
Fast Static Analysis of C++ Virtual Function Calls

David F. Bacon and Peter F. Sweeney

IBM Watson Research Center, P.O. Box 704, Yorktown Heights, NY, 10598
Email: {dfb,pfs}CJwatson.ibm.com

Abstract

Virtual functions make code easier for programmers to reuse
but also make it harder for compilers to analyze. We investi-
gate the ability of three static analysis algorithms to improve
C++ programs by resolving virtual function calls, thereby
reducing compiled code size and reducing program complex-
ity so as to improve both human and automated program
understanding and analysis. In measurements of seven pro-
grams of significant size (5000 to 20000 lines of code each)
we found that on average the most precise of the three algo-
rithms resolved 71% of the virtual function calls and reduced
compiled code size by 25%. This algorithm is very fast: it
analyzes 3300 source lines per second on an 80 MHz Pow-
erPC 601. Because of its accuracy and speed, this algorithm

is an excellent candidate for inclusion in production C++
compilers.

1 Introduction

A major advantage of object-oriented languages is ab-
straction. The most important language feature that
supports abstraction is the dynamic dispatch of meth-
ods based on the run-time type of an object. In dynam-
ically typed languages like Smalltalk and SELF, all dis-
patches are considered dynamic, and eliminating these
dynamic dispatches has been essential to obtaining high
performance [9, 14, 241.

C++ is a more conservatively designed language.
Programmers must explicitly request dynamic dispatch
by declaring a method to be virtual. C++ programs
therefore suffer less of an initial performance penalty,

Permission t0 make digit&hard copy of part or all of this work for personal
Or classroom Use iS granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that
copyrng Is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

OCPSIA ‘96 CA, USA
CD 1996 ACM 0-89791-788-x/96/0010...$3.50

at the cost of reduced flexibility and increased program-
mer effort. However, virtual function calls still present
a significant source of opportunities for program opti-
mization.

The most obvious opportunity, and the one on which
the most attention has been focused, is execution time
overhead. Even with programmers specifying virtual
functions explicitly, the execution time overhead of vir-
tual function calls in Ct+ has been measured to be as
high as 40% [16]. In addition, as programmers become
familiar with the advantages of truly object-oriented de-
sign, use of virtual functions increases. The costs as-
sociated with developing software are so high that the
performance penalty of virtual functions is often not suf-
ficient to deter their use. Therefore, unless compilers are
improved, the overhead due to virtual function calls is
likely to increase as programmers make more extensive
use of this feature.

Other researchers have shown that virtual function
call resolution can result in significant performance im-
provements in execution time performance for C++ pro-
grams [6, 3, 161; in this paper we concentrate on c.ompar-
ing algorithms for resolving virtual function calls, and
investigating the reasons for their success or failure.

Another opportunity associated with virtual func-
tions is code size reduction. For a program without
virtual function calls (or function pointers), a complete

call graph can be constructed and only the functions
that are used need to be linked into the final program.
With virtual functions, each virtual call site has mul-
tiple potential targets. Without further knowledge, all
of those targets and any functions they call transitively
must be included in the call graph.

As a result, object-code sizes for C++ programs have
become a major problem in some environments, par-
ticularly when a small program is statically linked to
a large object library. For instance, when a graphical
“hello world” program is statically linked to a GUI ob-
ject library, even though only a very small number of
classes are actually instantiated by the program, the
entire library can be dragged in.

324

Finally, virtual function calls present an analogous
problem for browsers and other program-understanding
tools: if every potential target of a virtual function call
is included in the call graph, the user is presented with
a vastly larger space of object types and functions that
must be comprehended to understand the meaning of
the program as a whole.

In this paper, we compare three fast static analysis
algorithms for resolving virtual function calls and eval-
uate their ability to solve the problems caused by virtual
function calls in C++. We also use dynamic measure-
ments to place an upper bound on the potential of static
analysis methods, and compare the analysis algorithms
against more sophisticated analyses like alias analysis.
Finally, we present measurements of the speed of the
analysis algorithms, which demonstrate that they are
fast enough to be included in commercial-quality com-
pilers.

1.1 Outline

Section 2 briefly describes and compares the mechanics
of the three static analysis algorithms that are evalu-
ated in this paper. Section 3 describes our benchmarks,
presents the results of our measurements, and explains
the reason behind the success or failure of the analy-
sis algorithms. Section 4 describes related work, and
Section 5 presents our conclusions.

2 Static Analysis

In this paper we will be comparing three static analy-
sis algorithms, called Unique Name [6], Class Hierarchy

Analysis [ll, 131, and Rapid Type Analysis [4]. We will
sometimes abbreviate them as UN, CHA, and RTA, re-
spectively.

In this section we give a brief overview of the three al-
gorithms, and use a small example program to illustrate
the differences between them. We then briefly compare
them in power to other static analyses, and discuss the
interaction of type safety and analysis.

2.1 Unique Name

The first published study of virtual function call reso-
lution for C++ was by Calder and Grunwald [6]. They
were attempting to optimize C++ programs at link
time, and therefore had to confine themselves to infor-
mation available in the object files. They observed that
in some cases there is only one implementation of a par-
ticular virtual function anywhere in the program. This

class A (

public :
virtual int foo0 I return 1; 1;

3;

class B: public A {

public :
virtual int foo() 1 return 2; 3;
virtual int foo(int i) { return i+l; 3;

1.
J,

void main0 c
B* p = new B;
int result1 = p->foo(l);
int result2 = p-XooO;

A* q = p;
int result3 = q->fooO;

3

Figure I: Program illustrating the difference between
the static analysis methods.

can be detected by comparing the mangled names 1 of
the C++ functions in the object files.

When a function has a unique name (really a unique
signature), the virtual call is replaced with a direct call.
While it can be used within a compiler in the same
manner as the other algorithms evaluated in this pa-
per, Unique Name has the advantage that it does not
require access to source code and can optimize virtual
calls in library code. However, when used at link-time,
Unique Name operates on object code, which inhibits
optimizations such as inlining.

Figure 1 shows a small program which illustrates the
power of the various static analyses. There are three
virtual calls in main(). Unique Name is able to resolve
the first call (that produces resultl) because there is
only one virtual function called foo that takes an in-
teger parameter - B : : f oo (int >. There are many f oo
functions that take no parameters, so it can not resolve
the other calls.

2.2 Class Hierarchy Analysis

Class Hierarchy Analysis [ll, 131 uses the combination
of the statically declared type of an object with the class
hierarchy of the program to determine the set of possible
targets of a virtual function call. In Figure 1, p is a

‘The mangled name of a function is the name used by the
linker. It includes an encoding of the class and argument types
to distinguish it from other identically named functions.

325

pointer whose static type is B*. This means that p can
point to objects whose type is B or any of B's derived
classes.

By combining this static information with the class
hierarchy, we can determine that there are no derived
classes of B, so that the only possible target of the second
call (that produces result2) is int B: :foo().

Class Hierarchy Analysis is more powerful than
Unique Name for two reasons: it uses static informa-
tion (as in Figure l), and it can ignore identically-named
functions in unrelated classes.

Class Hierarchy Analysis must have the complete pro-
gram available for analysis, because if another module
defines a class C derived from B that overrides f oo(),

then the call can not be resolved.
In the process of performing Class Hierarchy Analy-

sis, we build a call graph for the program. The call
graph includes functions reachable from main0 as well
as those reachable from the constructors of global-scope
objects. Note that some other researchers use the term
“Class Hierarchy Analysis” to denote only the resolu-
tion of virtual calls, not the building of the call graph.

2.3 Rapid Type Analysis

Rapid Type Analysis [4] starts with a call graph gen-
erated by performing Class Hierarchy Analysis. It uses
information about instantiated classes to further reduce
the set of executable virtual functions, thereby reducing
the size of the call graph.

For instance, in Figure 1, the virtual call q->f oo()
(which produces results) is not resolved by Class Hi-
erarchy Analysis because the static type of q is A*, so

the dynamic type of the object could be either A or B.

However, an examination of the entire program shows
that no objects of type A are created, so A : : f oo (1 can
be eliminated as a possible target of the call. This leaves
only B: :foo().

Note that RTA must not consider instantiation of sub-
objects as true object instantiations: when an object of
type B is created, A’s constructor is called to initial-
ize the A sub-object of B. However, the virtual function
table of the contained object still points to B's foo()
method.

Rapid Type Analysis builds the set of possible instan-
tiated types optimistically: it initially assumes that no
functions except main are called and that no objects are
instantiated, and therefore no virtual call sites call any
of their target functions. It traverses the call graph cre-
ated by Class Hierarchy Analysis starting at main. Vir-
tual call sites are initially ignored. When a constructor
for an object is found to be callable, any of the virtual
methods of the corresponding class that were left out

are then traversed as well. The live portion of the call
graph and the set of instantiated classes grow iteratively
in an interdependent manner as the algorithm proceeds.

Rapid Type Analysis inherits the limitations and ben-
efits of Class Hierarchy Analysis: it must analyze the
complete program. Like CHA, RTA is flow-insensitive
and does not keep per-statement information, making
it very fast.

Rapid Type Analysis is designed to be most effec-
tive when used in conjunction with class libraries. For
instance, a drawing library defines numerous objects
derived from class shape, each with their own draw0

method. A program that uses the library and only ever
creates (and draws) squares will never invoke any of
the methods of objects like circle and polygon. This
will allow calls to draw0 to be resolved to calls to
square : :draw(), and none of the other methods need
to be linked into the final program. This leads to both
reduced execution time and reduced code size.

Another approach to customizing code that uses class
libraries is to use class slicing [23].

2.4 Other Analyses

There are several other levels of static analysis that can
be performed. First, a simple local flow-sensitive analy-
sis would be able to resolve this call:

A* q = new B;

q = new A;

result = q->foo();

because it will know that q points to an object of type A.
Rapid Type Analysis would not resolve the call because
both A and B objects are created in this program.

An even more powerful static analysis method is alias
analysis, which can resolve calls even when there is in-
tervening code which could potentially change an ob-
ject’s type. Alias analysis is discussed more fully in
Section 4.2, with related work.

2.5 Type Safety Issues

An important limitation of CHA and RTA is that they
rely on the type-safety of the programs. Continuing
to use the class hierarchy from Figure 1, consider the
following code fragment:

void* x = (void*) new B;

B* q = (B*) x;

int case1 = q->fooO;

Despite the fact that the pointer is cast to void* and
then back to B+, the program is still type-safe because

326

we can see by inspection that the down-cast is actually
to the correct type. However, if the original type is A,

as in

void* x = (void*) new A;
B* q = (B*) x;

int case2 = q->foo();

then the program is not type-safe, and the compiler
would be justified in generating code that raises an ex-
ception at the point of the virtual function call to f oo (> .
However, because f oo(> is in fact defined for A, most
existing compilers will simply generate code that calls
A : : f oo (> ; this may or may not be what the program-
mer intended. If the call had instead been

int case3 = q->foo(666);

then the program will result in a undefined run-time
behavior (most likely a segmentation fault) because A’s
virtual function table (VFT) does not contain an entry
for foo(int).

The computation of case1 is clearly legal, and the
computation of case3 is clearly illegal. In general it is
not possible to distinguish the three cases statically. Un-
fortunately, in case2, Class Hierarchy Analysis would
determine that the call was resolvable to B: : f oo(),
which is incorrect. Rapid Type Analysis would deter-
mine that there are no possible call targets, which is
correct according to the C++ language definition but
different from what is done by most compilers.

Therefore, Class Hierarchy Analysis and Rapid Type
Analysis either need to be disabled whenever a downcast
is encountered anywhere in the program, or they can be
allowed to proceed despite the downcast, with a warning
printed to alert the programmer that optimization could
change the results of the program if the downcasts are
truly unsafe (as in case2 or case3).

We favor the latter alternative because downcasting
is very common in C++ programs. This can be sup-
plemented by pragmas or compiler switches which allow
virtual function call resolution to be selectively disabled
at a call site or for an entire module. We will discuss
this issue further when we present the results for one
of our benchmarks, lcom, which contained some unsafe
code.

3 Experimental Results

In this section we evaluate the ability of the three fast
static analysis methods to solve the problems that were
outlined in the introduction: execution time perfor-
mance, code size, and perceived program complexity.

Where possible, we will use dynamic measurement in-
formation to place an upper limit on what could be
achieved by perfect static analysis.

3.1 Methodology

Our measurements were gathered by reading the C++
source code of our benchmarks into a prototype C++
compiler being developed at IBM. After type analysis is
complete, we build a call graph and analyze the code.
Since the prototype compiler is not yet generating code
reliably enough to run large benchmarks, we compile the
programs with the existing IBM Ctt compiler on the
RS/6000, xlC. The b enchmarks are traced, and their
executions are simulated from the instruction trace to
gather relevant execution-time statistics. We then use
line number and type information to match up the call
sites in the source and object code.

We used both optimized and unoptimized compiled
versions of the benchmarks. The unoptimized versions
were necessary to match the call sites in the source code
and the object code, because optimization includes in-
lining, which distorts the call graph. However, existing
compilers can not resolve virtual function calls, so op-
timization does not change the number of virtual calls,
although it may change their location, especially when
inlining is performed. Therefore, turning optimization
(and inlining) off does not affect our results for virtual
function resolution. Unoptimized code was only used
for matching virtual call sites. All measurements are
for optimized code unless otherwise noted.

Because our tool analyzes source code, virtual calls in
library code were not available for analysis. Only one
benchmark, simulate, contained virtual calls in the li-
brary code. They are not counted when we evaluate the
efficacy of static analysis, since had they been available
for analysis they might or might not have been resolved.

The information required by static analysis is not
large, and could be included in compiled object files
and libraries. This would allow virtual function calls in
library code to be resolved, although it would not confer
the additional benefits of inlining at the virtual call site.

3.2 Benchmarks

Table 1 describes the benchmarks we used in this
study. Of the nine programs, we consider seven
to be “real” programs (sched, ixx, lcom, hotwire,
simulate, id1 and taldict) which can be used to
draw meaningful conclusions about how the analysis
algorithms will perform. id1 and taldict are both
programs made up of production code with demo dri-
vers; the rest are all programs used to solve real prob-

327

Benchmark 1 Lines Da-rint.inn ----‘I”---- 1
I

sched Timing Simulator
ixx

! lcom
hotwire
simulate
id1 r taldict

deltablue
richards

IDL specification to C++ stub-code translator
Compiler for the “L” hardware description language
Scriptable graphical presentation builder
Simula-like simulation class library and example
SunSoft IDL compiler with demo back end
Taligent dictionarv benchmark
Incremental dataflow constraint solver

Simple operating system simulator -

Table 1: Benchmark Programs. Size is given in non-blank lines of code

lems. The remaining two benchmarks, richards and
deltablue, are included because they have been used
in other papers and serve as a basis for comparison and
validation.

Table 2 provides an overview of the static character-
istics of the programs in absolute terms. Library code is
not included. The number of functions, call sites, and
virtual call arcs gives a composite picture of the sta-
tic complexity of the program. Live call sites are those
which were executed in our traces. Non-dead virtual call
sites are those call sites, both resolved and unresolved,
that remained in the program after our most aggressive
analysis (RTA) removed some of the dead functions and
the virtual call sites they contained.

Table 3 provides an overview of the dynamic (execu-
tion time) program characteristics for optimized code.
Once again, all numbers are for user code only. The
number of instructions between virtual function calls
is an excellent (though crude) indication of how much
potential there is for speedup from virtual function res-
olution. Under IBM’s AIX operating system and C++
run-time environment a virtual function call takes 12 in-
structions, meaning that the user code of taldict could
be sped up by a factor of two if all virtual calls are re-
solved (as they in fact are).

The graphs in the paper all use percentages because
the absolute numbers vary so much. Tables 2 and 3
include the totals for all subsequent graphs, with the
relevant figure indicated in square brackets at the top
of the column.

Figure 2 is a bar graph showing the distribution of
types of live call sites contained in the user code of
the programs; Figure 3 shows the analogous figures for
the number of dynamic calls in user code. Direct (non-
virtual) method calls account for an average of 51% of
the static call sites in the seven large applications, but
only 39% of the dynamic calls. Virtual method calls
account for only 21% of the static call sites, but a much

more significant 36% of the total dynamic calls.
Indirect function calls are used sparely except by

deltablue, and pointer-to-member calls are only used
by ixx, and then so infrequently that they do not ap-
pear on the bar chart.

Since non-virtual and virtual method calls are about
evenly mixed, and direct (non-method) calls are less fre-
quent, we conclude that the programs are written in a
relatively object-oriented style. However, only some of
the classes are implemented in a highly reusable fash-
ion, because half of the method calls are non-virtual.
The exception is taldict, with 89% of the dynamic
function calls virtual: taldict uses the Taligent frame-
works, which are designed to be highly re-usable. As
use of C++ becomes more widespread and code reuse
becomes more common, we expect that programs will
become more like taldict, although probably not to
such an extreme.

Note that we assume that trivially resolvable virtual
function calls are implemented as direct calls, and count
them accordingly throughout our measurements. That
is, the call to f oo (> in

A a;
a.foo();

is considered a direct call even if f oo (> is a virtual func-
tion. This is consistent with the capabilities of current
production C++ compilers, but different from some re-
lated work.

Our results differ, in some cases significantly, from

those reported in two previous studies of C++ virtual
function call resolution [6, 31. This would seem to indi-
cate that there is considerable variation among applica-
tions.

Considerable additional work remains to be done for

benchmarking of C++ programs. While the SPEC
benchmark suite has boiled down “representative” C
code to a small number of programs, it may well be

328

ode Size] Functions 1 Call 1 Li Program C

(bytes) PI
sched 99,888

[7] Sites

237 530

ve Call Virtual Non-Dead Virtual
Sites [2] Call Sites V-Call Sites [4] Call Arcs [8]

184 34 33 58
399 1.752 ixx 178:636 1 1.108 1 3,601 1 767 1 467 1

lcom 1641032 ‘779 21794 1,653 458 446 1
hotwire 45,416 230 1,204 550 48 6 1
simulate 28.900 242 580 141 36 23 1.

41
I

24.1:748
I I I

id1 1 1
I ---‘---I

856 1 3.671 1
I -1. I

882 1,248 1,198 3,486
taldict 20.516 1 429

N.A.
1 783 / 47 79 14 116

deltablue 103 372 201 3 3 11
richards 9,744 78 174 68 1 1 5

Table 2: Totals for static (compile-time) quantities measured in this paper. All quantities are measured for user code
only (libraries linked to the program are not included). Numbers in brackets are the numbers of subsequent figures
for which the column gives the total.

[Program Instrs. Function
Executed Calls [3]

Virtual Instrs. per
Calls [5] Virtual Call

Table 3: Totals for dynamic (run-time) quantities measured in this paper. All quantities are for user code only

(libraries linked to the program are not included). N umbers in brackets are the numbers of subsequent figures for
which the column gives the total.

329

Figure 2: Classification of Live User Call Sites (Static)

n Virtual Method

III Direct Method

69 Indirect Function

0 Direct Function

Figure 3: Classification of User Calls
(Dynamic)

n Virtual Method

•I Direct Method

El Indirect Function

0 Direct Function

330

._

that such an approach will not work with C++ because
it is a more diverse language with more diverse usage
patterns.

3.3 Resolution of Virtual Function Calls

When a virtual call site always calls the same function
during one or more runs of the program, we say that it
is monomorphic. If it calls multiple functions, it, is poly-
morphic. If t.he optimizer can prove that a monomor-
phic call will always call the same function, then it can
be resolved statically. Polymorphic call sites can not be
resolved unless the enclosing code is cloned or type tests
are inserted.

The performance of the analyses for resolving virtual
function calls is shown in Figures 4 (which presents
the static information for the call sites) and 5 (which
presents the dynamic information for the calls in our
program traces). Together with the remaining graphs
they compare the performance of the three static analy-
sis algorithms, and they all use a consistent labeling
to aid in interpretation. Black is always used to label
the things that could not possibly be handled by static
analysis; in the case of virtual function resolution, black
represents the call sites or calls that were polymorphic.
White represents the region of possible opportunity for
finer analysis; for virtual function resolution, this is the
call sites or calls that were dynamically monomorphic
but were not resolved by any of the static analysis meth-
ods we implemented. For graphs of static quantities, the
diagonally striped section labels an additional region
of opportunity in unexecuted code; for virtual function
resolution, this is the call sites that were not resolved
and were not executed at run-time. They may be dead,
monomorphic, or polymorphic.

Since Class Hierarchy Analysis (CHA) resolves a su-
perset of the virtual calls resolved by Unique Name
(UN), and Rapid Type Analysis (RTA) resolves a super-
set of the virtual calls resolved by CHA, we show their
cumulative effect on a single bar in the chart. There-
fore, to see the effect of RTA, the most powerful analy-
sis, include all the regions labeled as “resolved” (they
are outlined with a thick line).

If the region of opportunity is very small, then the dy-

namic trace has given us a tight upper bound: we Icnow
that no static analysis could do much better. On the
other hand, if the white region (and for static graphs,
the striped region) is large, then the dynamic trace has
only given us a loose upper bound: more powerful static
analysis might be able to do better, or it might not.

Call sites identified as dead by Rapid Type Analysis
were not counted, regardless of whether they were re-
solved. This was done so that the static and dynamic

measurements could be more meaningfully compared,
and because it seemed pointless to count as resolved
a call site in a function that can never be executed.
However, this has relatively little effect on the overall
percentages.

Figure 5 shows that for for five out of seven of the
large benchmarks, the most powerful static analysis,
RTA, resolves all or almost all of the virtual function
calls. In other words, in five out of seven cases, RTA
does an essentially perfect job. On average, RTA re-
solves 71% of the dynamic virtual calls in the seven
large benchmarks. CHA is also quite effective, resolving
an average of 51%, while UN performs relatively poorly.
resolving an average of 15% of the dynamic virtual calls.

We were surprised by the poor performance of Unique
Name, since Calder and Grunwald found that Unique
Name resolved an average of 32% of the virtual calls
in their benchmarks. We are not sure why this should
be so; possibly our benchmarks, being on average of a
later vintage, contain more ‘complex class hierarchies.
UN relies on there only being a single function in the
entire application with a particular signature.

Our benchmarks are surprisingly monomorphic; only
two of the large applications (ixx and lcom) exhibit a
significant degree of polymorphism. We do not expect
this to be typical of C-t+ applications, but perhaps
monomorphic code is more common than is generally
believed.

A problem arose with one program, lcom, which is
not type-safe: applying CHA or RTA generates some
specious call site resolutions. We examined the pro-
gram and found that many virtual calls were poien$iaZZy
unsafe, because the code used down-casts. However,
most of these potentially unsafe calls are in fact safe,
because the program uses a collection class defined to
hold pointers of type void*. Usually, inspection of the
code shows that the down-casts are simply being used
to restore a void* pointer to the original type of the
object inserted into the collection.

We therefore selectively turned off virtual function
call resolution at the call sites that could not be de-
termined to be safe; only 7% of the virtual calls that
would have been resolved by static analysis were left
unresolved because of this (they are counted as unre-
solved monomorphic calls). We feel that this is a rea-
sonable course because a programmer trying to opti-
mize their own program might very well choose to fol-
low this course rather than give up on optimization al-
together; readers will have to use their own judgment
as to whether this would be an acceptable programming

practice in their environment.

The only benchmark to use library code containing

331

Figure 4: Resolution of User Virtual Call Sites (Static)

‘;;‘
@

100%

P
.-z 80%
= n Unresolved/Polymorphic

3 60%
q Unresolved/Not Executed

1 0 Unresolved/Monomorphic
r .-
> 40% H Resolved by RTA

‘0
E

q Resolved by CHA

4
20% q Resolved by UN

s
z 0%

% :: E E a,
t

-0 .- z .-
8 ‘5 n

2 2
1 5: -

z
T 7i h
E 3 r3 L

L it .-
* -0”

.g

Programs

Figure 5: Resolution of User Virtual Calls

100%

80%

T
@ 60% n Unresolved/Polymorphic

UJ 0 Unresolved/Monomorphic

Tl 0 4 0 % q Resolved RTA by

q Resolved by CHA

q Resolved by UN

332

virtual calls was simulate, which uses the task library
supplied with AIX. Slightly less than half of the virtual
calls were made from the library code, and about half of
those calls were monomorphic (and therefore potentially
resolvable). We have not included virtual calls in library
code in the graphs because the corresponding code was
not available to static analysis.

3.3.1 Why Rapid Type Analysis Wins

Since Class Hierarchy Analysis is a known and accepted
method for fast virtual function resolution, it is impor-
tant to understand why RTA is able to do better.

RTA does better on four of seven programs, although
for id1 the improvement is minor. For ixx, RTA re-
solves a small number of additional static call sites
(barely visible in Figure 4), which account for almost
20% of the total dynamic virtual function calls. The
reason is that those calls are all to frequently exe-
cuted string operations. There is a base class String
with a number of virtual methods, and a derived class
Uniquestring, which overrides those methods. RTA
determines that no Uniquestring objects are created
in ixx, and so it is able to resolve the virtual call sites
to String methods. These call sites are in inner loops,
and therefore account for a disproportionate number of
the dynamic virtual calls.

RTA also makes a significant difference for taldict,
resolving the remaining 19% of unresolved virtual calls.
RTA is able to resolve two additional call sites because
they are calls where a hash table class is calling the
method of an object used to compare key values. The
comparison object base class provides a default com-
parison method, but the derived class used in taldict
overrides it. RTA finds that no instances of the base
class are created, so it is able to resolve the calls.

The hotwire benchmark is a perfect example of the
class library scenario: a situation in which an applica-
tion is built using only a small portion of the function-
ality of a class library. The application itself is a sim-
ple dynamic overhead transparency generator; it uses
a library of window management and graphics routines.
However, it only creates windows of the root type, which
can display text in arbitrary fonts at arbitrary locations.
All of the dynamic dispatch occurs on redisplay of sub-
windows, of which there are none in this application.
Therefore, all of the live virtual call sites are resolved.

3.3.2 Why Fast Static Analysis Fails

One benchmark, sched, stands out for the poor perfor-
mance of all three static analysis algorithms evaluated in
this paper. Only 10% of the dynamic calls are resolved,

even though 30% of the static. call sites are resolved, and
100% of the dynamic calls are monomorphic. Of course,
a function may be monomorphic with one input but not
with another. However, sched appears to actually be
completely monomorphic.

The unresolved monomorphic virtual call sites are all
due to one particular programming idiom: sched de-
fines a class Base and two derived classes Derived1
and Derived2 (not their real names). Base has no
data members, and defines a number of virtual func-
tions whose implementation is always assert (f alse) -
in other words, they will raise an exception when ex-
ecuted. In essence, Base is a strange sort of abstract
base class.

Derived1 and Derived2 each implement a mutually
exclusive subset of the methods defined by Base, and
since Base has no data members, this means that these
two object types are totally disjoint in functionality. It
is not clear why the common base class is being used at
all.

RTA determines that no objects of type Base are
ever created. However, the calls to the methods of
Derived1 and Derived2 are always through pointers
of type Base*. Therefore, there are always two possi-
ble implementations of each virtual function: the one
defined by one of the derived classes, and the one inher-
ited from Base by the other derived class.

Depending on your point of view, this is either an
example of the inability of static analysis to handle par-
ticular coding styles, or another excellent reason not to
write strange code.

The other benchmark for which none of the static
analyses do a very good job is Icorn: 45% of the virtual
calls are monomorphic but unresolved. 40% of the vir-
tual calls are from a single unresolved call site. These
calls are all through an object passed in from a single
procedure, further up in the call graph. That procedure
creates the object with new, and it is always of the same
type. While it would probably not be resolved by simple
flow analysis, it could be resolved by alias analysis.

What kinds of programming idioms are not amenable
to fast static analysis? CHA will resolve monomorphic
virtual calls for which there is only a single possible
target. RTA will also eliminate monomorphic calls when
only one of the possible target object types is used in
the program. The kind of monomorphic calls that can’t
be resolved by RTA occur when multiple related object
types are used independently, for instance if Square and
Circle objects were each kept on their own linked list,
instead of being mixed together. We call this disjointed

polymorphism.

Disjointed polymorphism is what occurs in lcom and,

333

in a degenerate fashion, in sched. While there are cer-
tainly situations in which it does make sense to use
disjointed polymorphism, we believe it to be relatively
uncommon, and this is borne out by our benchmarks.
Disjointed polymorphism presents the major opportu-
nity for alias analysis to improve upon the fast static
techniques presented in this paper, since it can some-
times determine that a pointer can only point to one
type of object even when multiple possible object types
have been created.

3.4 Code Size

Because they build a call graph, Class Hierarchy Analy-
sis and Rapid Type Analysis identify some functions as
dead: those that are not reachable in the call graph.
RTA is more precise because it removes virtual call
arcs to methods of uninstantiated objects from the call
graph.

Figure 6 shows the effect of static analysis on user
code size. As before, white represents the region of op-
portunity for finer analysis - those functions that were
not live during the trace and were not eliminated by
static analysis.

Our measurements include only first-order effects of
code size reduction due to the elimination of entire func-
tions. There is a secondary code-size reduction caused
by resolving virtual call sites, since calling sequences for
direct calls are shorter than for virtual calls. We also did
not measure potential code expansion (or contraction)
caused by inlining of resolved call sites. Finally, due
to technical problems our code size measurements are
for unoptimized code, and we were not able to obtain
measurements for deltablue.

On average, 42% of the code in the seven large bench-
marks is not executed during our traces. Class Hierar-
chy Analysis eliminates an average of 24% of the code
from these benchmarks, and Rapid Type Analysis gets
about one percent more.

CHA and RTA do very well at reducing code size:
in five of the seven large benchmarks, less than 20% of
the code is neither executed nor eliminated by static
analysis. Only ixx and id1 contain significant portions
of code that was neither executed nor eliminated (about
40%).

We were surprised to find that despite the fact that
RTA does substantially better than CHA at virtual
function resolution, it does not make much difference
in reducing code size.

Unique Name does not remove any functions because
it only resolves virtual calls; it does not build a call
graph.

3.5 Static Complexity

Another important advantage of static analysis is its
use in programming environments and compilers. For
instance, in presenting a user with a program browser,
the task of understanding the program is significantly
easier if large numbers of dead functions are not in-
cluded, and if virtual functions that can not be reached
are not included at virtual call sites.

In addition, the cost and precision of other forms of
static analysis and optimization are improved when the
call graph is smaller and less complex.

Figure 7 shows the effect of static analysis on elimi-
nating functions from the call graph. This is similar to
Figure 6, except that each function is weighted equally,
instead of being weighted by the size of the compiled
code. As we stated above, since Unique Name does not
build a call graph, it does not eliminate any functions.

Once again, Class Hierarchy Analysis eliminates a
large number of functions, and Rapid Type Analysis
eliminates a few more.

Figure 8 shows the effect of static analysis on the
number of virtual call arcs in the call graph. At a virtual
call site in the call graph for a C++ program, there is
an arc from the call site to each of the possible virtual
functions that could be called.

Class Hierarchy Analysis removes call arcs because
it eliminates functions, and so any call arcs that they
contain are also removed. Rapid Type Analysis can
both remove dead functions and remove virtual call arcs
in live functions. For example, refer back to Figure 1
at the beginning of this paper: even though main0 is
a live function, RTA removes the call arc to A : : f oo (>
at the call that produces result.3 because it. discovers
that no objects of type A are ever created.

Surprisingly, despite the large number of virtual call
sites that are resolved in most programs, relatively few
virtual call arcs are removed in three of the seven large
benchmarks. In those programs, the virtual function
resolution is due mostly to Class Hierarchy Analysis.
CHA, by definition, resolves a function call when there
is statically only a single possible target function at the
call site. Therefore, the call site is resolved, but the
call arc is not removed. On the other hand, because
RTA actually removes call arcs in live functions, it may
eliminate substantial numbers of call arcs, as is seen in
the case of hotwire.

3.6 Speed of Analysis

We have claimed that a major advantage of the algo-
rithms described in this paper is their speed. Table 4
shows the cost of performing the Class Hierarchy Analy-

334

Figure 6: User Code Size Reduction

(Static)

3
c 80%

z
‘:
m 60%
I Cl Not Eliminated/Unexecuted

s .- 40%
cn

G 8 20%

Program

Figure 7: Elimination of Functions

(Static)

80%
3 b

!

60%
0 Not Eliminated/Not Executed

‘E
E 40%

I?

_::,:I:-

20%

Program

335

Figure 8: Elimination of Virtual Call Arcs

(Static)

Program

Figure 9: Resolution of Static Call Sites

(Alias Analysis Benchmarks)

100%

80%
n Unresolved/Polymorphic

T
@ 60%

q Unresolved/Not Executed

8 Cl Unresolved/Monomorphic
.Z
m
z

q Resolved by RTA
40%

0 q Resolved by CHA

q Resolved by UN
20%

336

Size Analysis Time Compile RTA
Benchmark (lines) CHA RTA Time Overhead

sched 5,712 1.90 1.94 921 < 0.1%
ixx 11,157 5.12 5.22 367 1.4%
lcom 17.278 6.27 6.50 218 3.0%
hotwire 51335 2.05 2.06 160 1.3% ---
simulate 6,672 2.67 2.75 49 5.6%

id1 30,288 5.71 6.42 450 1.4%
taldict 11,854 1.66 1.78 45 4.0%
deltablue 1,250 0.42 0.44 18 2.4%

richards 606 0.30 0.32 9 3.6%

Table 4: Compile-Time Cost of Static Analysis (timings are in seconds on an 80 MHz PowerPC 601). Compile time
is for optimized code, and includes linking. Rightmost column shows the overhead of adding RTA to the compilation
process.

sis and Rapid Type Analysis algorithms on an 80 MHz
PowerPC 601, a modest CPU by today’s standards.
The total time to compile and link the program is also
included for comparison. We do not include timings
for Unique Name because we implemented it on top of
CHA, which would not be done in a real compiler. Since
Unique Name performed poorly compared to CHA and
RTA, we did not feel it was worth the extra effort of a
“native” implementation.

RTA is not significantly more expensive than CHA.
This is because the major cost for both algorithms is
that of traversing the program and identifying all the
call sites. Once this has been done, the actual analysis
proceeds very quickly.

RTA analyzes an average of 3310 non-blank source
lines per second, and CHA is only marginally faster.
The entire 17,278-line lcom benchmark was analyzed in
6.5 seconds, which is only 3% of the time required to
compile and link the code. On average, RTA took 2.4%
of the total time to compile and link the program.

We expect that these timings could be improved upon
significantly; our implementation is a prototype, de-
signed primarily for correctness rather than speed. No
optimization or tuning has been performed yet.

Even without improvement, 3300 lines per second is
fast enough to include in a production compiler without

significantly increasing compile times.

4 Related Work

4.1 Type Prediction for C++

Aigner and H6lzle [3] compared the execution time per-
formance improvements due to elimination of virtual

function calls via class hierarchy analysis and profile-
based type prediction. Our work differs from theirs
in that we compare three different static analysis tech-
niques, and in that we demonstrate the ability of static
analysis to reduce code size and reduce program com-
plexity. We also use dynamic information to bound the
performance of static analysis.

Type prediction has advantages and disadvantages
compared with static analysis. Its advantages are that
it resolves more calls, and does not rely on the type-
correctness of the program. Its disadvantages are that
it requires the introduction of a run-time test; it requires
profiling; and it is potentially dependent upon the input
used during the profile.

Ultimately, we believe that a combination of static
analysis with type prediction is likely to be the best
solution.

In Aigner and Hiilzle’s study, excluding the trivial
benchmarks deltablue and richards and weighting
each program equally, Class Hierarchy Analysis resolved
an average of 27% of the dynamic virtual function calls
(and a median of 9%). They said they were surprised
by the poor performance of CHA on their benchmarks,
since others had found it to perform well. In our mea-
surements, CHA resolved an average of 51% of the dy-
namic virtual calls, so it seems that there is considerable
variation depending upon the benchmark suite. In fact,
we got different results for the one large benchmark that
we had in common, ixx, due to a different input file and
possibly a different version of the program.

Type prediction can always “resolve” more virtual
calls than static analysis, because it precedes a direct
call with a run-time test. Call sites resolved by sta-
tic analysis do not need to perform this test, and one

337

would therefore expect the execution time benefit from
static resolution to be greater than that from type pre-
diction. This trend is indeed evident in their execution
time numbers: for only one of their benchmarks does
type feedback provide more than a 3% speedup over
Class Hierarchy Analysis. This is despite the fact that
in all but one of the benchmarks, type prediction re-
solves a significantly larger number of virtual calls.

4.2 Alias Analysis for C++

The most precise, and also most expensive, proposed
static method for resolving virtual function calls is to
use interprocedural flow-sensitive alias analysis. Pande
and Ryder [19, 181 have implemented an alias analysis
algorithm for C++ based on Landi et al.‘s algorithm
for C [15]. This analysis is then used to drive virtual
function elimination. They give preliminary results for
a set of 19 benchmark programs, ranging in size from
31 to 968 lines of code.

In comparison with our RTA algorithm, which
processes about 3300 lines of source code per second
(on an 80 MHz PowerPC 601), the speed of their al-
gorithm ranges from 0.4 to 55 lines of source code per
second (on a Spare-10). At this speed, alias analysis
will not be practical in any normal compilation path.

We have obtained their benchmark suite; Figure 9
shows the performance of our static analysis algorithms
on the 9 programs that we could execute (since their
analysis is purely static, not all programs were actu-
ally executable). Of these 9, two are completely poly-
morphic (no resolution is possible), and two were all or
almost all resolved by Rapid Type Analysis or Class Hi-
erarchy Analysis. So for four out of nine, RTA does as
well as alias analysis.

RTA resolved 33% of the virtual call sites in objects,
compared to about 50% by alias analysis (for compar-
ative data, see their paper [19]). For the remaining
four (derivi , deriv2, family, and off ice) fast sta-
tic analysis did not resolve any virtual call sites, and
significant fractions of the call sites were dynamically
monomorphic. Alias analysis was able to resolve some
of the virtual call sites in derivl and deriv2, and all of
the virtual call sites in family and off ice. However,
the latter two programs are contrived examples where
aliases are deliberately introduced to objects created in
the main routine.

Because of the small size and unrealistic nature of
the benchmarks used by Pande and Ryder, we hesitate
to make any generalizations based on the results of our
comparison. Two of our seven large benchmarks, sched
and lcom, appear to be programs for which alias analy-
sis could perform better than RTA. These programs

make use of disjointed polymorphism, as discussed in
Section 3.3.2.

Over all, our benchmarks and Pande and Ryder’s in-
dicate that for most programs, there is relatively little
room for improvement by alias analysis over RTA. How-
ever, there are definitely cases where alias analysis will
make a significant difference. The ideal solution would
be to use RTA first, and only employ alias analysis when
RTA fails to resolve a large number of monomorphic
calls.

In a similar vein as Pande and Ryder, Carini et al. [7]
have also devised an alias analysis algorithm for C++
based on an algorithm for C and Fortran [lo, 51. We are
currently collaborating with them on an implementation
of their algorithm within our analysis framework. This
will allow a direct comparison of both the precision and
the efficiency of alias analysis

4.3 Other Work in C++

Porat et al. [21] implemented the Unique Name op-
timization in combination with type prediction in the
IBM xlC compiler for AIX, and evaluated the results
for 3 benchmark programs. Their two large benchmarks
were identical to two of ours: taldict and lcom. They
achieved a speedup of 1.25 on taldict and a speedup
of 1.04 on Icorn, using a combination of Unique Name
and type prediction. Our estimates and experiments in-
dicate that a significantly higher speedup is achievable
for taldict using Rapid Type Analysis.

Calder and Grunwald [6] implemented the first virtual
function resolution algorithm for C++. Their Unique
Name algorithm (which might more accurately be called
“Unique Signature”) is very fast, since it only requires
a linear scan over the method declarations in the pro-
gram. Calder and Grunwald implemented Unique Name
as a link-time analysis, and found it to be quite effec-
tive. With their benchmarks, it resolved anywhere from
2.9% to 70.3% of the virtual calls executed by the pro-
gram. We found it to be not nearly so effective on our
benchmarks, and it was significantly outperformed by
Rapid Type Analysis.

Srivastava [22] developed an analysis technique with .
the sole object of eliminating unused procedures from
C++ programs. He builds a graph starting at the root
of the call graph. Virtual call sites are ignored; in-
stead, when a constructor is reached, the referenced
virtual methods of the corresponding class are added
to the graph. His algorithm could also be used to re-
solve virtual function calls by eliminating uninstanti-
ated classes from consideration and then using Class
Hierarchy Analysis. His technique is less general than

338

RTA because the resulting graph is not a true call graph,
and can not be used as a basis for further optimization.

4.4 Other Related Work

Related work has been done in the context of other
object-oriented languages like Smalltalk, SELF, Cecil,
and Modula-3. Of those, Modula-3 is the most similar
to c++.

Fernandez [131 implemented virtual function call
elimination as part of her study on reducing the cost of
opaque types in Modula-3. She essentially implemented
Class Hierarchy Analysis, although only for the purpose
of resolving virtual calls, and not for eliminating dead
code.

Diwan et al. [12] have investigated a number of
algorithms for Modula-3, including an interprocedural
uni-directional flow-sensitive technique, and a “name-
sensitive” technique.

For the benchmarks they studied, their more power-
ful techniques were of significant benefit for Modula-3,
because they eliminated the NULL class as a possible tar-
get. However, when NULL is ignored (as it is in C-t-t-),
in all but one case the more sophisticated analyses did
no better than class hierarchy analysis. This is inter-
esting because we found several cases in which Rapid
Type Analysis was significantly better than Class Hier-
archy Analysis - this may indicate that class instantia-
tion information is more important than the flow-based
information.

Because of the wide variation we have seen even
among our C++ benchmarks, it seems unwise to ex-
trapolate from Modula-3 results to C++. However, de-
spite the difference between their and our algorithms,
the basic conclusion is the same: that fast static analy-
sis is very effective for statically typed object-oriented
languages.

Dean et al. [ll] studied virtual method call elimina-
tion for the pure object-oriented language Cecil, which
includes support for multi-methods. They analyzed the
class hierarchy as we do to determine the set of type-
correct targets of a virtual method call, and used this
information to drive an intraprocedural flow analysis of
the methods. Their method is not directly comparable
to RTA: it uses more precise information within proce-
dures, but performs no interprocedural analysis at all.
Measured speedups for benchmarks of significant size
were on the order of 25%, and code size reduction was
also on the order of 25%.

There has been considerable work on type inference
for dynamically typed languages [20, 8, 1, 171. In a
recent paper [2], Agesen and HGlzle showed that type

inference can do as well or better than dynamic re-
ceiver prediction in the SELF compiler, and proceeded
to extrapolate from these results to C++ by excluding
dispatches for control structures and primitive types.
However, C++ and SELF may not be sufficiently similar
for such comparisons to be meaningful.

5 Conclusions

We have investigated the ability of three types of static
analysis to improve C++ programs by resolving virtual
function calls, reducing compiled code size, and reduc-
ing program complexity to improve both human and
automated program understanding and analysis.

We have shown that Rapid Type Analysis is highly
effective for all of these purposes, and is also very fast.
This combination of effectiveness and speed make Rapid
Type Analysis an excellent candidate for inclusion in
production C++ compilers.

RTA resolved an average of 71% of the virtual func-
tion calls in our benchmarks, and ran at an average
speed of 3300 non-blank source lines per second. CHA
resolved an average of 51% and UN resolved an aver-
age of only 15% of the virtual calls. CHA and RTA
were essentially identical for reducing code size; UN is
not designed to find dead code. RTA was significantly
better than CHA at removing virtual call targets.

Unique Name was shown to be relatively ineffective,
and can therefore not be recommended. Both RTA and
CHA were quite effective. In some cases there was little
difference, in other cases RTA performed substantially
better. Because the cost of RTA in both compile-time
and implementation complexity is almost identical to
that of CHA, RTA is clearly the best of the three algo-
rithms.

We have also shown, using dynamic traces, that the
best fast static analysis (RTA) often resolves all or al-
most all of the virtual function calls (in five out of the
seven large benchmarks). For these programs, there is
no advantage to be gained by using more expensive sta-
tic analysis algorithms like flow-sensitive type analysis
or alias analysis. Since these algorithms will invariably
be at least one to two orders of magnitude more expen-
sive than RTA, RTA should be used first to reduce the
complexity of the program and to determine if there are
significant numbers of virtual call sites left to resolve.
In some cases, this will allow the expensive analysis to
be skipped altogether.

339

Acknowledgements

We thank Michael Burke? Susan Graham, and Jim
Larus for their support of our work; Harini Srinivasan
and G. Ramalingam for their assistance with the de-
velopment of the analyzer: Mark Wegman for his many
helpful suggestions; Ravi Nair for the use of his &race
system, the accompanying benchmarks, and for his tech-
nical assistance; Vance Waddle for his NARC graph dis-
play system; and Yong-Fong Lee and Mauricio Serrano
for sharing their benchmark suite and their insights.
We thank Gerald Aigner, Urs Hclzle, Brad Calder, and
Dirk Grunwald for helpful discussions and explanations
of their work.

We also thank Rob Cecco, Yee-Min Chee, Derek In-
glis, Michael Karasick, Derek Lieber, Mark Mendell,
Lee Nackman, Jamie Schmeiser, and the other Montana
team members for their invaluable assistance with their
prototype C++ compiler upon which our optimizer was
built.

Finally, we thank those who provided feedback on
earlier drafts of this paper: Michael Burke, Paul Carini,
German Goldszmidt, Urs HiSlzle, Michael Karasick,
Harini Srinivasan and Kenny Zadeck.

References

PI

PI

[31

PI

AGESEN, 0. Constraint-based type inference
and parametric polymorphism. In Proceedings of
the First International Static Analysis Symposium
(Namur, Belgium, Sept. 1994), B. Le Charlier, Ed.,
Springer-Verlag, pp. 78-100.

AGESEN, O., AND H~LZLE, U. Type feedback
vs. concrete type inference: A comparison of opti-
mization techniques for object-oriented languages.
In Proceedings of the 1995 ACM Conference on

Object Oriented Programming Systems, Languages,
and Applications (OOPSLA) (Austin, Texas, Oct.
1995), ACM Press, New York, New York, pp. 91-
107.

AIGNER, G., AND H~LZLE, U. Eliminatingvirtual
function calls in C++ programs. In Proceedings of
the Tenth European Conference on Object-Oriented

Programming - ECOOP’96 (Line, Austria, July
1996), vol. 1098 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, pp. 142-166.

BACON, D. F., WEGMAN, M., AND ZADECK,

K. Rapid type analysis for C++. Tech. Rep. RC
number pending, IBM Thomas J. Watson Research

Center, 1996.

r51

[71

PI

PI

PO1

PI

P21

D31

BURKE, M., CARINI, P., CHOI, J.-D., AND HIND,

M. Flow-insensitive interprocedural alias analysis
in the presence of pointers. In Proceedings of the

Seventh International Workshop on Languages and
Compilers for Parallel Computing (Ithaca, New
York, Aug. 1994), K. Pingali, U. Banerjee, D. Gel-
ernter, A. Nicolau, and D. Padua, Eds., vol. 892
of Lecture Notes in Computer Science, Springer-
Verlag, Berlin, Germany, pp. 234-250.

CALDER, B., AND GRIJNWALD, D. Reducing in-
direct function call overhead in C-t+ programs.
In Conference Record of the Twenty-First ACM
Symposzum on Pranciples of Programmang Lan-
guages (POPL) (Portland, Oregon, Jan. 1994),
ACM Press, New York, New York, pp. 397-408.

CARINI, P., HIND, M., AND SRINIVASAN, H. Type
analysis algorithm for C++. Tech. Rep. RC 20267,
IBM Thomas J. Watson Research Center, 1995.

CHAMBERS, C., AND UNGAR, D. Iterative type
analysis and extended message splitting: optirniz-
ing dynamically-typed object-oriented programs.
LISP und Symbolic Computation 4, 3 (July 1991),
283-310.

CHAMBERS, C., UNGAR, D., AND LEE, E. An
efficient implementation of SELF, a dynamically-
typed object-oriented language based on proto-
types. LISP and Symbolic Computation 4, 3 (July
1991), 243-281.

CHOI, J.-D., BURKE, M., AND CARINI, P. Effi-
cient flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. In Con-

ference Record of the Twentieth ACM Symposium
on Principles of Programming Languages (POPL)
(Charleston, South Carolina, Jan. 1993), ACM
Press, New York, New York, pp. 232-245.

DEAN, J., GROVE, D., AND CHAMBERS, C. Op-

timization of object-oriented programs using static
class hierarchy analysis. In Proceedings of the Ninth

European Conference on Object- Oriented Program-

ming - ECOOP’95 (Aarhus, Denmark, Aug. 1995),
W. Olthoff, Ed., Springer-Verlag, pp. 77-101.

DIWAN, A., Moss, J. E. B., AND MCKINLEY,

K. S. Simple and effective analysis of statically-
typed object-oriented programs. Published in these
proceedings, 1996.

FERNANDEZ, M. F. Simple and effective link-time
optimization of Modula-3 programs. In Proceed-

ings of the SIGPLAN Conference on Programming

340

Languuge Desrgn und Implementatzon (PLDI) (La

Jolla, California, June 1995), ACM Press, New

York, New York, pp. 103-115.

[!4] H~~LZLE, I;., CHAMBERS, C., AND UNGAR, D.

Optimizing dynamically-types object-oriented [an-

guages with polymorphic inline caches. In Pro-
ceedings of the Eur0pea.n Conference on Oblect-

Oraented Programming - ECOOP’91 (Geneva,
Switzerland, July 199lj, P. America, Ed., Springer-

Verlag, pp. 21-38. ’

j.151 LANDI, W., RYDER, B. G., AND ZHANG, S. In-

terprocedural modification side effect analysis with

pointer aliasing. In Proceedings of the SIGPLAN

Conference on PToymrnmzny hnguuge Desagn and
Implem,entation (PLDI) (Albuquerque, New Mex-
ico, June 1993j, ACM Press, New York, New York,

pp. 56-67.

[16] LEE, Y., AND SERRANO, M. J. Dynamic mea-

surements of C++ program characteristics. Tech.

Rep. ADTI-1995-001, LBM Santa Teresa Labora-

tory, Jan. 1995.

[l 71 OXHBJ, N., PALSBERG, J., AND SCHWARTZBACH,

M. I. Making t,ype inference practical. In PTO-
ceedings of the European Conference on Object-
Oriented Programmzng - ECOOP’9% (Utrecht,

Netherlands, June 1992), 0. L. Madsen, Ed.,

Springer-Verlag, pp. 329-349.

[18] PANDE, H. D., AND RYDER, B. G. Static type de-
termination for C++. In Proceedings of the Sixth

Usenix C++ Technical Conference (Apr. 1994),

pp. 85-97.

[19] PANDE, H. D., AND RYDER, B. G. Data-flow-

based virtual function resolution. In Proceed-

ings of the International Static Analysis Sympo-

sium (1996), Lecture Notes in Computer Science,

Springer- Verlag

[20] PLEVYAK, J., AND CHIEN, A. A. Precise con-

crete type inference for object-oriented languages.

In Proceedings of the 1994 ACM Conference on
Object Oriented Programming Systems, Languages,

and Applications (OOPSLA) (Portland, OR, Oct.

1994), ACM Press, New York, New York, pp. 324-

340.

[21] PORAT, S., BERNSTEIN, D., FEDOROV, Y., AND

RODRIGUE, J. Compiler optimizations of C++ vir-

tual function calls. In Proceedings of the Second

Conference on Object-Oriented Technologies and

Systems (Toronto, Canada, June 1996), Usenix As-

sociation, pp. 3-14.

[22] SRIVASTAVA, A. Unreacha.ble procedures in object-
oriented programming. ACM Lettew on PTO-
g7aamming Languages and Systems 1, 4 (December
1992), 355-364.

/23J TIP, F., CHOI, J.-D., FIELD, J., AND RAMA-

LINGAM, G. Slicing class hierarchies in Ct- +. Pub-

lished in these proceedings, 1996.

[24] UNGAR, D., SMITH, R. B., CHAMBERS, C., AND

HOLZLE, U. Object, message, and performance:

how they coexist in Self. Computer %5, 10 (Oct.

1992), 53-64.

341

