
A Flexible Approach to Interprocedural Data Flow Analysis and Programs with
Recursive Data Structures

Neil D. Jones

Department of Computer Science
Aarhus University

DK-8000 Aarhus C, Denmark

Steven S, Iluch?uick

Computer Research Center

Hewlett-Packard Company

1501 Page Mill Road, Bldg. 28B

Palo Alto. California 94304

ABSIRACT

A new approach to data flow analysis of procedural pro-

grams and programs with recursive data structures is

described. The method depends on simulation of the in-

terpreter for the subject programming language using a

retrieval function to approximate a program’s data

structures.

1. Introduction

In this paper we present a new approach to data flow
analysis of programs with recursive data structures and

an application of the method to interprocedural flow
analysis. The basic approach is similar to that used in
the first part of [JOM81] to analyze LISP-like structures,

but is significantly more flexible and economical. It

depends on the use of tokens to designate the points in a

program where recursive data structures are created or

modified (and hence to approximate their values) and a
retrieval function to finitely represent the interrelation-
ships among the tokens and data values.

In the application to interprocedural flow analysis,

we consider an interpreter for a recursive programming

language (specialized to execute any particular pro-
gram) as a program with a recursive data structure,

namely the stack of procedure activation records. The
great flexibility in the choice of token sets and lattices to
approximate the data values of the programming
language give us a tremendous range of degrees of

exactness of the resulting data flow information. Thus

we can produce anything from summary data flow infor-

mation [Bar7Ef] to exact (though not effectively comput-
able) computation descriptions, The choice of basing the

approach on an interpretive model of program semantics
makes it comparatively easy to flow analyze such non-

structural features as goto’s and multilevel escapes from

procedures, in contrast to the contortions necessary if
denotational semantics is used.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy

otherwise, or to republish, requires a fee and/or specific permission.

In section 2 we discuss the general topic of flow

analyzing programs with recursive data structures and

in eections 3 & 4 we give an example which applies our
basic approach to a language which manipulates binary

lists. Section 5 begins the discussion of interprocedural
flow ana[ysis by presenting a simple model language with

recursive procedures and multilevel escapes from pro-

cedures. Section 6 presents a general flow analyzer for

the example language which may be parameterized to

analyze programs for various properties and to varying

degrees of exactness. Section 7 gives some examples of

specific analyzers constructed from the general one and

applications of them to some example programs. Sec-
tion 8 gives some remarks on making the approach prac-
tical. Finally, section 9 gives some conclusions and
suggestions for further work in this area.

1. Programs With Recursive Data Structures

In this section we provide an intuitive introduction
to the approximation method by showing how to flow
analyze a simple flowchart language which manipulates
binary lists, For each input program the analysis

method (imphcitly) produces, for each list-valued vari-

able A and each program point q, a regular set of binary

trees which is guaranteed to include every value which k
may assume at point g during execution.

A related and more formalized approach to approxi-
mating programs of this sort using extended regular tree
grammars is found in [JoM81]. The method developed

here is more powerful in that it yields an ordinary regu-

lar tree grammar with fewer nonterminals (namely, one
per constructor operation, rather than one per program

point), and provides a natural way to model the atomic
data manipulated by the program, as welL as to obtain

descriptions of the list values. The method is described

here in an intuitive way by means of an example, Sec-
tions 5 through 7 contain a more rigorous development

of the method in the context of interprocedural flow

analysis and [Jonf30] applies the method to flow analysis
of the lambda calculus. The method is parametrized by
the choice of the set of tokens, which can be varied so

that the result of the flow analysis ranges from an exact

(but not always effectively obtainable) description of the

set of program computations through less exact but

practically more useful descriptions. The computational

complexity of the method also varies with the choice of

token set., increasing with the exactness of the descrip-

tions obtained. In all cases the description is “safe”,

meaning informally that every reachable program state
is accounted for in the description (a formal definition is

given below).

@ 1982 ACM 0-89791-065-6/82/001/0066 $00.75

66

Most flow analysis methods are (more or less for-

mally) based on an abstract interpretation of the pro-

gram to be analyzed - that is to say, the program is in

essence executed over abstract data sets which mode[

the concrete data used in actual executions. Papers
expressing this view explicitly include [Sin72], [Cou77a]
and [Cou77b]. For example, [Cou77a] analyzes a
flowchart program whose variables range over aset A of
atomic values by first defining the static semantics of
the flowchart. This maps each control point q (= arc in

the flowchart) into the set of environments A’(q) which
may hold when control reaches that point (an environ-
ment is a function e mapping program variables to
values). Flow analysis is then viewed as the problem of

effectively obtaining a safe approximate description of

E(q) for each arc q. (A great many flow analysis prob-
lems may be viewed in this way, but not all –“history-

sensitive” problems such as available expressions
require more elaborate machinery to formalize.)

Typically the collection P(E) of all sets of environ-

ments is viewed as a lattice with subset inclusion as its

ordering and is modeled by a smaller lattice A’ which is
usually required to satisfy the finite chain condition so

that approximations can be obtained in finite time.
Notice that from this viewpoint the effect of several

flowchart arcs converging at a node is most naturally

modeled by the lattice join operation U in contrast to
[Hec77] and[Ki173]’s useof lattice meet.

The approximation of lattice L ~ by lattice Lz is

naturally described by an abstraction function
abs :Ll + Lz and a concretization function corm :Lz - L,.
Cousot [COU79] has given arguments, strengthened by

Nielson [Nie80], that for the purposes of flow analysis

<ubs, co?tc > should be an adjoined pair of functions, i.e.
foralltl sLlforalllz EL2

abs (1 ~) E12 if and only if 1, E cone (12)

We will use two approximation lattices in our exam-
ples, one for parity checking and the other for constant

propagation. The lattice Aao of Figure 1 can be used to

approximate the parity of sets of integers with the aid of
the adjoined pair of functions rzbs:P(N) - & and
cone :Aeo ~ P(N) defined by

/T\
.V, /.

J-

Figure 1. Approximation Lattice for Parity Checking

{

lif X=$

abs (x) = ev if all x E X are even

od if all z E X are odd
T otherwise

corLc(X’) =if X’ =_Lthen$

elif X‘ = evthen [0,2,4,6,...]
elif X’ = odthen [1,3,5,7,... \

else N

The lattice ~on in Figure 2 can be used for constant pro-
pagation. Suitable abstraction and concretization func-

tions are abs:P(N) A 4.. and cone :&On + P(N) defined
by

abs(X) = ifX= @ then ~elif X= [a] thensz elee T

corLc(_L) = @, cone(u) = {a\, cone(T) = N

o/#7\
1 2 . . .

“+$1,/
Figure 2. Approximation Lattice for Constant Propagation

Suppose we are given an n-ary operation op :An + A
and a lattice A‘ approximating P(A) via an adjoined pair
abs, cone. An operation op’ :(X)n + A is said to be a

safe approximation to op if for all a 1’, %‘ E A

E Op’(rz l’,,..,% ‘)

For example, one safe approximation on A,. to the addi-

tion operation on N has definition table

+’l J_ evod T

-L 1 evod T
ev ev ev od T
od od od ev T
T TTTT

This definition can easily be extended to include hetero-
geneous operations OP:A1 x x 4 - Ao.

1. A Language for List Manipulation

Consider a flowchart language with variables of two
. .

types: atormc variables al, az, . . . ranging over a set A

(e.g. the natural numbers), and binary list variables Al,
Aa, . . The set of binary lists can be defined inductively

as L::= A+ LxL, using McCarthy’s abstract syntax

[McC63].

The program points of the flowchart are the arcs q
in its arc set Q. Tbe nodes are labeled with commande of
the following sorts:

ai : = atornexp atomic assignment

At := atomexp atom-to-list constructor

Ai := c071s(Aj!Ak) list-to-list constructor

Ai ;= Aj,hd, Ai := Aj, tl selectors

@ :=Aj list-to-atom conversion

if test tests

Figure 2 contains an example program

and The semantics of such programs may be expressed

operationally in terms of strzi$es u = <a, e > where u = Q

67

entry

I
91

+

a:=5

f42

93

+---lx:= cons (MJ

97wtest

95

+

A := A.hd

96

Figure 2. Example Program

is an arc and e is an environment mapping the variables

to their current values; the set of all states is thus

X=QXE where E= VWF+A+L is the set of all
environments. Rules defining the transition relation

UI = az from one state to another are straightforward
and so are omitted in this informal overview. An exam-
ple computation of the program in Figure 2 might be as

follows, where, for brevity, we write <q ,a,2 > in place of
Ira = <q, e> where e(a) = rz and e(k) = l“:

<ql; o,o> =- <qz!5!o> + <93!5!5> - <94!5!<5!5>>

3 <q7,5, <5,5>> 3 <q4,5, <<5,5 >,<585>>> *

<g5,5, <<5,5 >}<5,5>>> * <q6,5, <5,5>>

2. Constructing the Data Flow Analyzer
Let UObe the initial program state and >“ be the

reflexive transitive closure of ~. The task at hand is to

approximate finitely the set S c Z of reachable states:

S=[U]UO **U]

Atomic values are easily approximated by using the

abstraction function; the main difficulty is rePresenting
the values of list-valued variables since their structures

may be arbitrarily complex. The approach used here is

as follows:

1. A set 7’ of tokens to provide local representa-
tions of list structures is chosen. In this
instance T = TATOM + Tco~~ + [nil) is an

appropriate choice, where

T’~ToM = {a I a is the exit arc from an atom-to-

Iist constructor statement)

Tco~.s = [a I a is the exit arc from a list-to-list
constructor statement].

2. A state u = <q, a,l> in X is represented by a tri-

ple <q, a’, t> where a’ is an element of A

approximating u and t c T is a token which
locally represents the list 1.

3. The entire set SSX=QXAXL is
represented by a pair 6 = <S ‘,’r> where S ‘
contains representations of all states in S, and

r is a (partial) retrieval function
T:T+A +P(Tx T). Given token t, ~(t) may
be used to reconstruct the value(s) of the

list(s) locally described by t.

To explain how 6 represents S, we first show how r
represents a list 1 by a token f, written t FSrt. The r-
representafion relation ~, L T x L is defined inductively

by

a) t ~rcz ifa cA, =A andrz=conc (r(f))

b) t S, <11,12> if 11,12 c L and there is a pair

<tl, tz> ET(f) such thattl M, L1 and fz~r lZ

For example, T~ToM = [q3) and TcoN~ = [q4\ in the pro-
gram in Figure 2. Suppose now that ~(q3) = 5 and

~(’.74) = [<q3!q3>, <q.l, q4>). Then q3~T 5, i.e. q3 r-
represents 5, and similarly q4 ~-represents <5,5>,

<<5,5 >,<5,5>>, <<5,5 >,<<5,5>, <5,5>>>, etc.

Let 6= <s’ ,T>, The state re~esentation relation
W6 c S ‘ x S is naturally defined by <q’, u’ ,t> R16<q, a,l>

if and only if q = g’, a E cone (a’) and t Rr 1. Finally, we

may take “6 = <S ‘,T> represents S “ to mean that for
each u E S there exists a u’ E S‘ such that u’ FY4u.

The task of flow analysis is to obtain effectively from

the given program a representation 6 of S. Note that
any such representation must have the following two pro-
perties, which form the basis for our flow analysis
method:

a) S’ contains some 00’ with Uo’ N6 Uo, i.e. a
description of the start state

b) If Ul E S, U1 9 U2 and U1’ ‘d al for some al’ < S’
then Uz’ M6 Uz for some o%’ s S ‘,

Flow analysis can be done by abstractly interpreting the

program. We begin with 80 = <[OO’],TO>, where TO is the

empty retrieval function (i.e. ro(a) = -1 and TO(A) = ~).

Suppose now that d~ = <S~’, rk > is known, and suppose

inductively that for all i z k, U. 5’ a implies that o’ ~6& u

for some u’ c Sk’. Now dk+l may be obtained by adding

elements to the Sk’ or Tk (t) sets (or bOLh) so that

ul ~ U2 and u~’ =bk u~ implies u2’ %k+l 02 fOr sOrne

u~’ E s~+,’.
The following table shows the effect

interpreting the program in Figure 2:
of abstractly

68

4 t + a for each a c conc(r(t)) if f E TATOM

State u in Z Sim,]latprl # Rdri-val— -. ...- ----- -.
in .X’ function r

<q*,?,?> <ql,l,nil>
<q2,5, ? > <q~,5, nil>
<qs,5,5> <q3,5, q3> 5 E T(q3)
<g4,5, <5,5>> <q4,5, q4> <g~,q~> c T(q4)
<qv,5, <5,5>> <qy,5, q4>
<q4,5, <<5,5 >,<5,5>>> <q4,5, q+>

<94,94> =~(94)
<q6,5, <<5,5 >,<5,5>>> <q5,5, q4>

<q&5, <5,5>> <qe,5, q3> and

<g8,5, q+>

Note that the transitions from program point q5 to
qe simulate the statement A:= A.hd by consulting the

retrieval functi0nvaluer(q4) = [<q~, q3>, <q4, q4>\. Since
this has two members, two possible new values for A are
obtained.

Note, further, that the approximation is not perfect,

since the set of trees actually constructed at q4 contains
only complete binary trees, while [1 I q4 Nr 1] contains

many others.

We conclude this section with the following observa-
tions about the above development:

1. This process may be formalized as follows: First,

define the set A= P(Z’) x R of all approximate

descriptions, where R = 1“ - A’ + P(T x T) is the
set of retrieval functions. Second, define the
natural ordering A by
61=<s1!r, >Ea2=<s2!r2>:f S,::z) rl(t)srz(t)
for all t E TcoN~andrl(f) ST’2(t) for t = T~roM, and

prove that A has no infinite ascending chains pro-

vided T is finite and A‘ has no infinite ascending
chains. Third, define the abstract interpretation via

a simulation @nction ~: A -A, Finally, prove that

.f iS continuous with respect to E and that u, * IJZ
and U1’ =6 u, implies az’ WJ(6) Uz for some Ug’ c S2’

where j (d) = <Sz’,rz>. This implies $ has a least
fixed point d = <S ‘,?’> and that UO =* u implies
u’zxdufor some u’c S’.

2. The exact choice of the token set T is clearly
unessential to the simulation process. All that is
required is that whenever a constructor
At : = cons (kj, Ak) is simulated, the token t chosen to

represent At’s value is such that a pair <tj, tk>

representing the Aj, kh values is added to r(t). A
larger set T can yield more precise simulation,

while a smaller T will give more rapid convergence.
In general, ?’ should contain some information
about the program’s state, as in our choice of the

labels of list constructor nodes.

An exact simulation is obtained by letting T contain,
as well, the value of the entire list structure and let-
ting A ‘ = A. We consider this a very desirable pro-

perty of any flow analysis method – that it can be
“tuned’ to do an exact program execution if desired
— since this implies that all semantic information

about the program”s runtime behavior is potentially

available.

3. The retrieval function T can be thought of as a
representation of a regular tree grammar [Eng75],
[Thai’3] with nontermirml set T. The productions
are

A
b) t + tl i?z for each <tl, tz> Er(t)ift E ‘TcON~

It is easily verified that t N, 1 if and only if t +* 1 by

this set of productions. However, we will not use
this formulation here because the lattice ordering

of A’ and its relationship to A is not naturally

representable in the usual conception of tree gram-

mars.

4. The regular tree grammars obtained from T seem to
be closely related to those obtained by normalizing

the extended regular tree grammars of [JoM8 1],
generating essentially the same approximations.
However, the grammars derived fromr have consid-

erably fewer nonterminals than those of [JoM81] and

the present formulation can also handle lattice
structures describing atomic values.

3. A Simple Language with Procedures

In this section we discuss a simple procedural
language which we shall take as the subject of our inter-
procedura~ ftow analysis in the next section, The
language is purposefully simple to allow us to concen-
trate on what is new in our approach, namely the flexibil-

ity inherent in the use of tokens and retrieval functions,
rather than to obscure it with considerations of complex
parameter passing methods, scope rules and aliasing, It

is hoped that it will be clear from the way we pass from
the actual semantics of the language to the approximate

flow analysis semantics that such issues can be handled

straightforwardly in our approach, The ability of this

approach to handle complex control flow is illustrated by
multilevel escapes from procedures, a difficult case for

previous interprocedural analysis methods.

A program P will comprise a main program p O and a
collection of procedures p 1, pn statically nested

directly within the main program (the main program will

generally be described as if it were one of the pro-

cedures). Each procedure p hae a set of local variab~ee,

denoted .LocP, and a set of call-by-value parameters

hTp . The main program is distinguished in that PaTPO =

@ and CXb = LocPO is taken as the set of global variables
of the whole program. Thus, within procedure p, the set

of accessible variables is CZb u LocP u PrZTp and we

require (for simplicity) that, for any p # p O, these three
sets be pairwise disjoint.

Each procedure is represented by a flowchart of
extended basic blocks [Ken76] (i.e. single-entry,

multiple-exit). In particular, a procedure is a directed

graph <BP, QP,sP,tP, ebp> with nodes b = L?P labeled by
extended basic blocks, arcs q E QP, two functions SP, tP:

QP + BP giving the source and target nodes of each arc
and ebP the distinguished entry block. The functions SP
and tp specify the endpoints of each arc: q runs from

Sp(q) to fp(q).

The contents of a node b ~ f?~ may be any single-

entry, multiple-exit intraprocedura~ action (modeled by
its transfer and exit selection functions), a call, a return
or an interprocedural escape. So as to specify the
escapes unambiguously, we stipulate that the Qp be pair-

wise disjoint. The (single) arc exiting ebP is denoted e%,
i.e. sP(e~) = ebP.

We specify the semantics of individual instructions
by first associating with each procedure its set of globoL
environments E’ = Glb u Lo CP u Przr9 * Val, which map
the accessible variablea to their current Ys.luea, The
semantics of an individual instruction in procedure pi
are specified via the following auxiliary functions on

69

2. for a call instruction

environments:

1. For each (single-entry, multiple-exit) intrapro-
cedural action (e.g. an assignment or a condi-

tional or an extended basic block) there is a
frans~er function f ;Epi + EPi and an exitsele c-

tion function exit :EPi + [1,..., m]. The transfer

function specifies how the intraprocedural

action transforms the environment and the exit

selection function specifies the exit arc taken

from the instruction.

2. For each call instruction call pj(ez ~,..., ezm) in
procedure pi, there is afunction proccallii:Eti

- EPj to set up the environment at the entry to

pj defined by

[

et(va~) if var E Glb

proccatlij(ei)(var) = evat(ezk, ei) if var is the
k th formal

parameter of

P~
1. if var c Locpj

3. For each pair of procedures pi, pj there is a
function used for returns and escapes to

restore the saved local variable values,

combineij :EPi x EPj - Epi defined by

{

ej(vm) if var E Glb

combinetj(ei, ej)(var) =
ei(vczr) if wwr z Locfi

u Lo Cpi

We specify the semantics of programs by an inter-
preter whose total state is a stack a =

<gl, e1><q2, e2> ... <qn, en> of control point-environment

pairs in Z = (Q x E)*. A control point is an arc g E Q
where

Q=; Q@
i =0

The current control point and environment are ql and

el, and the remainder Of the stack cOntains saved Pairs
of return addresses and environments for procedures
which have been entered but not yet returned from.

(Actually, we could restricted forj >1 tohold only the
values of local variables and parameters, but we choose
not to do so to simplify the notation.) Thus if qj labels an
arc in procedure@, we have ej < EP~.

The initial state of the interpreter is U. = <e’n. o,eo>,

where e. E E. satisfies eo(war) = ? for all VUT and “?” is
some (unspecified) initial value.

The transition relation of the interpreter s c ‘Z x Z
is as follows:

1. for anintraprocedural action

with transfer function f :E + E and exit selec-

tion function
ezit:E + [1,.,,, mj, we have

9 ql
>

occurring in procedure pi, we have

<q, e> s a ~ <e?tPj,~OCcaUif (e)> ~ <ql, e> $ U

3. for a return instruction from pj

we have

<q, e> $ <ql, el> ~ u = <ql, combine (e, el)> s o

4. for an escape instruction

with q. c Q@, we have

<q, e>$o>esc(q, e,u)

where esc :Q x E x X + X pops the call stack to

the appropriate level, as given by

esc(q, e,<ql, el> $ U) = if ql E Qpi
then

<qo, combine (e ,el)> $ u
else esc (q, e,u)

and esc(q, e,e) = s.

As an example of the above, consider the program in

Figure 3 (as the exit selection functions are all trivial

they are omitted). Note that the control flow of this pro-

gram k given by the infinite sequence of arcs abe (ghc)-

and that the first few states in its execution are

<aj[w + ?]> a <b, [w + 2;>
* <e, [w+ 2,x + I]><c, [w +2]>

+ <g, [’w + 2,y + 3,2 + I]><f, [w + 2,
z +I)><c, [w + 2]>

+ <h, [w + 4,y + 3,Z + l]><f ,{W + 2,
x +I; ><c, [w + 2]>

* <C, [w + 4}>

+ <gj[w + 4,y + 5,2 + I]><d, [w - 4]>
> <h, [w + fli,y + 5,2 + I]><d, [w + 4}>

+ <C, [W + 6j>
...

4. An Approximate Interpreter for our Example Language

Our purpose in this section is to construct an

approximate interpreter for our simple procedural

language, parametrized in such a way that the choice of

token set will determine the exactness of the interpro-

cedural flow analyzer so produced and its computational

efficiency as well. In particular, the range of behaviors

70

PP.

‘rJaT w

+

a

W(-2

b

2
c

Cau P2(W+ 1,1)

d

exit

e I

z’
call P2(3,x)

f

return

QPJy,z)

d
h

escape c

Figure 3. An example program

should include everything from summary data flow
analysis [Bar78] to exact execution descriptions.

As a starting point, we assume given

1. An approximation lattice .IJPi’ for each set .EPt of
environments for procedure pi; for example, to

analyze parity of variable values, set EPi’ = Glb

u LocP~ u Parfl A &.

2. For each instruction “call Pj(...)” in procedure

Pi, a safe approximation proccaZlij’:Em,’ +E.,’

triple ml’ = <ql, el’, t> in if, whereel’ in Epi’rew=ientsel
and f = tokcm(uz’). Here U2’ describes the state just
before entry to the current procedure(t issomedistinc-

tive initial value to if uisinthe main program). No expli-

cit, retrieval function T will be used, but the r(t) used

above will correspond intuitively to [u’ E 6 I toke?z(a’) =
t].

Astute dr+sc?iptio nisbydefinitionan element u’ of

.X’= ~(Qpi xEti’x T)
i=o

A computation description will be a subset 6 of Z’. How-

ever, not every subset of Z’ is suitable for approximation

purposes. In particular, two state descriptions <q ,e ,’, t >
and <q, e2’, t> in the same 6 logically can be replaced by

the single description <g ,e ~’ Uez’, t > (and should be for

reasons of efficiency and termination). Further, we need
a lattice strllcture on computation descriptions, so that,

as in the preceding examples, a minimal safe description

d can be obtained by beginning with the initial state
description and abstractly interpreting the program

until no new state descriptions can be added. Conse-
quently we define the following:

1. The set of all computation descriptions is A =

2. The order relation E is given by rfl E 6Z iff for all

<q, el’, t> = d, there exists <q, e2’, t> = 62 with

el’ Ee2’. This ordering, in fact, makes A isomorphic
to the lattice of partial functions

to its parameter setup func-tion pro; cat~j. “ o.
3. For each @ and pj, a safe approximation

combineij ‘:EPi’ x EPj’ A EPi’ to combine(j (typi- 1.
tally quite analogous to cornbi?wlj).

4. A function token such that if the current con-
trol arc of a state description CT’is’the entry to
a call instruction, then token (u’) is a token
representing the new stack. Further discussion
of the choice of token sets will be deferred until

after the construction of the approximate

interpreter,

As in the analysis of programs with recursive data
structures presented above, an algorithm will be
described to find a safe computation description d of the

set of all reachable program states. A state a =
<ql, el>... <gin, rsm> with ql c I&i will be described by a

under the natural (pointwise) ordering on function

spaces.

The desired computation description is, by

definition, the smallest 6 with respect to Ewhich satisfies
the simulation rules given below. Each rule is a closure

property, specifying that if certain state descriptions al’,

~z’, arc in d then [o’] E d must hold for some additional
state description u’. Existence and uniqueness of such a

6’ follows from the fact that the rules may be viewed col-

lectively as defining a continuous function @:A - A on the
lattice of computation descriptions. Consequently, by

Kleene’s constructive version of the Tarski-Knaster fixed

point theorem O has a unique least fixed point, namely

In general, @m(~) describes the result of applying the

simulation rules m times to an initially empty computa-

tion description. The simulation rules are as follows:

Let the initial program state be <eno, eo>. Then

<eno, eo’, to> E d, where eo’ = abs[eoj.

For an intraprocedural action

with transfer function f :Epi + EYi and exit
selection function exit zEpi + [1,...,mj, if

<q, e’, t> c 6 then [<qi, ei’, t>] Ed fori = 1,..., m
where ei’ —

71

rzbs[~(e) I e =corzc(e’)andetif(e) =i].

2. For a call instruction

occurring in procedure pj, if a’ = <q, e’, t> G d

then [<enPi,proccaW (e’),token(u’)>] E 6.

3. For a return instruction in procedure pj

if <q, ~j’, foken(u’)> E d where d = <qlje ~’jt I> is

in 6 and q ~ is an entry arc to an instruction of

the form “call pi(...)” in Pj with exit arc q?

then {<qz, combineij(et’, ej’), t>] EO.

4. For an escape from procedure pj to label q. in

procedure pi

if u’ = <q, ej’, t> G IS and a’ ~ <ql, el’, t> then

[<qo,combineij(ea’,ej’),f,>] =6 where

5. Some Examples of Interprocedural Analysis

As an example of our approach to interprocedural
flow analysis, we first. analyze the program in Figure 3 to
determine the parity of the values of its variables. Given
an environment E: Var + N mapping some set of vari-
ables to integer values, we define l?’: Vxr + ~0. A safe

approximation C07di7W~j’ to cornbinetj is essentially
analogous to Combineij, and safe approximations to the

various p~OccaUij functions are straightforward, For

example, we could use the following for “call Fz(w + 1, 1)”
in Figure 3:

pTOCCUU~j’(e ~’)(’W) = @~’(’UJ)

proccczt~l[, o’)(w) = if co’(w) = evthen od

elif co’(w) = od then ev
else co’(w)

proccdtij’{eo’)(z) = od

As tokens we take to plus the entry arcs to “call”

instructions, so token (<q, e’, t>) = q. We assume that

initi?.l~y e.’(z) = ~ for all global variables x. The follow-

ing table shows how surface state descriptions accumu-

late as we perform the analysis:

r ——
7Computation description: 6 = [U I’,..., U)’) where

al’ = <U, [w + L}, to>
02’ = <b, [w + ev], fo>
03’ = <e, {w + ev,z + od}, ff> token (02’) = b

u4’ = <9, @ + ev, y + od, z -+ od], e> token (a3’) = e

u5’ = <~,[~ + ev,y + od, z + od], e>
Ue’ = <C, [w + ev], to>

Q?(= <g, [w + ev, y + odz + od], c> token (ae’) = c

Od’ = <h, [w - ev,y + od, z + od], c>——

Note that, we have succeeded in determining the parity

of all variables.

For our second example we do a constant propaga-

tion analysis cm the same program (Figure 3). The set of

environments E: Va.r - N will be modelled by the lattice

E’:Virr * /&on, and the combine~jf functions are again

analogous to the com.bineij. The pTOCCaZZ~j functions are

easilv aDmoximat,ed: for example, for the instruction. .
“CCLU P2(W-I-1,1)”we have

pTOCCfZ1~q’(e’)(W) = e’(~)

Proccatttj’(e’)(y) = if e’(w)
e’(w) +

proccalltj’(e’)(z) = 1

[J-,T\ then
1 else e’(w)

The following table shows the results of doing the

first seven steps of the constant propagation analysis

with foken(<q, e’, t>) = q:

r .—
Com~utat~n description (first 7 iterations):

d = U@(@) = [al’, , UB’) where
i=o

At this point <c ,[w + 6], to> is to be added to 6. Since
this triple and Qe’ differ only in their environment com-

ponents, they are combined. This happens twice more
and the final description which results is given by the fol-

lowing table:

—
Computation description:
.

6 = IJ@t(@) = [u,’, , U8’) where

i=O

u~’ = <Cz,{w - _L],to>
u~’ = <b, [w + Z;, fo>

‘3’ = <e, [W + 2,x + I], b> token (oz’) = b

a.; = <g,[u~ - 2,y + 3,z + I], e> toke72(c73’) = e

05’ = <hj[w + 4,y ~ 3,2 + I}, e>
Oe(= <c, [w + T], to>

u~’= <g, fw +T,y AT, Z - l), C> token (ao’) = c
U@’= <h, {w + T,y AT, Z + l,c>

72

Thus we have determined that both x and z have the

constant value 1, while w and z are runtime-variable.

6. Choice of Tokens

The possible choices of token sets vary over quite a
wide range. At. one extreme we can get an exact simula-

tion, and hence derive from

6= (j W(+)
n=o

an exact description of the entire computation. One way
to obtain this is to use A = P(Y) with the subset order-
ing, let E’ be the flat lattice E u [LT] and define

token(u’) = u’ for all d e Z’. Clearly such a 6 is not in

general effectively obtainable, but it does show that
there is no intrinsic limit to the flow information obtain-

able by our method.

We have chosen in our examples to let ‘1’ be to plus
all the program’s call arcs, thus differentiating calls
from different places to the same procedure. Using pro-

cedure entry arcs instead gives smaller computation

descriptions by combining information from different

calls to the same procedure.

The “functional approach” of [ShP81] can be

modelled by using as tokens the input argument descrip-
tions. To see this, suppose procedure pi has arc n and

that eo’ describes the environment at entry time. The

appearance of a triple <n, e’ ,eo’> in 6 can be expressed
in the terminology of [ShPttl] by

p~rp{,n~(eo’) = e’

The present approach is more flexible for several rea-
sone, including the flexibility in the choice of t,okens, the

fact that both local and global variables can be accomm-
odated and the absence of limitations with respect to pos-

sible control flows.

The “call-strings approach” of [ShPf31] also appears

to be achievable by an appropriate choice of T.

7. Some Remarks on Practicality

As presented above, our method is highly general

but potentially quite expensive in practilce. Clearly, its
complexity will vary with the choice of token set and
there is some leeway for judicious choices there.

Another consideration is that to implement the model-

ling of returns and escapes efficiently, it would help to
have an explicit retrieval function T: T + A mapping

token t tor(t) = [u’ E 15I token(u’) = tj.

Another major issue is the space required to store 15,
which is potentially quite high since it is a ternary rela-

tion. This could tre reduced by representing it less

exactly. For example, in place of 6, one could use two
functions p and x (for “flow” and “call” information,
respectively) with

P E jj(Q@ + E-pi’)
i=o

mapping arcs to data flow information and

x E [po,...,pnj + P(T)

mapping each procedure to the set of tokens describing
states whir, h call it. Modification of the flow simulation to
work with p and x is straightforward containment of a

triple <g ,e’ ,t > in d with g in procedure pi would
correspond to p(q) = e’ and t E x@i,). However, the

decoupling of th~ e’ and f components will generally
make it impossible to get exact simulation by any choice
of T.

8. Conclusion

We have presented a highly flexible approach to flow

analysis of programs with recursive data structures and

an application of the method to interprocedural flow

analysis. We believe that the framework for interpro-
cedural analysis is general enough to encompass virtu-

ally all of the previous met,hods, given appropriate

choices of token sets and data approximation lattices.
That, the method can be extended to handle other

language features should be clear from the use of an

interpretive semantics.

De Laubenfels and Muchnick are currently working
on applying the basic approach to analysis of distributed

programs with communications via message queues, and
preliminary work promises significantly better flow infor-

mation than that given by Reif’s methods in [Reii’9].

Two areas of investigation that appear fruitful are to

consider how t,he computational complexity of the

anaIyzer wmies with the choice of token set and the
feasibility of building an analyzer with the choice of

token set IIS a parameter.

73

Bar78

Cou77a

Cou77b

COU79

Eng75

Hec77

JoM81

Jon80

Ken76

KL173

McC63

NieftO

Reii’9

Sin72

ShP81

REFERENCES

Barth, Jeffrey, A Practical Interprocedural Data
Flow Analysis Algorithm, Comm. o? the ACM, vol.

21, no. 9, 1976, pp. 724-736.

Cousot, Patrick k Radhia Cousot, Abstract
Interpretation: A Unified Lattice Model for

Static Analysis of Programs by Construction or
Approximation of Fixpoints, Con~, Rec. of 4th

ACIU Symp, on Print. of Prog. Lang., Los

Angeles, California, January 1977, pp. 238-252.

Cousot, Patrick & Radhia Cousot, Automatic

Synthesis of Optimal Invariant Assertions:
Mathematical Foundations, Proc, of ACM Symp.

on Artif. [ntell. and Prog. Lang., SIGPLAN
Notices, vol. 12, no. 8, August 1977, pp. 1-12.

Cousot, Patrick & Radhia Cousot, Systematic
Design of Program Analysis Frameworks, Conj,

Rec. of 6th ACM Sgmp. on Print of Prog.

Lang,, January 1979, pp. 269-262.

Engelfriet, Joost, Tree Automata and Tree

(2mmmars, DAIMI Report FN-10, Dept. of Com-

puter Science, University of Aarhus, Aarhus,
Denmark, April 1975.

Hecht, Matthew S., Flow Analysis of Computer
Programs, Elsevier North-Holland, New York,

1977.

Jones, Neil D. & Steven S. Muchnick, Flow
Analysis and Optimization of LISP-Like Struc-
tures, in Steven S. Muchnick & Neil D. Jones

(eds.). Program Flow Analysis: Theory and
Applications, Prentice-Hall, Englewood Cliffs,
New Jersey, 1981, pp. 102-131.

Jones, Neil D., Flow Analysis of Lambda Expres-

sions, Technical Report DAIMI IR-23, Computer

Science Department, University of Aarhus,

Aarhus, Denmark, October 1980.

Kennedy, Ken, A Comparison of Two Algorithms
for Global Data Flow Analysis, SIAM J, Comput,,
vol. 5, no. 1, 1976, pp. 158- 180.

Kildall, G. A., A Unified Approach to Global Pro-

gram Optimization, Conf, Rec. of the ACM

Sww. on fiinc Of *Qg Law Bostcw ~a=
sachuset,ts, October 1973, pp. 194-206.

McCarthy, John, Towards a Mathematical Sci-

ence of Computation, Information Processing

1962, North-Holland, Amsterdam, 1963, pp. 220
-226.

Nielson, Flemming, Semantic Foundations of

Data Flow Analysis, Technical Report DAIMI PB-
131, Computer Science Department,, Aarhus
University, Aarhus, Denmark, February 1961.

Reif, John H., Data Flow Analysis of Communi-

cating Processes, Conf. Rec. of the 6th ACM
SVmp. on Print. of Pvog. Lang,, San Antonio,
Texaz$ January 1979, pp. 257-268.

Sintzoff, Michel, Calculating Properties of Pro-

grams by Valuations on Specific Models, Proc,
ACM Conf, on Proving Assertions about Pro-

g’rams, Las Cruces, New Mexico, January 1972,

pp. 203-207.

Sharir, Micha & Amir Pnueli, TWO Approaches to
Inter-procedural Data Flow Analysis, in Steven S.

Muchnick & Neil D. Jones (eds.), Program Flow
Analysis: Theory aud Applications, Prentice-
Hall, Englewood Cliffs, New Jersey, 1981, pp. 189

-234.

Tha73 Thatcher, James W,, Tree Automata An Infor-

mal Survey, in Alfred V. Aho (cd.), Currents in
the Theory of Computing, Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1973, pp. 143- 172.

74

