Precise Interprocedural Dataflow Analysis via Graph Reachability

Thomas Reps, Susan Horwitz, and Mooly Sagiv
University of Wisconsin

Abstract
The paper shows how a large class of interprocedural dataflow-analysis problems can be solved precisely in polynomial time by transforming them into a special kind of graph-reachability problem. The only restrictions are that the set of dataflow facts must be a finite set, and that the dataflow functions must distribute over the confluence operator (either union or intersection). This class of problems includes—but is not limited to—the classical separable problems (also known as “gen/kill” or “bit-vector” problems)—e.g., reaching definitions, available expressions, and live variables. In addition, the class of problems that our techniques handle includes many non-separable problems, including truly-live variables, copy constant propagation, and possibly-uninitialized variables.

Results are reported from a preliminary experimental study of C programs (for the problem of finding possibly-uninitialized variables).

1. Introduction
This paper shows how to find precise solutions to a large class of interprocedural dataflow-analysis problems in polynomial time. In contrast with intraprocedural dataflow analysis, where “precise” means “meet-over-all-paths” [20], a precise interprocedural dataflow-analysis algorithm must provide the “meet-over-all-valid-paths” solution. (A path is valid if it respects the fact that when a procedure finishes it returns to the site of the most recent call [31, 15, 6, 24, 21, 29]—see Section 2.)

Relevant previous work on precise interprocedural dataflow analysis can be categorized as follows:

- Polynomial-time algorithms for specific individual problems (e.g., constant propagation [5, 14], flow-sensitive summary information [6], and pointer analysis [24]).
- A polynomial-time algorithm for a limited class of problems: the locally separable problems (the interprocedural versions of the classical “bit-vector” or “gen-kill” problems), which include reaching definitions, available expressions, and live variables [22].
- Algorithms for a very general class of problems [10, 31, 21].

The work cited in the third category concentrated on generality and did not provide polynomial-time algorithms.

In contrast to this previous work, the present paper provides a polynomial-time algorithm for finding precise solutions to a general class of interprocedural dataflow-analysis problems. This class consists of all problems in which the set of dataflow facts \(D \) is a finite set and the dataflow functions (which are in \(2^D \) — \(2^{D^2} \)) distribute over the meet operator (either union or intersection, depending on the problem). We will call this class the interprocedural, finite, distributive, subset problems, or IFDS problems, for short. All of the locally separable problems are IFDS problems. In addition, many non-separable problems of practical importance are also IFDS problems—for example: truly-live variables [13], copy constant propagation [12, pp. 660], and possibly-uninitialized variables.

Our results are based on two insights:

(i) By restricting domains to be powersets of atomic dataflow facts and dataflow functions to be distributive, we are able to efficiently create simple representations of functions that summarize the effects of procedures by supporting efficient lookup operations from input facts to output facts. For the locally separable problems, the representations of summary functions are sparse. This permits our algorithm to be as efficient as the most efficient previous algorithm for such problems, but without losing generality.

(ii) Instead of calculating the worst-case cost of our algorithm by determining the cost-per-iteration of the main loop and multiplying by the number of iterations, it is possible to break the cost of the algorithm down into three contributing aspects and bound the total cost of the operations performed for each aspect (see the Appendix).

The most important aspects of our work can be summarized as follows:

- In Section 3, we show that all IFDS problems can be solved precisely by transforming them into a special kind of graph-reachability problem: reachability among interprocedurally realizable paths. In contrast with ordinary reachability problems in directed graphs (e.g., transitive closure), realizable-path reachability problems involve some constraints on which paths are considered. A realizable path mimics the call-return structure of a program’s execution, and only paths in which “returns” can be matched with corresponding “calls” are considered.

- In Section 4, we present a new polynomial-time algorithm for the realizable-path reachability problem. The algorithm runs in time \(O(ED^3) \); this is asymptotically faster than the best previously known algorithm for the problem [16], which runs in time...
As discussed in Section 5, the new realizable-path reachability algorithm is adaptive, with asymptotically better performance when applied to common kinds of problem instances that have restricted form. For example, there is an asymptotic improvement in the algorithm’s performance for the common case of locally separable problems. Our work generalizes that of Knoop and Steffen [22] in the sense that our algorithm handles a much larger class of problems, yet on the locally separable problems the algorithm runs in the same time as that used by the Knoop-Steffen algorithm—$O(ED)$.

Imprecise (overly conservative) answers to interprocedural dataflow-analysis problems could be obtained by treating each interprocedural dataflow-analysis problem as if it were essentially one large intraprocedural problem. In graph-reachability terminology, this amounts to considering all paths rather than considering only the interprocedurally realizable paths. For the IFDS problems, we can bound the extra cost needed to obtain the more precise (realizable-path) answers. In the important special case of locally separable problems, there is no “penalty” at all—both kinds of solutions can be obtained in time $O(ED)$. In the distributive case, the penalty is a factor of D: the running time of our realizable-path reachability algorithm is $O(ED^2)$, whereas all-paths reachability solutions can be found in time $O(ED^3)$. However, in the preliminary experiments reported in Section 6, which involve examples where D is in the range 70–142, the penalty observed is at most a factor of 3.4.

Callahan has given algorithms for several “interprocedural flow-sensitive side-effect problems” [6]. Although these problems are (from a certain technical standpoint) of a slightly different character from the IFDS dataflow-analysis problems, with small adaptations the algorithm from Section 4 can be applied to these problems and is asymptotically faster than the algorithm given by Callahan. In addition, our algorithm handles a natural generalization of Callahan’s problems (which are locally separable problems) to a class of distributive flow-sensitive side-effect problems. (This and other related work is described in Section 7.)

The realizable-path reachability problem is also the heart of the problem of interprocedural program slicing, and the fastest previously known algorithm for the problem is the one given by Horwitz, Reps, and Binkley [16]. The realizable-path reachability algorithm described in this paper yields an improved interprocedural-slicing algorithm—one whose running time is asymptotically faster than the Horwitz-Reps-Binkley algorithm. This algorithm has been found to run six times as fast as the Horwitz-Reps-Binkley algorithm [28].

Our dataflow-analysis algorithm has been implemented and used to analyze several C programs. Preliminary experimental results are reported in Section 6.

Space constraints have forced us to treat some of the above material in an abbreviated form. Full details—including proofs of all theorems stated in the paper—as well as a great deal of additional material, can be found in [27].

2. The IFDS Framework for Distributive Interprocedural Dataflow-Analysis Problems

The IFDS framework is a variant of Sharir and Pnueli’s “functional approach” to interprocedural dataflow analysis [31], with an extension similar to the one given by Knoop and Steffen in order to handle programs in which recursive procedures have local variables and parameters [21]. These frameworks generalize Kildall’s concept of the “meet-over-all-paths” solution of an intraprocedural dataflow-analysis problem [20] to the “meet-over-all-valid-paths” solution of an interprocedural dataflow-analysis problem.

The IFDS framework is designed to be as general as possible (in particular, to support languages with procedure calls, parameters, and both global and local variables). Any problem that can be specified in this framework can be solved efficiently using our algorithms; semantic correctness is an orthogonal issue. A problem designer who wishes to take advantage of our results has two obligations: (i) to encode the problem so that it meets the conditions of our framework; (ii) to show that the encoding is consistent with the programming language’s semantics [9, 10].

Encoding a problem in the IFDS framework may involve some loss of precision. For example, in languages in which parameters are passed by reference there may be a loss of precision for problem instances in which there is aliasing. However, the process of finding the solution to the resulting IFDS problem introduces no further loss of precision.

To specify the IFDS framework, we need the following definitions:

Definition 2.1. In the IFDS framework, a program is represented using a directed graph $G = (N, E^*)$ called a supergraph. G consists of a collection of flow graphs G_1, G_2, \cdots (one for each procedure), one of which, G_{main}, represents the program’s main procedure. Each flowgraph G_p has a unique start node s_p, and a unique exit node e_p.

The other nodes of the flowgraph represent the statements and predicates of the procedure in the usual way, except that a procedure call is represented by two nodes: a call node and a return-site node. (The sets of call and return-site nodes of procedure p will be denoted by $Call_p$ and Ret_p, respectively; the sets of all call and return-site nodes in the supergraph will be denoted by $Call$ and Ret, respectively.)

In addition to the ordinary intraprocedural edges that connect the nodes of the individual flowgraphs, for each procedure call, represented by call-node c and return-site node r, G^* has three edges:

- An intraprocedural call-to-return-site edge from c to r.
- An interprocedural call-to-start edge from c to the start node of the called procedure.
- An interprocedural exit-to-return-site edge from the exit node of the called procedure to r.

(The call-to-return-site edges are included so that the IFDS framework can handle programs with local variables and parameters. The dataflow functions on call-to-return-site and exit-to-return-site edges permit the information about local variables that holds at the call site to be combined with the information about global variables that holds at the end of the called procedure.)

When discussing time and space requirements, we use the name of a set to denote the set’s size. For example, we
declare g: integer
program main
begin
 declare x: integer
 read(x)
call P(x)
end

procedure P(value a: integer)
begin
 if (a > 0) then
 read(g)
a := a - g
call P(a)
print(a, g)
end

Example Figure 1 shows an example program and its supergraph G^*. The supergraph is annotated with the dataflow functions for the “possibly-uninitialized variables” problem. The notation $S<x/a>$ denotes the set S with x renamed to a.

For each pair of nodes m, n in supergraph G^*, a path from m to n is a valid path iff the sequence of labeled edges in the path is a string in the language generated from nonterminal $valid$ in the following grammar (where matched is as defined above):

\[
valid \rightarrow valid (i, matched) \mid matched \quad for \ 1 \leq i \leq Call
\]

We denote the set of all valid paths from m to n by $IVP(m, n)$.

In the formulation of the IFDS dataflow-analysis framework (see Definitions 2.4–2.6 below), the same-level valid paths from m to n will be used to capture the transmission of effects from m to n, where m and n are in the same procedure, via sequences of execution steps during which the
call stack may temporarily grow deeper—because of calls—but never shallower than its original depth, before eventually returning to its original depth. The valid paths from \(s_{\text{main}}\) to \(n\) will be used to capture the transmission of effects from \(s_{\text{main}}\), the program’s start node, to \(n\) via some sequence of execution steps. Note that, in general, such an execution sequence will end with some number of activation records on the call stack; these correspond to “unmatched” \(i’s\) in a string of language \(L(\text{valid})\).

Example. In supergraph \(G^*\) shown in Figure 1, the path \([s_{\text{main}} \rightarrow n_1, n_1 \rightarrow n_2, n_2 \rightarrow s_p, s_p \rightarrow n_4, n_4 \rightarrow e_p, e_p \rightarrow n_3]\) is a (same-level) valid path; however, the path \([s_{\text{main}} \rightarrow n_1, n_1 \rightarrow n_2, n_2 \rightarrow s_p, s_p \rightarrow n_4, n_4 \rightarrow e_p, e_p \rightarrow n_8]\) is not a valid path because the return edge \(e_p \rightarrow n_8\) does not correspond to the preceding call edge \(n_2 \rightarrow s_p\).

We now define the notion of an instance of an IFDS problem:

Definition 2.4. An instance \(IP\) of an interprocedural, finite, distributive, subset problem (or IFDS problem, for short) is a five-tuple, \(IP = (G^*, D, F, M, \Box)\), where

(i) \(G^*\) is a supergraph as defined in Definition 2.1.

(ii) \(D\) is a finite set.

(iii) \(F \subseteq 2^D \rightarrow 2^D\) is a set of distributive functions.

(iv) \(M: E^* \rightarrow F\) is a map from \(G^*\)'s edges to dataflow functions.

(v) The meet operator \(\Box\) is either union or intersection.

In the remainder of the paper we consider only IFDS problems in which the meet operator is union. It is not hard to show that IFDS problems in which the meet operator is intersection can always be handled by dualizing (i.e., by transforming such a problem to the complementary union problem). Informally, if the “must-be-\(X\)” problem is an intersection IFDS problem, then the “may-not-be-\(X\)” problem is a union IFDS problem. Furthermore, for each node \(n \in N\), the solution to the “must-be-\(X\)” problem is the complement (with respect to \(D\)) of the solution to the “may-not-be-\(X\)” problem.

Example. In Figure 1, the supergraph is annotated with the dataflow functions for the “possibly-uninitialized variables” problem. The “possibly-uninitialized variables” problem is to determine, for each node \(n \in N\), the set of program variables that may be uninitialized just before execution reaches \(n\). A variable \(x\) is possibly uninitialized at \(n\) either if there is an \(x\)-definition-free valid path to \(n\) or if there is a valid path to \(n\) on which the last definition of \(x\) uses some variable \(y\) that itself is possibly uninitialized. For example, the dataflow function associated with edge \(n_6 \rightarrow n_7\) shown in Figure 1 adds \(a\) to the set of possibly-uninitialized variables if either \(a\) or \(g\) is in the set of possibly-uninitialized variables before node \(n_6\).

To simplify the presentation, we assume in Definition 2.4 that there is a single global space of dataflow facts, \(D\). This assumption is made strictly for expository purposes; the more general setting, in which for each procedure \(p\) there is a (possibly) different space of dataflow facts, \(D_p\), presents no additional difficulties [27]. Our implementation of the IFDS framework, discussed in Section 6, supports the more general setting.

Definition 2.5. Let \(IP = (G^*, D, F, M, \Box)\) be an IFDS problem instance, and let \(q = [e_1, e_2, \ldots, e_j]\) be a non-empty path in \(G^*\). The path function that corresponds to \(q\), denoted by \(pf_q\), is the function \(pf_q = a_1 \circ \cdots \circ a_j\), where for all \(i, 1 \leq i \leq j, f_i = M(e_i)\). The path function for an empty path is the identity function, \(\lambda x\).

Definition 2.6. Let \(IP = (G^*, D, F, M, \Box)\) be an IFDS problem instance. The meet-over-all-valid-paths solution to \(IP\) consists of the collection of values \(MVP_n\) defined as follows:

\[
MVP_n = \bigcap_{q \in IVP(n)} pf_q(T)
\]

for each \(n \in N^*\).

3. Interprocedural Dataflow Analysis as a Graph-Reachability Problem

3.1. Representing Distributive Functions

In this section, we show how to represent distributive functions in \(2^D \rightarrow 2^D\) in a compact fashion—each function can be represented as a graph with at most \((D + 1)^2\) edges (or, equivalently, as an adjacency matrix with \((D + 1)^2\) entries). Throughout this section, we assume that \(f\) and \(g\) denote functions in \(2^D \rightarrow 2^D\) and that \(f\) and \(g\) distribute over \(\cup\).

Definition 3.1. The representation relation of \(f\), \(R_f \subseteq (D \cup \{0\}) \times (D \cup \{0\})\), is a binary relation (i.e., graph) defined as follows:

\[
R_f = \{ (a, 0) \} \cup \{ (0, y) \mid y \in f(\emptyset) \} \cup \{ (x, y) \mid y \in f(\{x\}) \text{ and } y \notin f(\emptyset) \}.
\]

\(R_f\) can be thought of as a graph with \(2(D+1)\) nodes, where each node represents an element of \(D\) (except for the two \(0\) nodes, which (roughly) stand for \(\emptyset\)).

Example. The following table shows three functions and their representation relations:

<table>
<thead>
<tr>
<th>id: (2^a, b, c)</th>
<th>(\lambda a.S)</th>
<th>(a = \lambda a.S, {a})</th>
<th>(f = \lambda a.S, {a} \cup {b})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0) (a) (b)</td>
<td>(0) (a) (b)</td>
<td>(0) (a) (b)</td>
<td>(0) (a) (b)</td>
</tr>
<tr>
<td>(0) (a) (b)</td>
<td>(0) (a) (b)</td>
<td>(0) (a) (b)</td>
<td>(0) (a) (b)</td>
</tr>
<tr>
<td>(0) (a) (b)</td>
<td>(0) (a) (b)</td>
<td>(0) (a) (b)</td>
<td>(0) (a) (b)</td>
</tr>
</tbody>
</table>

Note that one consequence of Definition 3.1 is that there is never an edge of the form \((x, 0)\), where \(x \in D\).

Another consequence of Definition 3.1 is that edges in representation relations obey a kind of “subsumption property”. That is, if there is an edge \((0, y)\), for \(y \in (D \cup \{0\})\), there is never an edge \((x, y)\), for any \(x \in D\). For example, in constant-function, edge \((0, a)\) subsumes the need for edges \((a, a)\) and \((b, a)\).

Representation relations—and, in fact, all relations in \((D \cup \{0\}) \times (D \cup \{0\})\)—can be interpreted as functions in \(2^D \rightarrow 2^D\), as follows:

Definition 3.2. Given a relation \(R_i \subseteq (D \cup \{0\}) \times (D \cup \{0\})\), its interpretation \([R]\): \(2^D \rightarrow 2^D\) is the function defined as follows:

\[
[R] = \lambda X. ((\{ y \mid \exists x \in X \text{ such that } (x, y) \in R \} \cup \{ y \mid (0, y) \in R \}) - \{0\}.
\]
Theorem 3.3. \([R_f] = f\).

Our next task is to show how the relational composition of two representation relations \(R_f\) and \(R_g\) relates to the function composition \(g \circ f\).

Definition 3.4. Given two relations \(R_f \subseteq S \times S\) and \(R_g \subseteq S \times S\), their composition \(R_f; R_g \subseteq S \times S\) is defined as follows:

\[R_f; R_g = \{ (x, y) \in S \times S \mid \exists z \in S \text{ such that } (x, z) \in R_f \text{ and } (z, y) \in R_g \} \, . \]

Theorem 3.5. For all \(f, g \in 2^D \to 2^D\), \([R_f; R_g] = g \circ f\).

Definition 3.4 and Theorem 3.5 imply that the composition of any two distributive functions in \(2^D \to 2^D\) can also be represented by a graph (relation) with at most \((D + 1)^2\) edges. In other words, the distributive functions in \(2^D \to 2^D\) are “compressible”; there is a bound on the size of the graph needed to represent any such function as well as the composition of any two such functions!

Corollary 3.6. Given a collection of functions \(f_i: 2^D \to 2^D, \) for \(1 \leq i \leq j\),

\[f_j \circ f_{j-1} \circ \cdots \circ f_2 \circ f_1 = [R_{f_j}; R_{f_{j-1}}; \ldots; R_{f_1}] \, . \]

3.2. From Dataflow-Analysis Problems to Realizable-Path Reachability Problems

In this section, we show how to convert IFDS problems to “realizable-path” graph-reachability problems. In particular, for each instance \(IP\) of an IFDS problem, we construct a graph \(G_{IP}^f\) and an instance of a realizable-path reachability problem in \(G_{IP}^p\). The edges of \(G_{IP}^p\) correspond to the representation relations of the dataflow functions on the edges of \(G^*\). Because of the relationship between function composition and paths in composed representation-relation graphs (Corollary 3.6), the path problem can be shown to be equivalent to \(IP\): dataflow-fact \(d\) holds at supergraph node \(n\) iff there is a “realizable path” from a distinguished node in \(G_{IP}^f\) (which represents the fact that \(\emptyset\) holds at the start of procedure \(main\)) to the node in \(G_{IP}^p\) that represents

![Figure 2](image-url). The exploded supergraph that corresponds to the instance of the possibly-uninitialized variables problem shown in Figure 1. Closed circles represent nodes of \(G_{IP}^p\) that are reachable along realizable paths from \((s_{main}, 0)\). Open circles represent nodes not reachable along such paths.
Let \(IP = (G^*, D, F, M, \cup) \) be an IFDS problem instance. We define the exploded supergraph for \(IP \), denoted by \(G^*_IP \), as follows:

\[
G^*_IP = (N^*, E^*) \text{ where}
\]

\[
N^* = N^* \times (D \cup \{ 0 \}),
\]

\[
E^* = \{ (m, d_1) \to (n, d_2) | (m, n) \in E^* \}
\text{ and } (d_1, d_2) \in R_{M(m, n)} \}.
\]

The nodes of \(G^*_IP \) are pairs of the form \((n, d)\); each node \(n \in N_p \) is “exploded” into \(D + 1 \) nodes of \(G^*_IP \). Each edge \(e \) of \(E^* \) with dataflow function \(f \) is “exploded” into a number of edges of \(G^*_IP \) according to representation relation \(R_f \). Dataflow-problem \(IP \) corresponds to a single-source “realizable-path” reachability problem in \(G^*_IP \), where the source node is \(\langle s_{main}, 0 \rangle \).

Example. The exploded supergraph that corresponds to the instance of the “possibly-uninitialized variables” problem shown in Figure 1 is shown in Figure 2.

Throughout the remainder of the paper, we use the terms “(same-level) realizable path” and “(same-level) valid path” to refer to two related concepts in the exploded supergraph and the supergraph. For both “realizable paths” and “valid paths”, the idea is that not every path corresponds to a potential execution path: the constraints imposed on paths mimic the call-return structure of a program’s execution, and only paths in which “returns” can be matched with corresponding “calls” are permitted. However, the term “realizable paths” will always be used in connection with paths in the exploded supergraph; the term “valid paths” will always be used in connection with paths in the supergraph.

We now state the main theorem of this section. Theorem 3.8, which shows that an IFDS problem instance \(IP \) is equivalent to a realizable-path reachability problem in graph \(G^*_IP \).

Theorem 3.8. Let \(G^*_IP = (N^*, E^*) \) be the exploded supergraph for IFDS problem instance \(IP = (G^*, D, F, M, \cup) \), and let \(n \) be a program point in \(N^* \). Then \(d \in MVP_p \) iff there is a realizable path in graph \(G^*_IP \) from node \(\langle s_{main}, 0 \rangle \) to node \(\langle n, d \rangle \).

The practical consequence of this theorem is that we can find the meet-over-all-valid-paths solution to \(IP \) by solving a realizable-path reachability problem in graph \(G^*_IP \).

Example. In the exploded supergraph shown in Figure 2, which corresponds to the instance of the possibly-uninitialized variables problem shown in Figure 1, closed circles represent nodes that are reachable along realizable paths from \(\langle s_{main}, 0 \rangle \). Open circles represent nodes not reachable along realizable paths. (For example, note that nodes \(\langle n8, g \rangle \) and \(\langle n9, g \rangle \) are reachable only along non-realizable paths from \(\langle s_{main}, 0 \rangle \).)

This information indicates the nodes’ values in the meet-over-all-valid-paths solution to the dataflow-analysis problem. For instance, in the meet-over-all-valid-paths solution, \(MVP_{e_p} = \{ g \} \). (That is, variable \(g \) is the only possibly-uninitialized variable just before execution reaches the exit node of procedure \(p \).) In Figure 2, this information can be obtained by determining that there is a realizable path from \(\langle s_{main}, 0 \rangle \) to \(\langle e_p, g \rangle \), but not from \(\langle s_{main}, 0 \rangle \) to \(\langle e_p, a \rangle \).

4. An Efficient Algorithm for the Realizable-Path Reachability Problem

In this section, we present our algorithm for the realizable-path reachability problem. The algorithm is a dynamic-programming algorithm that tabulates certain kinds of same-level realizable paths. As discussed in Section 5 and the Appendix, the algorithm’s running time is polynomial in various parameters of the problem, and it is asymptotically faster than the best previously known algorithm for the problem.

The algorithm, which we call the Tabulation Algorithm, is presented in Figure 3. The algorithm uses the following functions:

- \(returnSite \): maps a call node to its corresponding return-site node;
- \(procOf \): maps a node to the name of its enclosing procedure;
- \(calledProc \): maps a call node to the name of the called procedure;
- \(callers \): maps a procedure name to the set of call nodes that represent calls to that procedure.

The Tabulation Algorithm uses a set named PathEdge to record the existence of path edges, which represent a subset of the same-level realizable paths in graph \(G^*_IP \). In particular, the source of a path edge is always a node of the form \(\langle s_p, d_1 \rangle \) such that a realizable path exists from node \(\langle s_{main}, 0 \rangle \) to \(\langle s_p, d_1 \rangle \). In other words, a path edge from \(\langle s_p, d_1 \rangle \) to \(\langle n, d_2 \rangle \) represents the suffix of a realizable path from node \(\langle s_{main}, 0 \rangle \) to \(\langle n, d_2 \rangle \).

The Tabulation Algorithm uses a set named SummaryEdge to record the existence of summary edges, which represent same-level realizable paths that run from nodes of the form \(\langle n, d_1 \rangle \), where \(n \in Call \), to \(\langle returnSite(n), d_2 \rangle \). In terms of the dataflow problem being solved, summary edges represent (partial) information about how the dataflow value after a call depends on the dataflow value before the call.

The Tabulation Algorithm is a worklist algorithm that accumulates sets of path edges and summary edges. The initial set of path edges represents the 0-length same-level realizable path from \(\langle s_{main}, 0 \rangle \) to \(\langle s_{main}, 0 \rangle \) (see line [2]). On each iteration of the main loop in procedure ForwardTabulateSLRPs (lines [10]-[39]), the algorithm deduces the existence of additional path edges (and summary edges). The configurations that are used by the Tabulation Algorithm to deduce the existence of additional path edges are depicted in Figure 4.

Once it is known that there is a realizable path from \(\langle s_{main}, 0 \rangle \) to \(\langle s_p, d \rangle \), path edge \(\langle s_p, d \rangle \to \langle s_p, d \rangle \) is inserted into WorkList (lines [14]-[16]). In this case, path edge \(\langle s_p, d \rangle \to \langle s_p, d \rangle \) represents the 0-length suffix of a realizable path from \(\langle s_{main}, 0 \rangle \) to \(\langle s_p, d \rangle \). (The idea of inserting only relevant \(\langle s_p, d \rangle \to \langle s_p, d \rangle \) edges into WorkList is similar to the idea of avoiding unnecessary function applications during abstract interpretation, known variously as “chaotic iteration with needed information only” [10] or the “minimal function-graph approach” [18].)

It is important to note the role of lines [26]-[28] of Figure 3, which are executed only when a new summary edge is discovered:
Figure 3. The Tabulation Algorithm determines the meet-over-all-valid-paths solution to \(IP \) by determining whether certain same-level realizable paths exist in \(G_p^X \).

The final step of the Tabulation Algorithm (lines [6]-[8]) is to create values \(X_n \), for each \(n \in N^X \), by gathering up the set of nodes associated with \(n \) in \(G_p^X \) that are targets of path edges discovered by procedure ForwardTabulateSLRPs:

\[X_n := \{ d_2 \in D \mid \exists d_1 \in (D \cup \{ 0 \}) \text{ such that } (s_{\text{procOf}(n)}, d_1) \rightarrow (n, d_2) \in \text{PathEdge} \} \]

As mentioned above, the fact that edge \((s_{\text{procOf}(n)}, d_1) \rightarrow (n, d_2) \) is in PathEdge implies that there is a realizable path from \((s_{\text{main}}, 0) \) to \((n, d_2) \). Consequently, by Theorem 3.8, when the Tabulation Algorithm terminates, the value of \(X_n \) is the value for node \(n \) in the
meet-over-all-valid-paths solution to IP.

Theorem 4.1. (Correctness of the Tabulation Algorithm.) The Tabulation Algorithm always terminates, and upon termination, \(X_n = MVP_n \), for all \(n \in \mathbb{N}^* \).

5. The Cost of the Tabulation Algorithm

The running time of the Tabulation Algorithm varies depending on what class of dataflow-analysis problems it is applied to. We have already mentioned the locally separable problems; it is also useful to define the class of \(h \)-sparse problems:

Definition 5.1. A problem is \(h \)-sparse if all problem instances have the following property: For each function on an ordinary intraprocedural edge or a call-to-return-site edge, the total number of edges in the function's representation relation that emanate from the non-\(\emptyset \) nodes is at most \(hD \).

In general, when the nodes of the control-flow graph represent individual statements and predicates (rather than basic blocks), and there is no aliasing, we expect most distributive problems to be \(h \)-sparse (with \(h \ll D \)): each statement changes only a small portion of the execution state, and accesses only a small portion of the state as well. The dataflow functions, which are abstractions of the statements' semantics, should therefore be “close to” the identity function, and thus their representation relations should have roughly \(D \) edges. For many problems of practical interest \(h \leq 2 \) (see [27]).
Example. When the nodes of the control-flow graph represent individual statements and predicates, and there is no aliasing, every instance of the possibly-uninitialized-variables problem is 2-sparse. The only non-identity dataflow functions are those associated with assignment statements. The outdegree of every non-
node in the representation relation of such a function is at most two: a variable’s initialization status can affect itself and at most one other variable, namely the variable assigned to.

In analyzing the Tabulation Algorithm, we assume that all primitive set operations are unit-cost. This can be achieved, for instance, by the representation described in [27, pp. 20].

Table 5.2 summarizes how the Tabulation Algorithm behaves in terms of worst-case asymptotic running time for six different classes of problems:

<table>
<thead>
<tr>
<th>Class of dataflow functions</th>
<th>Characterization of the functions’ properties</th>
<th>Asymptotic running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributive</td>
<td>Up to $O(D^2)$ edges/rep.-relation</td>
<td>$O(ED^2)$</td>
</tr>
<tr>
<td>h-sparse</td>
<td>At most $O(hD)$ edges/rep.-relation</td>
<td>$O(hED)$</td>
</tr>
<tr>
<td>(Locally) separable</td>
<td>Component-wise dependencies</td>
<td>$O(ED)$</td>
</tr>
</tbody>
</table>

The details of the analysis of the running time of the Tabulation Algorithm on distributive problems are given in the Appendix. The bounds for the other five classes of problems follow from simplifications of the argument given there.

The storage requirements for the Tabulation Algorithm consist of the storage for graph G^*, and the three sets W, P, and S. The best asymptotic bounds are $O(ED^2)$, $O(ND^2)$, and $O(Call D^3)$. The current implementation of the front end does not graph for the possibly-uninitialized-variables problem.

6. Preliminary Experimental Results

We have carried out a preliminary study to determine the feasibility of the Tabulation Algorithm. In the study, we compared the algorithm’s accuracy and time requirements with those of the safe, but naive, reachability algorithm that considers all paths in the exploded supergraph, rather than just the realizable paths. The two algorithms were implemented in C and used with a front end that analyzes a C program and generates the corresponding exploded supergraph for the possibly-uninitialized-variables problem. (The current implementation of the front end does not account for aliases due to pointers.)

The study used four example C programs: `struct-beauty`, `C-parser`, `ratfor`, and `twig`. The tests were performed on a Sun Sparcstation 10 Model 30 with 32 MB of RAM.

The following table gives information about the source code (lines of C, lex, and yacc) and the parameters that characterize the size of the control-flow graphs and the exploded supergraph.

<table>
<thead>
<tr>
<th>Example</th>
<th>Lines of source code</th>
<th>CFG statistics</th>
<th>G^* statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>$Call$</td>
</tr>
<tr>
<td>struct-beauty</td>
<td>897</td>
<td>36</td>
<td>214</td>
</tr>
<tr>
<td>C-parser</td>
<td>1224</td>
<td>48</td>
<td>78</td>
</tr>
<tr>
<td>ratfor</td>
<td>1345</td>
<td>52</td>
<td>266</td>
</tr>
<tr>
<td>twig</td>
<td>2388</td>
<td>81</td>
<td>221</td>
</tr>
</tbody>
</table>

The number of uses of possibly-uninitialized variables reported by the Tabulation Algorithm ranges from 9% to 99% of those reported by the naive algorithm. Because the possibly-uninitialized-variables problem is 2-sparse, the asymptotic costs of the Tabulation Algorithm and the naive algorithm are $O(Call D^3 + ED^2)$ and $O(ED)$, respectively. In these examples, D ranges from 70 to 142; however, the penalty for obtaining the more precise solutions ranges from 1.3 to 3.4. Therefore, this preliminary experiment suggests that the extra precision of meet-over-all-valid-paths solutions to interprocedural dataflow-analysis problems can be obtained by the Tabulation Algorithm with acceptable cost.

7. Related Work

Previous Interprocedural Dataflow-Analysis Frameworks

The IFDS framework is based on earlier interprocedural dataflow-analysis frameworks defined by Sharir and Pnueli [31] and Knoop and Steffen [21]. It is basically the Sharir-Pnueli framework with three modifications:

(i) The dataflow domain is restricted to be a subset domain 2^D, where D is a finite set;
(ii) The dataflow functions are restricted to be distributive functions;
(iii) The edge from a call node to the corresponding return-site node can have an associated dataflow function.

Conditions (i) and (ii) are restrictions that make the IFDS framework less general than the full Sharir-Pnueli framework. Condition (iii), however, generalizes the Sharir-
Pnueli framework and permits it to cover programming languages in which recursive procedures have local variables and parameters (which the Sharir-Pnueli framework does not). (A different generalization to handle recursive procedures with local variables and parameters was proposed by Knoop and Steffen [21].)

The IFDS problems can be solved by a number of previous algorithms, including the “elimination”, “iterative”, and “call-strings” algorithms given by Sharir and Pnueli [31] and the algorithm of Cousot and Cousot [10]. However, for general IFDS problems both the iterative and call-strings algorithms can take exponential time in the worst case. Knoop and Steffen give an algorithm similar to Sharir and Pnueli’s “elimination” algorithm [21]. The efficiencies of the Sharir-Pnueli and Knoop-Steffen elimination algorithms depend, among other things, on the way functions are represented. No representations are discussed in [31] and [21]. However, even if representation relations (as defined in Section 3.1) are used, because the Sharir-Pnueli and Knoop-Steffen algorithms manipulate functions as a whole, rather than pointwise, for distributive and h-sparse problems, they are not as efficient as the Tabulation Algorithm.

Holley and Rosen investigated “qualified” dataflow analysis problems, where “qualifications” are a device to specify that only certain paths in the flow graph are to be considered [15]. They employ an “expansion” phase that has some similarities to our creation of the exploded supergraph. However, Holley and Rosen do not take advantage of distributivity to do the expansion pointwise, and thus for the IFDS problems they would create 2^D points per flowgraph node, as opposed to the D points used in our approach. Furthermore, for interprocedural problems the Holley-Rosen approach is equivalent to the (impractical) Sharir-Pnueli call-strings approach.

Reps investigated the use of deductive databases (i.e., logic programs with a bottom-up evaluation engine) to implement locally separable interprocedural dataflow-analysis problems [29]. This approach can be viewed as a pointwise tabulation method. Although the present paper does not make use of logic-programming terminology, the Tabulation Algorithm has a straightforward implementation as a logic program. Thus, another contribution of the present paper is that it shows how to extend the logic-programming approach from the class of locally separable problems to the class of IFDS problems.

Dataflow Analysis via Graph Reachability and Pointwise Computation of Fixed Points

Our work shows that a large subclass of the problems in the Sharir-Pnueli and Knoop-Steffen frameworks can be posed as graph-reachability problems. Other work on solving dataflow-analysis problems by reducing them to reachability problems has been done by Kou [23] and Cooper and Kennedy [7,8]. In each case a dataflow-analysis problem is solved by first building a graph—derived from the program’s flow graph and the dataflow functions to be solved—and then performing a reachability analysis on the graph by propagating simple marks. (This contrasts with standard iterative techniques, which propagate sets of values over the flow graph.)

Kou’s paper addresses only intraprocedural problems. Although he only discusses the live-variable problem, his ideas immediately carry over to all the separable intraprocedural problems. Cooper and Kennedy show how certain flow-insensitive interprocedural dataflow-analysis problems can be converted to reachability problems. Because they deal only with flow-sensitive problems, the solution method involves ordinary reachability rather than the more difficult question of reachability along realizable paths.

Zadeck developed intraprocedural dataflow analysis algorithms based on the idea of partitioning a problem into many independent problems (e.g., on a “per-bit” basis in the case of separable problems) [32]. Although our technique of “exploding” a problem into the exploded supergraph transforms locally separable problems into a number of independent “per-fact” subproblems, the technique does not yield independent subproblems for h-sparse and general distributive IFDS problems. For example, in the 2-sparse possibly-uninitialized variables problem, a given variable may be transitively affected by any of the other variables. Nevertheless, these problems can be solved efficiently by the Tabulation Algorithm.

Graph reachability can also be thought of as an implementation of the pointwise computation of fixed points, which has been studied by Cai and Paige [4] and Nielson and Nielson [26,25]. Theorem 3.3, the basis on which we convert dataflow-analysis problems to reachability problems, is similar to Lemma 14 of Cai and Paige; however, the relation that Cai and Paige define for representing distributive functions does not have the subsumption property. Although it does not change the asymptotic complexity of the Tabulation Algorithm, using relations that have the subsumption property decreases the number of edges in the exploded supergraph and consequently reduces the running time of the Tabulation Algorithm.

Cai and Paige show that pointwise computation of fixed points can be used to compile programs written in a very-high-level language (SQ+) into efficient executable code. This suggests that it might be possible to express the problem of finding meet-over-all-valid-paths solutions to IFDS problems as an SQ+ fixed-point program and then automatically compile it into an implementation that achieves the bounds established in this paper (i.e., into the Tabulation Algorithm).

Nielson and Nielson investigated bounds on the cost of a general fixed-point-finding algorithm by computing the cost as “(# of iterations) × (cost per iteration)”. Their main contribution was to give formulas for bounding the number of iterations based on properties of both the functional and the domain in which the fixed-point is computed. Their formula for “strict and additive” functions can be adapted to our context of (non-strict) distributive functions, and used to show that the number of iterations of the Tabulation Algorithm is at most ND^2. The cost of a single iteration can be $O(\text{Call } D^2 + kD^2)$, where k is the maximum out-degree of a node in the control-flow graph. Thus, this approach gives a bound for the total cost of the Tabulation Algorithm of $O((ND^2) \times (\text{Call } D^2 + kD^2)) = O(ND^2 + kND^2)$, which compares unfavorably with our bound of $O(ED^3)$.

In contrast, the bound that we have presented for the cost of the Tabulation Algorithm is obtained by breaking the cost of the algorithm into three contributing aspects and bounding the total cost of the operations performed for each aspect (see the Appendix).

Another example of pointwise tabulation is Landi and Ryder’s algorithm for interprocedural alias analysis for single-level pointers [24]. The algorithm they give is simi-
lar to the Tabulation Algorithm. A limitation of the IFDS framework is that information at a return-site node can only be expressed as the meet of the information at the corresponding call node and the appropriate exit node. Because in the single-level-pointer problem the combining function for return-site nodes is not meet, the problem does not fit into the IFDS framework.

Flow-Sensitive Side-Effect Analysis
Callahan investigated two flow-sensitive side-effect problems: must-modify and may-use [6]. The must-modify problem is to identify, for each procedure \(p \), which variables must be modified during a call on \(p \); the may-use problem is to identify, for each procedure \(p \), which variables may be used before being modified during a call on \(p \). Callahan’s method involves building a program summary graph, which consists of a collection of graphs that represent the intraprocedural reaching-deﬁnitions information between start, exit, call, and return-site nodes— together with interprocedural linkage information.¹

Although the must-modify and may-use problems are not IFDS problems as deﬁned in Deﬁnition 2.4, they can be viewed as problems closely related to the IFDS problems. The basic difference is that IFDS problems summarize what must be true at a program point in all calling contexts, while the must-modify and may-use problems summarize the effects of a procedure isolated from its calling contexts. That is, Callahan’s problems involve valid paths from the individual procedures’ start nodes rather than just the start node of the main procedure. The must-modify problem is actually a “same-level-valid-path” problem rather than a “valid-path” problem; the must-modify value for each procedure involves only the same-level valid paths from the procedure’s start node to its exit node. Consequently, Callahan’s problems can be thought of as examples of problems in two more general classes of problems: a class of distributive valid-path problems, and a class of distributive same-level valid-path problems.

The method utilized in the present paper is to convert distributive valid-path dataflow-analysis problems into realizability problems in an exploded supergraph. By transformations analogous to the one given in Section 3,

(i) the distributive valid-path problems can be posed as realizability problems;
(ii) the distributive same-level valid-path problems can be posed as same-level realizability problems.

In particular, the may-use problem is a locally separable problem in class (i); the must-modify problem is a locally separable problem in class (ii).

The payoff from adopting this generalized viewpoint is that, with only slight modiﬁcations, the Tabulation Algorithm can be used to solve all problems in the above two classes (i.e., distributive and \(h \)-sparse problems, as well as the locally separable ones). The modiﬁed algorithms have the same asymptotic running time as the Tabulation Algorithm. In particular, for the locally separable problems—such as must-modify and may-use—the running time is bounded by \(O(ED) \). This is an asymptotic improvement over the algorithms given by Callahan: the worst-case cost for building the program summary graph is \(O(D \sum_{p} \text{Call}_p E_p) \); given the program summary graph, the worst-case cost for computing must-modify or may-use is \(O(D \sum_{p} \text{Call}_p^2) \).

Demand Algorithms for Interprocedural Dataflow Analysis
The goal of demand dataflow analysis is to determine whether a given dataflow fact holds at a given point (while minimizing the amount of auxiliary dataflow information computed for other program points). One of the beneﬁts of the IFDS framework is that it permits a simple implementation of a demand algorithm for interprocedural dataflow analysis [27,17].

Other work on demand interprocedural dataflow analysis includes [29] and [11].

The IDE Framework
Recently, we generalized the IFDS framework to a larger class of problems, called the IDE framework. In the IDE framework, the dataflow facts are maps (“environments”) from some ﬁnite set of symbols to some (possibly inﬁnite) set of values, and the dataflow functions are distributive environment transformers [30]. (“IDE” stands for Interprocedural Distributive Environment problems.) The IDE problems are a proper superset of the IFDS problems in that there are certain IDE problems (including variants of interprocedural constant propagation) that cannot be encoded as IFDS problems.

Although the transformation we apply to IDE problems is similar to the one used for IFDS problems, the transformed problem that results is a realizability problem, not a realizability problem. That is, in the transformed graph we are no longer concerned with a pure realizability problem, but with values obtained by applying functions along (realizable) paths. (The relationship between transformed IFDS problems and transformed IDE problems is similar to the relationship between ordinary graph-reachability problems and general- ized problems that compute summaries over paths, such as shortest-path problems, closed-semiring path problems, etc. [1].) The algorithm for solving IDE problems is a dynamic-programming algorithm similar to the Tabulation Algorithm.

Appendix: The Running Time of the Tabulation Algorithm
In this section, we present a derivation of the bound given in Table 5.2 for the cost of the Tabulation Algorithm on distributive problems.

Instead of calculating the worst-case cost-per-iteration of the loop on lines [10]-[39] of Figure 3 and multiplying by the number of iterations, we break the cost of the algorithm down into three contributing aspects and bound the total cost of the operations performed for each aspect. In particular, the cost of the Tabulation Algorithm can be broken down into
(i) the cost of worklist manipulations,
(ii) the cost of installing summary edges at call sites
(lines [21]-[32] of Figure 3), and
(iii) the cost of “closure” steps (lines [13]-[20] and [33]-
[37] of Figure 3).

Because a path edge can be inserted into WorkList at
most once, the cost of each worklist-manipulation operation
is charged to either a summary-edge-installation step or a
closure step; thus, we do not need to provide a separate
accounting of worklist-manipulation costs.

The Tabulation Algorithm can be understood as \(k + 1 \)
simultaneous semi-dynamic multi-source reachability
problems—one per procedure of the program. For each
procedure \(p \), the sources—which we shall call anchor
sites—are the \(D + 1 \) nodes in \(N^p \) of the form \(\langle s_p, d \rangle \). The
edges of the multi-source reachability problem associated with
\(p \) are

\[
\{ \langle m, d \rangle \rightarrow \langle n, d' \rangle \in E^p | m, n \in N_p \text{ and } m \rightarrow n \text{ is an}
\text{intraprocedural edge or a call-to-return-site edge } \}
\cup \{ \langle m, d \rangle \rightarrow \langle n, d' \rangle \in \text{SummaryEdge} | m \in \text{Call}_p \}.
\]

In other words, the graph associated with procedure \(p \) is the
“exploded flow graph” of procedure \(p \), augmented with
summary edges at the call sites of \(p \). The reachability
problems are semi-dynamic (insertions only) because in the
course of the algorithm, new summary edges are added, but
no summary edges (or any other edges) are ever removed.

We first turn to the question of computing a bound on the
cost of installing summary edges at call sites (lines [21]-
[32] of Figure 3). To express this bound, it is useful to
introduce a quantity \(B \) that represents the “bandwidth” for
the transmission of dataflow information between
procedures: In particular, \(B \) is the maximum value for all call-
to-start edges and exit-to-return-site edges of (i) the max-
imum outdegree of a non-\(0 \) node in a call-to-start edge’s
representation relation; (ii) the maximum indegree of a non-
\(0 \) node in an exit-to-return-site edge’s representation
relation. (In the worst case, \(B \) is \(D \), but it is typically a
small constant, and for many problems it is 1.)

For each summary edge \(\langle c, d \rangle \rightarrow \langle \text{returnSite}(c), d' \rangle \), the
conditional statement on lines [24]-[29] will be executed
some number of times (on different iterations of the
loop on lines [10]-[39]). In particular, line [24] will be executed
every time the Tabulation Algorithm finds a three-edge path of the form

\[
\{ \langle c, d_4 \rangle \rightarrow \langle s_p, d_1 \rangle, \langle s_p, d_1 \rangle \rightarrow \langle e_p, d_2 \rangle,
\langle e_p, d_2 \rangle \rightarrow \langle \text{returnSite}(c), d_3 \rangle \}
\]

as shown in the diagram marked “Line [25]” of Figure 4.

When we consider the set of all summary edges at a
given call site \(c \): \(\{ \langle c, d_4 \rangle \rightarrow \langle \text{returnSite}(c), d_5 \rangle \} \), the
executions of line [24] can be placed in three categories:

\(d_4 \neq 0 \) and \(d_5 \neq 0 \)
There are at most \(D^2 \) choices for \(\langle d_4, d_5 \rangle \),
and for each such pair at most \(B^2 \) possible three-edge paths of the form (†).

\(d_4 = 0 \) and \(d_5 \neq 0 \)
There are at most \(D \) choices for \(d_5 \) and for each such
choice at most \(BD \) possible three-edge paths of the form (†).

\(d_4 = 0 \) and \(d_5 = 0 \)
There is only one possible three-edge path of the form

Thus, the total cost of all executions of line [24] is bounded
by \(O(Call_B^2D^2) \).

Because of the test on line [24], the code on lines [25]-
[28] will be executed exactly \(once \) for each possible summary
edge. In particular, for each summary edge the cost of the
loop on lines [26]-[28] is bounded by \(O(D) \). Since the
total number of summary edges is bounded by \(Call_D^2 \),
the total cost of lines [25]-[28] is \(O(Call_D^3) \). Thus, the
total cost of installing summary edges during the Tabulation
Algorithm is bounded by \(O(Call_B^2D^2 + Call_D^3) \).

To bound the total cost of the closure steps, the essential
observation is that there are only a certain number of
“attempts” the Tabulation Algorithm makes to “acquire” a
path edge \(\langle s_p, d_1 \rangle \rightarrow \langle n, d_2 \rangle \). The first attempt is
successful—and \(\langle s_p, d_1 \rangle \rightarrow \langle n, d_2 \rangle \) is inserted into
PathEdge; all remaining attempts are redundant (but seem unavoidable).
In particular, in the case of a node \(n \not\in Ret \),
the only way the Tabulation Algorithm can obtain a path
edge \(\langle s_p, d_1 \rangle \rightarrow \langle n, d_2 \rangle \) is when there are one or more two-
edge paths of the form \(\{ \langle s_p, d_1 \rangle \rightarrow \langle m, d \rangle, \langle m, d \rangle \rightarrow
\langle n, d_2 \rangle \} \), where \(\langle s_p, d_1 \rangle \rightarrow \langle m, d \rangle \) is in PathEdge and
\(\langle m, d \rangle \rightarrow \langle n, d_2 \rangle \) is in \(E^p \), as depicted below:

Consequently, for a given anchor site \(\langle s_p, d_1 \rangle \),
the cost of the closure steps involved in acquiring path edge
\(\langle s_p, d_1 \rangle \rightarrow \langle n, d_2 \rangle \) can be bounded by indegree \((\langle n, d_2 \rangle) \).

For distributive problems, the representation relation of the
function on an ordinary intraprocedural edge or a call-to-
return-site edge can contain up to \(O(D^2) \) edges. Thus, for
each anchor site, the total cost of acquiring all its outgoing
path edges can be bounded by

\[
O(\sum_{\langle n, d \rangle \in N^p \text{ and } n \not\in Ret} \text{indegree}(\langle n, d \rangle)) = O(E_pD^2).
\]

The accounting for the case of a node \(n \in Ret \) is similar.
The only way the Tabulation Algorithm can obtain a path
edge \(\langle s_p, d_1 \rangle \rightarrow \langle n, d_2 \rangle \) is when there is an edge in PathEdge of the form \(\langle s_p, d_1 \rangle \rightarrow \langle m, d \rangle \) and either there is
an edge \(\langle m, d \rangle \rightarrow \langle n, d_2 \rangle \) in \(E^p \) or an edge \(\langle m, d \rangle \rightarrow \langle n, d_2 \rangle \)
in SummaryEdge. In our cost accounting, we will pessimis-
istically assume that each node \(\langle n, d_2 \rangle \), where \(n \in Ret \),
has the maximum possible number of incoming summary
edges, namely \(D \). Because there are at most \(Call_pD \) nodes of
\(N^p \) of the form \(\langle n, d_2 \rangle \), where \(n \in Ret \), for each anchor
site \(\langle s_p, d_1 \rangle \) the total cost of acquiring path edges of the form
\(\langle s_p, d_1 \rangle \rightarrow \langle n, d_2 \rangle \) is

\[
O(\sum_{\langle n, d \rangle \in N^p \text{ and } n \in Ret} \text{summary-indegree}(\langle n, d \rangle))
\]

which equals \(O(Call_pD^2) \).
Therefore we can bound the total cost of the closure steps performed by the Tabulation Algorithm as follows:

\[
\text{Cost of closure steps} = \sum (\# \text{ anchor sites}) \times O(\text{Call}_p D^2 + E_p D^2)
\]
\[
= O(D^3 \sum (\text{Call}_p + E_p))
\]
\[
= O(D^3 (\text{Call} + E))
\]
\[
= O(ED^3).
\]

Thus, the total running time of the Tabulation Algorithm is bounded by \(O(\text{Call} \, B \, D^2 + ED^3)\).

It is possible to improve this bound to \(O(\text{Call} \, BD^2 + ED^3)\) by treating procedure linkages as if they were \((B\text{-sparse})\) procedures in their own right and introducing new linkages to the linkage procedures with “bandwidth” \(I\). Because \(\text{Call} \leq E\) and \(B \leq D\), this simplifies to \(O(ED^3)\), the bound reported in Table 5.2.

References
