THA 2 S8

!'_ (Interprocess communication)

=80

0

1=

*' Contents

1. Pipes
2. FIFOs

©
Hr
o
0z
0g
0

V o]

IPC using Pipes

s |PC using regular files
= unrelated processes can share
= fixed size
= life-time
= lack of synchronization

s |PC using pipes
= for transmitting data between related processes
= can transmit an unlimited amount of data
= automatic synchronization on open()

©
Hr
o
0z
0g
0

‘-'h Pipes

= [In a UNIX shell,
= the pipe symbol | (the vertical bar)

= In a shell, UNIX pipes look like:

$ Is -alg | more
$ command 1 | command 2
= the standard output of command 1 becomes the standard

input of command?2

= We can have longer pipes:
$ pic paper.ms | tbl | egn | ditroff -ms

©
Hr
o
0z
0%
0

Example

= %who | sort

who —— pipe — sort

write pointer of

read pointer of
another process

one process

©
Hr
o
0z
0g
0

IPC using Pipes

= Data transmitting
= data is written into pipes using the write() system call
= data is read from a pipe using the read() system call
= automatic blocking when full or empty

= Types of pipes
= (unnamed) pipes

©
Hr
o
0z
0g
0

| .
‘-h Pipes
= In UNIX, pipes are the oldest form of IPC

= Limitations of Pipes
= Half duplex (data flows in one direction)
= Can only be used between processes that have a common

ancestor

(UsuaIIy used between the parent and child processes)
a A child nrnrcacec inha r'l-c Nninoac nf i Nnarant nrocracc

A\ ClIlIIITA P COoOo9 T1HH1INT IlOD PIP Q2 VIl 1 I\Jul_lll. I\JIU\-_JJ

©
Hr
o
0z
0g
0

| .
i Pipes
#include <unistd.h>

int pipe(int £dl2])

Returns: 0 if OK, -1 on error

= two file descriptors
= /dl0] : read file descriptor for the pipe
« fd[1]: write file descriptor for the pipe

= Anything that is written on fd{1] may be read by 74{0]
= This is of no use in a single process.
= A method of communication between processes.
= A way to communicate with parent-child processes.

©
Hr
o
0z
0g
0

‘-'h Pipes
parent child

process fork

£d[o] fd[1] fd[o] fd[1]

£d[0] fd[1]4

\ pipe \‘/ - pipe ://

kernel kernel

©
Hr
o
0zt
0g
0

How to implement pipes

_ r
fd[O] >
fd[1] W
file
descriptor open file active inode
array table table

©
Hr
o
0zt
0g
0

11

‘-'h Pipes

parent = child:

parent closes fd[0]
child closes fd[1]

parent child

parent €< child:

parent closes fd[1]
child closes fd[O]

parent child

fd[1] £d[0]

fd[1]

pipe

kernel

©
Hr
o
0z
0g
0

L pipe

kernel

12

‘-'h Pipes

= Read from a pipe with write end closed
=« returns O to indicate EOF

= Write to a pipe with read end closed
= SIGPIPE generated,
= write() returns error (errno == EPIPE)

m Atomic write

= A write of PIPE_BUF (kernel’s pipe buffer size) bytes or less
will not be interleaved with the writes from other processes

©
Hr
o
0z
0g
0

13

*'Sending messages from parent to child

#include <unistd.h> /* pipel.c */
#define MAXLINE 100

int main(void) {

int n, fd[2];

int pid'

char line[MAXLINE];

if (plpe(fd) < 0)
perror("pipe error");

if ((pid = fork()) <0)

perror\ ‘fork error')

else if (pid > 0){ /* parent */
close(fd[0]);
write(fd[1], "hello world\n", 12);
} else { /* child */
close(fd[1]);
n = read(fd[0], line, MAXLINE);
write(STDOUT_FILENO, line, n);

}@ﬁt‘@%?& 14

i Shell Pipe /1 &

% commandl | command?2

©
Hr

IDEA

Child executes command]
Parent executes command?

Standard output of command1(child)
- via pipe 2
Standard input of command2(parent)

Ozt
0F
O

15

Example: Shell Pipe -+ &

+

©
Hr

#include <stdio.h>

#define READ O

#define WRITE 1

main(argc, argv)

;nt argc; char* argv[];

int fd[2];

pipe(fd),

if (fork() ==0){ // child
close(fd[READ]));
dup2(fd[WRITE], 1);
close(fd[WRITE]);
execlp(argv[1], argv[1], NULL);

} perror(“Connect”);

else { /] parent
close(fd[WRITE]));
dup2(fd[READ],0);
close(fd[READ]));
execlp(argv[2], argv[2], NULL);
perror(“Connect”);

bR

16

‘.Ii popen()/pclose()

#1nclude <stdio.h>
FILE #*popen(const char *cmdstring, const char *type);

Returns: file pointer if OK, NULL on error

int pclose(FILE */p);

Returns: termination status of cmdstring, or —1 on error

= handle all the dirty work

the creation of a pipe,

the fork of a child,

closing the unused ends of the pipe,

execing a shell to execute the command, and
waiting for the command to terminate

= popen does a fork and exec to execute the cmdstring
and returns a file pointer.

O =0 ¥8Z 17

popen() pclose()

fp = popen(cmdstring, "r");
parent cmdstring(child)

fp 1« stdout

parent cmdstring(child)

fp p stdin

*' Example: popenl.c

parent . filter program
popen pipe

©
Hr
2
0z
0%
Hd

19

| Example: popenl.c

#include <sys/wait.h> /* popenl.c */

int main(void) {
char line[MAXLINE];
FILE *fpin;
if ((fpin = popen("myuclc”, "r")) == NULL)
perror("popen error");

for () {
fputs("prompt> ", stdout);
fflush(stdout);
if (fgets(line, MAXLINE, fpin) == NULL) /* read from pipe */

break;
if (fputs(line, stdout) == EOF)
perror("fputs error to pipe");

}

if (pclose(fpin) == -1)
perror("pclose error");

putchar('\n');

exit(0);

} —_ e e ——

| myuclc.c

#include <ctype.h> /* myuclc.c */
#include "ourhdr.h"

int .
main(void) {
int ¢,

while ((c = getchar()) !'= EOF) {
if (isupper(c))
c = tolower(c);
if (putchar(c) == EOF)
err_sys("output error");

if (¢ == "fn")
} fflush(stdout);
exit(0);

}

©
Hr
o
0z
0g
0

21

!'_ FIFO(Name Pipe)

‘.L FIFOs

= Pipes can be used only between related processes

= FIFOs are "named pipes”
= can be used between unrelated processes

= A type of file
= stat.st_mode == FIFO
= Test with S _ISFIFO macro

©
Hr
o
0z
0g
0

23

‘.L FIFOs

#include <sys/types.h>
#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode);
Returns: O if OK, -1 on error

= Creating FIFOs is similar to creating a file
= pathname : filename
= /mode: permissons, same as for open{) function

= Using a FIFO is similar to using a file
= we canh open, close, read, write, unlink, etc., to the FIFO

©
Hr
o
0z
0g
0

24

‘.L FIFOs

s f

FIFO opened without O_NONBLOCK flag
an open for read-only blocks
until some other process opens the FIFO for writing
an open for write-only blocks
until some other process opens the FIFO for reading

= [f O NONBLOCK is specified (nonblocking)

©
Hr

an open for read-only returns immediately
if no process has the FIFO open for writing
an open for write-only returns an error (errno=ENXI10)
if no process has the FIFO open for reading

{l
Ozt
0F
O

25

‘.L Using FIFOs

= Shell commands

= pass data from one shell pipeline to another, without
creating intermediate files

= Client-server application
= pass data between clients and server

©
Hr
o
0z
0g
0

26

Client-Server Comm. Using a FIFO

Server
= creates a "well-known" FIFO to communicate with clients

Client

= writes at most PIPE_BUF bytes at a time to avoid
interleaving of client data,

Problem
Server can't reply clients using a single "well-known" FIFO

O =0 ¥8Z 27

Client-Server Communication
Using a FIFO

client

client

write request

write request

read

request

server

28

Client-Server Communication

‘-Ih Using a FIFO

s Solution

= Create a FIFO for each client such that server can reply
= e.g.:. /tmp/serv] . XXXX, where XXXXX is client’s process ID

= What if a client has crashed ?
= FIFOs left in system
= (FIFO with 1 writer, no reader)

= Server must catch SIGPIPE
= it's possible for a client to send a request and
= terminate before reading the response,
= leaving the FIFO with one writer (the server) and no reader

©
Hr
o
0z
0g
0

29

Client-Server Communication
Using a FIFO

read replies
il -

. write replies
write request P

read ,| server
request

write request
client

47

read replies

©
Hr
o
0z
0g
0

‘.L FIFO Log

s AlH(fifo_s) ZE2)&=
=« fifo 2 0t=1)
=« fifo A GIOIEHE &1 A
« U JlSetlt

s =C20|HE(fifo_c) E2 1&HES
= fifo Ol 2XAE 2 100 i =58t

©
Hr
o
0zt
0g
0

31

fifo_s.c

lude <fcntl_h>
#include <sys/stat.h>
#include <stdio.h>
#include "util_h"
#define FIFO_NAME "fifol"
#define FILE_NAME "fifol.txt"

int main() {
char s[100];
int r, fdl1, fd2;

= mkfifo(FIFO _NAME, S IRUSR | S _IWUSR);
|f (r < 0) error('mkfifo error’ s

fdl = open(FIFO_NAME, O RDONLY);
it (fdl < 0) error(FIFO NAME ** open error'™);

fd2 = open(FILE_NAME, O WRONLY | O CREAT, S _IRUSR]S _IWUSR);
it (fd2 < 0) error(FILE NAME ' open error™);

while ((r = read(fdl, s, 100)) > 0)
write(fd2, s, r);
close(fdl);
close(fd2);
+ © =0 HHD 32

fifo_c.c

#include <fcntl.h>
#include <sys/stat.h>
#include <stdio.h>
#include <string.h>
#include "util_h"

#define FIFO_NAME "fifol"
int main() {

char s[100];

int i, r, fd;

fd = open(FIFO_NAME, O_WRONLY);
iIT (fd < 0) error(FIFO_NAME ' open error™);

for (i=0; i < 100; ++i) {
sprintf(s, "%d %d\n", getpid(), i);
write(fd, s, strlen(s));

+
close(fd);

=0 282

