling with inconsistent policy specification by pro-
viding a compile-time checker.

Future works include the design and implementation of
program analysis and monitoring tools for ubiquitous pro-
gramming environment, as well as the enhancement of our
policy specification and its type system employing time el-
ements.

References

[1] J. Ahn, B. Chang, and K. Doh. A Policy Description Lan-
guage for Context-based Access Control and Adaptation in
Ubiquitous Environment. Lecture Notes in Computer Science,
Vol.4097:pp. 650–659, August 2006.

[2] J. E. Bardram. The Java Context Awareness Framework-
A Service Infrastructure and Programming Framework for
Context-Aware Applications. Munich, Germany. Third Inter-
national Conference, Pervasive 2005.

[3] P. Bellavista, A. Corradi, and R. Montanari. Context-Aware
Middleware for Resource Management in the Wireless Inter-
net. IEEE Transactions on Software Engineering, Vol. 29, No.
12, December 2003.

[4] E. Cho and K. Lee. Security Checks in Programming Lan-
guages for Ubiquitous Environments. Proceedings of 2004
Workshop on Pervasive, Security, Privacy and Trust, August
2004.

[5] L. Kagal, T. Finin, and A. Joshi. Moving from Security to Dis-
tributed Trust in Ubiquitous Computing Environments. IEEE
Computer, December 2001.

[6] T. Kindberg and A. Fox. System Software for Ubiquitous
Computing. IEEE Pervasive computing, pp. 70-81, January-
March 2002.

[7] A. Ranganathan and R. H. Campbell. An infrastructure for
context-awareness based on first order logic. Springer-Verlag
London Limited 2003, November 2003.

[8] M. Roman, C. Hess, R. Cerqueira, A. Ranganat, R. Camp-
bell, and K. Nahrstedt. Gaia: A Middleware Infrastructure to
Enable Active Spaces. IEEE Pervasive Computing, pp.74-83,
2002.

[9] D. J. Scott. Abstracting application-level security policy for
ubiquitous computing. Technical Report UCAM-CL-TR-
613, University of Cambridge, Computer Laboratory, January
2005.

449

