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Abstract 

Virtual functions make code easier for programmers to reuse 
but also make it harder for compilers to analyze. We investi- 
gate the ability of three static analysis algorithms to improve 
C++ programs by resolving virtual function calls, thereby 
reducing compiled code size and reducing program complex- 
ity so as to improve both human and automated program 
understanding and analysis. In measurements of seven pro- 
grams of significant size (5000 to 20000 lines of code each) 
we found that on average the most precise of the three algo- 
rithms resolved 71% of the virtual function calls and reduced 
compiled code size by 25%. This algorithm is very fast: it 
analyzes 3300 source lines per second on an 80 MHz Pow- 
erPC 601. Because of its accuracy and speed, this algorithm 

is an excellent candidate for inclusion in production C++ 
compilers. 

1 Introduction 

A major advantage of object-oriented languages is ab- 
straction. The most important language feature that 
supports abstraction is the dynamic dispatch of meth- 
ods based on the run-time type of an object. In dynam- 
ically typed languages like Smalltalk and SELF, all dis- 
patches are considered dynamic, and eliminating these 
dynamic dispatches has been essential to obtaining high 
performance [9, 14, 241. 

C++ is a more conservatively designed language. 
Programmers must explicitly request dynamic dispatch 
by declaring a method to be virtual. C++ programs 
therefore suffer less of an initial performance penalty, 
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at the cost of reduced flexibility and increased program- 
mer effort. However, virtual function calls still present 
a significant source of opportunities for program opti- 
mization. 

The most obvious opportunity, and the one on which 
the most attention has been focused, is execution time 
overhead. Even with programmers specifying virtual 
functions explicitly, the execution time overhead of vir- 
tual function calls in Ct+ has been measured to be as 
high as 40% [16]. In addition, as programmers become 
familiar with the advantages of truly object-oriented de- 
sign, use of virtual functions increases. The costs as- 
sociated with developing software are so high that the 
performance penalty of virtual functions is often not suf- 
ficient to deter their use. Therefore, unless compilers are 
improved, the overhead due to virtual function calls is 
likely to increase as programmers make more extensive 
use of this feature. 

Other researchers have shown that virtual function 
call resolution can result in significant performance im- 
provements in execution time performance for C++ pro- 
grams [6, 3, 161; in this paper we concentrate on c.ompar- 
ing algorithms for resolving virtual function calls, and 
investigating the reasons for their success or failure. 

Another opportunity associated with virtual func- 
tions is code size reduction. For a program without 
virtual function calls (or function pointers), a complete 

call graph can be constructed and only the functions 
that are used need to be linked into the final program. 
With virtual functions, each virtual call site has mul- 
tiple potential targets. Without further knowledge, all 
of those targets and any functions they call transitively 
must be included in the call graph. 

As a result, object-code sizes for C++ programs have 
become a major problem in some environments, par- 
ticularly when a small program is statically linked to 
a large object library. For instance, when a graphical 
“hello world” program is statically linked to a GUI ob- 
ject library, even though only a very small number of 
classes are actually instantiated by the program, the 
entire library can be dragged in. 
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Finally, virtual function calls present an analogous 
problem for browsers and other program-understanding 
tools: if every potential target of a virtual function call 
is included in the call graph, the user is presented with 
a vastly larger space of object types and functions that 
must be comprehended to understand the meaning of 
the program as a whole. 

In this paper, we compare three fast static analysis 
algorithms for resolving virtual function calls and eval- 
uate their ability to solve the problems caused by virtual 
function calls in C++. We also use dynamic measure- 
ments to place an upper bound on the potential of static 
analysis methods, and compare the analysis algorithms 
against more sophisticated analyses like alias analysis. 
Finally, we present measurements of the speed of the 
analysis algorithms, which demonstrate that they are 
fast enough to be included in commercial-quality com- 
pilers. 

1.1 Outline 

Section 2 briefly describes and compares the mechanics 
of the three static analysis algorithms that are evalu- 
ated in this paper. Section 3 describes our benchmarks, 
presents the results of our measurements, and explains 
the reason behind the success or failure of the analy- 
sis algorithms. Section 4 describes related work, and 
Section 5 presents our conclusions. 

2 Static Analysis 

In this paper we will be comparing three static analy- 
sis algorithms, called Unique Name [6], Class Hierarchy 

Analysis [ll, 131, and Rapid Type Analysis [4]. We will 
sometimes abbreviate them as UN, CHA, and RTA, re- 
spectively. 

In this section we give a brief overview of the three al- 
gorithms, and use a small example program to illustrate 
the differences between them. We then briefly compare 
them in power to other static analyses, and discuss the 
interaction of type safety and analysis. 

2.1 Unique Name 

The first published study of virtual function call reso- 
lution for C++ was by Calder and Grunwald [6]. They 
were attempting to optimize C++ programs at link 
time, and therefore had to confine themselves to infor- 
mation available in the object files. They observed that 
in some cases there is only one implementation of a par- 
ticular virtual function anywhere in the program. This 

class A ( 

public : 
virtual int foo0 I return 1; 1; 

3; 

class B: public A { 

public : 
virtual int foo() 1 return 2; 3; 
virtual int foo(int i) { return i+l; 3; 

1. 
J, 

void main0 c 
B* p = new B; 
int result1 = p->foo(l); 
int result2 = p-XooO; 

A* q = p; 
int result3 = q->fooO; 

3 

Figure I: Program illustrating the difference between 
the static analysis methods. 

can be detected by comparing the mangled names 1 of 
the C++ functions in the object files. 

When a function has a unique name (really a unique 
signature), the virtual call is replaced with a direct call. 
While it can be used within a compiler in the same 
manner as the other algorithms evaluated in this pa- 
per, Unique Name has the advantage that it does not 
require access to source code and can optimize virtual 
calls in library code. However, when used at link-time, 
Unique Name operates on object code, which inhibits 
optimizations such as inlining. 

Figure 1 shows a small program which illustrates the 
power of the various static analyses. There are three 
virtual calls in main(). Unique Name is able to resolve 
the first call (that produces resultl) because there is 
only one virtual function called foo that takes an in- 
teger parameter - B : : f oo (int >. There are many f oo 
functions that take no parameters, so it can not resolve 
the other calls. 

2.2 Class Hierarchy Analysis 

Class Hierarchy Analysis [ll, 131 uses the combination 
of the statically declared type of an object with the class 
hierarchy of the program to determine the set of possible 
targets of a virtual function call. In Figure 1, p is a 

‘The mangled name of a function is the name used by the 
linker. It includes an encoding of the class and argument types 
to distinguish it from other identically named functions. 
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pointer whose static type is B*. This means that p can 
point to objects whose type is B or any of B's derived 
classes. 

By combining this static information with the class 
hierarchy, we can determine that there are no derived 
classes of B, so that the only possible target of the second 
call (that produces result2) is int B: :foo(). 

Class Hierarchy Analysis is more powerful than 
Unique Name for two reasons: it uses static informa- 
tion (as in Figure l), and it can ignore identically-named 
functions in unrelated classes. 

Class Hierarchy Analysis must have the complete pro- 
gram available for analysis, because if another module 
defines a class C derived from B that overrides f oo(), 

then the call can not be resolved. 
In the process of performing Class Hierarchy Analy- 

sis, we build a call graph for the program. The call 
graph includes functions reachable from main0 as well 
as those reachable from the constructors of global-scope 
objects. Note that some other researchers use the term 
“Class Hierarchy Analysis” to denote only the resolu- 
tion of virtual calls, not the building of the call graph. 

2.3 Rapid Type Analysis 

Rapid Type Analysis [4] starts with a call graph gen- 
erated by performing Class Hierarchy Analysis. It uses 
information about instantiated classes to further reduce 
the set of executable virtual functions, thereby reducing 
the size of the call graph. 

For instance, in Figure 1, the virtual call q->f oo() 
(which produces results) is not resolved by Class Hi- 
erarchy Analysis because the static type of q is A*, so 

the dynamic type of the object could be either A or B. 

However, an examination of the entire program shows 
that no objects of type A are created, so A : : f oo (1 can 
be eliminated as a possible target of the call. This leaves 
only B: :foo(). 

Note that RTA must not consider instantiation of sub- 
objects as true object instantiations: when an object of 
type B is created, A’s constructor is called to initial- 
ize the A sub-object of B. However, the virtual function 
table of the contained object still points to B's foo() 
method. 

Rapid Type Analysis builds the set of possible instan- 
tiated types optimistically: it initially assumes that no 
functions except main are called and that no objects are 
instantiated, and therefore no virtual call sites call any 
of their target functions. It traverses the call graph cre- 
ated by Class Hierarchy Analysis starting at main. Vir- 
tual call sites are initially ignored. When a constructor 
for an object is found to be callable, any of the virtual 
methods of the corresponding class that were left out 

are then traversed as well. The live portion of the call 
graph and the set of instantiated classes grow iteratively 
in an interdependent manner as the algorithm proceeds. 

Rapid Type Analysis inherits the limitations and ben- 
efits of Class Hierarchy Analysis: it must analyze the 
complete program. Like CHA, RTA is flow-insensitive 
and does not keep per-statement information, making 
it very fast. 

Rapid Type Analysis is designed to be most effec- 
tive when used in conjunction with class libraries. For 
instance, a drawing library defines numerous objects 
derived from class shape, each with their own draw0 

method. A program that uses the library and only ever 
creates (and draws) squares will never invoke any of 
the methods of objects like circle and polygon. This 
will allow calls to draw0 to be resolved to calls to 
square : :draw(), and none of the other methods need 
to be linked into the final program. This leads to both 
reduced execution time and reduced code size. 

Another approach to customizing code that uses class 
libraries is to use class slicing [23]. 

2.4 Other Analyses 

There are several other levels of static analysis that can 
be performed. First, a simple local flow-sensitive analy- 
sis would be able to resolve this call: 

A* q = new B; 

q = new A; 

result = q->foo(); 

because it will know that q points to an object of type A. 
Rapid Type Analysis would not resolve the call because 
both A and B objects are created in this program. 

An even more powerful static analysis method is alias 
analysis, which can resolve calls even when there is in- 
tervening code which could potentially change an ob- 
ject’s type. Alias analysis is discussed more fully in 
Section 4.2, with related work. 

2.5 Type Safety Issues 

An important limitation of CHA and RTA is that they 
rely on the type-safety of the programs. Continuing 
to use the class hierarchy from Figure 1, consider the 
following code fragment: 

void* x = (void*) new B; 

B* q = (B*) x; 

int case1 = q->fooO; 

Despite the fact that the pointer is cast to void* and 
then back to B+, the program is still type-safe because 
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we can see by inspection that the down-cast is actually 
to the correct type. However, if the original type is A, 

as in 

void* x = (void*) new A; 
B* q = (B*) x; 

int case2 = q->foo(); 

then the program is not type-safe, and the compiler 
would be justified in generating code that raises an ex- 
ception at the point of the virtual function call to f oo (> . 
However, because f oo( > is in fact defined for A, most 
existing compilers will simply generate code that calls 
A : : f oo ( > ; this may or may not be what the program- 
mer intended. If the call had instead been 

int case3 = q->foo(666); 

then the program will result in a undefined run-time 
behavior (most likely a segmentation fault) because A’s 
virtual function table (VFT) does not contain an entry 
for foo(int). 

The computation of case1 is clearly legal, and the 
computation of case3 is clearly illegal. In general it is 
not possible to distinguish the three cases statically. Un- 
fortunately, in case2, Class Hierarchy Analysis would 
determine that the call was resolvable to B: : f oo(), 
which is incorrect. Rapid Type Analysis would deter- 
mine that there are no possible call targets, which is 
correct according to the C++ language definition but 
different from what is done by most compilers. 

Therefore, Class Hierarchy Analysis and Rapid Type 
Analysis either need to be disabled whenever a downcast 
is encountered anywhere in the program, or they can be 
allowed to proceed despite the downcast, with a warning 
printed to alert the programmer that optimization could 
change the results of the program if the downcasts are 
truly unsafe (as in case2 or case3). 

We favor the latter alternative because downcasting 
is very common in C++ programs. This can be sup- 
plemented by pragmas or compiler switches which allow 
virtual function call resolution to be selectively disabled 
at a call site or for an entire module. We will discuss 
this issue further when we present the results for one 
of our benchmarks, lcom, which contained some unsafe 
code. 

3 Experimental Results 

In this section we evaluate the ability of the three fast 
static analysis methods to solve the problems that were 
outlined in the introduction: execution time perfor- 
mance, code size, and perceived program complexity. 

Where possible, we will use dynamic measurement in- 
formation to place an upper limit on what could be 
achieved by perfect static analysis. 

3.1 Methodology 

Our measurements were gathered by reading the C++ 
source code of our benchmarks into a prototype C++ 
compiler being developed at IBM. After type analysis is 
complete, we build a call graph and analyze the code. 
Since the prototype compiler is not yet generating code 
reliably enough to run large benchmarks, we compile the 
programs with the existing IBM Ctt compiler on the 
RS/6000, xlC. The b enchmarks are traced, and their 
executions are simulated from the instruction trace to 
gather relevant execution-time statistics. We then use 
line number and type information to match up the call 
sites in the source and object code. 

We used both optimized and unoptimized compiled 
versions of the benchmarks. The unoptimized versions 
were necessary to match the call sites in the source code 
and the object code, because optimization includes in- 
lining, which distorts the call graph. However, existing 
compilers can not resolve virtual function calls, so op- 
timization does not change the number of virtual calls, 
although it may change their location, especially when 
inlining is performed. Therefore, turning optimization 
(and inlining) off does not affect our results for virtual 
function resolution. Unoptimized code was only used 
for matching virtual call sites. All measurements are 
for optimized code unless otherwise noted. 

Because our tool analyzes source code, virtual calls in 
library code were not available for analysis. Only one 
benchmark, simulate, contained virtual calls in the li- 
brary code. They are not counted when we evaluate the 
efficacy of static analysis, since had they been available 
for analysis they might or might not have been resolved. 

The information required by static analysis is not 
large, and could be included in compiled object files 
and libraries. This would allow virtual function calls in 
library code to be resolved, although it would not confer 
the additional benefits of inlining at the virtual call site. 

3.2 Benchmarks 

Table 1 describes the benchmarks we used in this 
study. Of the nine programs, we consider seven 
to be “real” programs (sched, ixx, lcom, hotwire, 
simulate, id1 and taldict) which can be used to 
draw meaningful conclusions about how the analysis 
algorithms will perform. id1 and taldict are both 
programs made up of production code with demo dri- 
vers; the rest are all programs used to solve real prob- 

327 



Benchmark 1 Lines Da-rint.inn ----‘I”---- 1 
I 

sched Timing Simulator 
ixx 

! lcom 
hotwire 
simulate 
id1 r taldict 

deltablue 
richards 

IDL specification to C++ stub-code translator 
Compiler for the “L” hardware description language 
Scriptable graphical presentation builder 
Simula-like simulation class library and example 
SunSoft IDL compiler with demo back end 
Taligent dictionarv benchmark 
Incremental dataflow constraint solver 

Simple operating system simulator - 

Table 1: Benchmark Programs. Size is given in non-blank lines of code 

lems. The remaining two benchmarks, richards and 
deltablue, are included because they have been used 
in other papers and serve as a basis for comparison and 
validation. 

Table 2 provides an overview of the static character- 
istics of the programs in absolute terms. Library code is 
not included. The number of functions, call sites, and 
virtual call arcs gives a composite picture of the sta- 
tic complexity of the program. Live call sites are those 
which were executed in our traces. Non-dead virtual call 
sites are those call sites, both resolved and unresolved, 
that remained in the program after our most aggressive 
analysis (RTA) removed some of the dead functions and 
the virtual call sites they contained. 

Table 3 provides an overview of the dynamic (execu- 
tion time) program characteristics for optimized code. 
Once again, all numbers are for user code only. The 
number of instructions between virtual function calls 
is an excellent (though crude) indication of how much 
potential there is for speedup from virtual function res- 
olution. Under IBM’s AIX operating system and C++ 
run-time environment a virtual function call takes 12 in- 
structions, meaning that the user code of taldict could 
be sped up by a factor of two if all virtual calls are re- 
solved (as they in fact are). 

The graphs in the paper all use percentages because 
the absolute numbers vary so much. Tables 2 and 3 
include the totals for all subsequent graphs, with the 
relevant figure indicated in square brackets at the top 
of the column. 

Figure 2 is a bar graph showing the distribution of 
types of live call sites contained in the user code of 
the programs; Figure 3 shows the analogous figures for 
the number of dynamic calls in user code. Direct (non- 
virtual) method calls account for an average of 51% of 
the static call sites in the seven large applications, but 
only 39% of the dynamic calls. Virtual method calls 
account for only 21% of the static call sites, but a much 

more significant 36% of the total dynamic calls. 
Indirect function calls are used sparely except by 

deltablue, and pointer-to-member calls are only used 
by ixx, and then so infrequently that they do not ap- 
pear on the bar chart. 

Since non-virtual and virtual method calls are about 
evenly mixed, and direct (non-method) calls are less fre- 
quent, we conclude that the programs are written in a 
relatively object-oriented style. However, only some of 
the classes are implemented in a highly reusable fash- 
ion, because half of the method calls are non-virtual. 
The exception is taldict, with 89% of the dynamic 
function calls virtual: taldict uses the Taligent frame- 
works, which are designed to be highly re-usable. As 
use of C++ becomes more widespread and code reuse 
becomes more common, we expect that programs will 
become more like taldict, although probably not to 
such an extreme. 

Note that we assume that trivially resolvable virtual 
function calls are implemented as direct calls, and count 
them accordingly throughout our measurements. That 
is, the call to f oo (> in 

A a; 
a.foo(); 

is considered a direct call even if f oo ( > is a virtual func- 
tion. This is consistent with the capabilities of current 
production C++ compilers, but different from some re- 
lated work. 

Our results differ, in some cases significantly, from 

those reported in two previous studies of C++ virtual 
function call resolution [6, 31. This would seem to indi- 
cate that there is considerable variation among applica- 
tions. 

Considerable additional work remains to be done for 

benchmarking of C++ programs. While the SPEC 
benchmark suite has boiled down “representative” C 
code to a small number of programs, it may well be 
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ode Size ] Functions 1 Call 1 Li Program C 

(bytes) PI 
sched 99,888 

[7] Sites 

237 530 

ve Call Virtual Non-Dead Virtual 
Sites [2] Call Sites V-Call Sites [4] Call Arcs [8] 

184 34 33 58 
399 1.752 ixx 178:636 1 1.108 1 3,601 1 767 1 467 1 

lcom 1641032 ‘779 21794 1,653 458 446 1 
hotwire 45,416 230 1,204 550 48 6 1 
simulate 28.900 242 580 141 36 23 1. 

41 
I 

24.1:748 
I I I 

id1 1 1 
I ---‘---I 

856 1 3.671 1 
I -1. I 

882 1,248 1,198 3,486 
taldict 20.516 1 429 

N.A. 
1 783 / 47 79 14 116 

deltablue 103 372 201 3 3 11 
richards 9,744 78 174 68 1 1 5 

Table 2: Totals for static (compile-time) quantities measured in this paper. All quantities are measured for user code 
only (libraries linked to the program are not included). Numbers in brackets are the numbers of subsequent figures 
for which the column gives the total. 

[Program Instrs. Function 
Executed Calls [3] 

Virtual Instrs. per 
Calls [5] Virtual Call 

Table 3: Totals for dynamic (run-time) quantities measured in this paper. All quantities are for user code only 

(libraries linked to the program are not included). N umbers in brackets are the numbers of subsequent figures for 
which the column gives the total. 
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Figure 2: Classification of Live User Call Sites (Static) 

n Virtual Method 

III Direct Method 

69 Indirect Function 

0 Direct Function 

Figure 3: Classification of User Calls 
(Dynamic) 

n Virtual Method 

•I Direct Method 

El Indirect Function 

0 Direct Function 
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that such an approach will not work with C++ because 
it is a more diverse language with more diverse usage 
patterns. 

3.3 Resolution of Virtual Function Calls 

When a virtual call site always calls the same function 
during one or more runs of the program, we say that it 
is monomorphic. If it calls multiple functions, it, is poly- 
morphic. If t.he optimizer can prove that a monomor- 
phic call will always call the same function, then it can 
be resolved statically. Polymorphic call sites can not be 
resolved unless the enclosing code is cloned or type tests 
are inserted. 

The performance of the analyses for resolving virtual 
function calls is shown in Figures 4 (which presents 
the static information for the call sites) and 5 (which 
presents the dynamic information for the calls in our 
program traces). Together with the remaining graphs 
they compare the performance of the three static analy- 
sis algorithms, and they all use a consistent labeling 
to aid in interpretation. Black is always used to label 
the things that could not possibly be handled by static 
analysis; in the case of virtual function resolution, black 
represents the call sites or calls that were polymorphic. 
White represents the region of possible opportunity for 
finer analysis; for virtual function resolution, this is the 
call sites or calls that were dynamically monomorphic 
but were not resolved by any of the static analysis meth- 
ods we implemented. For graphs of static quantities, the 
diagonally striped section labels an additional region 
of opportunity in unexecuted code; for virtual function 
resolution, this is the call sites that were not resolved 
and were not executed at run-time. They may be dead, 
monomorphic, or polymorphic. 

Since Class Hierarchy Analysis (CHA) resolves a su- 
perset of the virtual calls resolved by Unique Name 
(UN), and Rapid Type Analysis (RTA) resolves a super- 
set of the virtual calls resolved by CHA, we show their 
cumulative effect on a single bar in the chart. There- 
fore, to see the effect of RTA, the most powerful analy- 
sis, include all the regions labeled as “resolved” (they 
are outlined with a thick line). 

If the region of opportunity is very small, then the dy- 

namic trace has given us a tight upper bound: we Icnow 
that no static analysis could do much better. On the 
other hand, if the white region (and for static graphs, 
the striped region) is large, then the dynamic trace has 
only given us a loose upper bound: more powerful static 
analysis might be able to do better, or it might not. 

Call sites identified as dead by Rapid Type Analysis 
were not counted, regardless of whether they were re- 
solved. This was done so that the static and dynamic 

measurements could be more meaningfully compared, 
and because it seemed pointless to count as resolved 
a call site in a function that can never be executed. 
However, this has relatively little effect on the overall 
percentages. 

Figure 5 shows that for for five out of seven of the 
large benchmarks, the most powerful static analysis, 
RTA, resolves all or almost all of the virtual function 
calls. In other words, in five out of seven cases, RTA 
does an essentially perfect job. On average, RTA re- 
solves 71% of the dynamic virtual calls in the seven 
large benchmarks. CHA is also quite effective, resolving 
an average of 51%, while UN performs relatively poorly. 
resolving an average of 15% of the dynamic virtual calls. 

We were surprised by the poor performance of Unique 
Name, since Calder and Grunwald found that Unique 
Name resolved an average of 32% of the virtual calls 
in their benchmarks. We are not sure why this should 
be so; possibly our benchmarks, being on average of a 
later vintage, contain more ‘complex class hierarchies. 
UN relies on there only being a single function in the 
entire application with a particular signature. 

Our benchmarks are surprisingly monomorphic; only 
two of the large applications (ixx and lcom) exhibit a 
significant degree of polymorphism. We do not expect 
this to be typical of C-t+ applications, but perhaps 
monomorphic code is more common than is generally 
believed. 

A problem arose with one program, lcom, which is 
not type-safe: applying CHA or RTA generates some 
specious call site resolutions. We examined the pro- 
gram and found that many virtual calls were poien$iaZZy 
unsafe, because the code used down-casts. However, 
most of these potentially unsafe calls are in fact safe, 
because the program uses a collection class defined to 
hold pointers of type void*. Usually, inspection of the 
code shows that the down-casts are simply being used 
to restore a void* pointer to the original type of the 
object inserted into the collection. 

We therefore selectively turned off virtual function 
call resolution at the call sites that could not be de- 
termined to be safe; only 7% of the virtual calls that 
would have been resolved by static analysis were left 
unresolved because of this (they are counted as unre- 
solved monomorphic calls). We feel that this is a rea- 
sonable course because a programmer trying to opti- 
mize their own program might very well choose to fol- 
low this course rather than give up on optimization al- 
together; readers will have to use their own judgment 
as to whether this would be an acceptable programming 

practice in their environment. 

The only benchmark to use library code containing 
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Figure 4: Resolution of User Virtual Call Sites (Static) 
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Figure 5: Resolution of User Virtual Calls 
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virtual calls was simulate, which uses the task library 
supplied with AIX. Slightly less than half of the virtual 
calls were made from the library code, and about half of 
those calls were monomorphic (and therefore potentially 
resolvable). We have not included virtual calls in library 
code in the graphs because the corresponding code was 
not available to static analysis. 

3.3.1 Why Rapid Type Analysis Wins 

Since Class Hierarchy Analysis is a known and accepted 
method for fast virtual function resolution, it is impor- 
tant to understand why RTA is able to do better. 

RTA does better on four of seven programs, although 
for id1 the improvement is minor. For ixx, RTA re- 
solves a small number of additional static call sites 
(barely visible in Figure 4), which account for almost 
20% of the total dynamic virtual function calls. The 
reason is that those calls are all to frequently exe- 
cuted string operations. There is a base class String 
with a number of virtual methods, and a derived class 
Uniquestring, which overrides those methods. RTA 
determines that no Uniquestring objects are created 
in ixx, and so it is able to resolve the virtual call sites 
to String methods. These call sites are in inner loops, 
and therefore account for a disproportionate number of 
the dynamic virtual calls. 

RTA also makes a significant difference for taldict, 
resolving the remaining 19% of unresolved virtual calls. 
RTA is able to resolve two additional call sites because 
they are calls where a hash table class is calling the 
method of an object used to compare key values. The 
comparison object base class provides a default com- 
parison method, but the derived class used in taldict 
overrides it. RTA finds that no instances of the base 
class are created, so it is able to resolve the calls. 

The hotwire benchmark is a perfect example of the 
class library scenario: a situation in which an applica- 
tion is built using only a small portion of the function- 
ality of a class library. The application itself is a sim- 
ple dynamic overhead transparency generator; it uses 
a library of window management and graphics routines. 
However, it only creates windows of the root type, which 
can display text in arbitrary fonts at arbitrary locations. 
All of the dynamic dispatch occurs on redisplay of sub- 
windows, of which there are none in this application. 
Therefore, all of the live virtual call sites are resolved. 

3.3.2 Why Fast Static Analysis Fails 

One benchmark, sched, stands out for the poor perfor- 
mance of all three static analysis algorithms evaluated in 
this paper. Only 10% of the dynamic calls are resolved, 

even though 30% of the static. call sites are resolved, and 
100% of the dynamic calls are monomorphic. Of course, 
a function may be monomorphic with one input but not 
with another. However, sched appears to actually be 
completely monomorphic. 

The unresolved monomorphic virtual call sites are all 
due to one particular programming idiom: sched de- 
fines a class Base and two derived classes Derived1 
and Derived2 (not their real names). Base has no 
data members, and defines a number of virtual func- 
tions whose implementation is always assert (f alse) - 
in other words, they will raise an exception when ex- 
ecuted. In essence, Base is a strange sort of abstract 
base class. 

Derived1 and Derived2 each implement a mutually 
exclusive subset of the methods defined by Base, and 
since Base has no data members, this means that these 
two object types are totally disjoint in functionality. It 
is not clear why the common base class is being used at 
all. 

RTA determines that no objects of type Base are 
ever created. However, the calls to the methods of 
Derived1 and Derived2 are always through pointers 
of type Base*. Therefore, there are always two possi- 
ble implementations of each virtual function: the one 
defined by one of the derived classes, and the one inher- 
ited from Base by the other derived class. 

Depending on your point of view, this is either an 
example of the inability of static analysis to handle par- 
ticular coding styles, or another excellent reason not to 
write strange code. 

The other benchmark for which none of the static 
analyses do a very good job is Icorn: 45% of the virtual 
calls are monomorphic but unresolved. 40% of the vir- 
tual calls are from a single unresolved call site. These 
calls are all through an object passed in from a single 
procedure, further up in the call graph. That procedure 
creates the object with new, and it is always of the same 
type. While it would probably not be resolved by simple 
flow analysis, it could be resolved by alias analysis. 

What kinds of programming idioms are not amenable 
to fast static analysis? CHA will resolve monomorphic 
virtual calls for which there is only a single possible 
target. RTA will also eliminate monomorphic calls when 
only one of the possible target object types is used in 
the program. The kind of monomorphic calls that can’t 
be resolved by RTA occur when multiple related object 
types are used independently, for instance if Square and 
Circle objects were each kept on their own linked list, 
instead of being mixed together. We call this disjointed 

polymorphism. 

Disjointed polymorphism is what occurs in lcom and, 
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in a degenerate fashion, in sched. While there are cer- 
tainly situations in which it does make sense to use 
disjointed polymorphism, we believe it to be relatively 
uncommon, and this is borne out by our benchmarks. 
Disjointed polymorphism presents the major opportu- 
nity for alias analysis to improve upon the fast static 
techniques presented in this paper, since it can some- 
times determine that a pointer can only point to one 
type of object even when multiple possible object types 
have been created. 

3.4 Code Size 

Because they build a call graph, Class Hierarchy Analy- 
sis and Rapid Type Analysis identify some functions as 
dead: those that are not reachable in the call graph. 
RTA is more precise because it removes virtual call 
arcs to methods of uninstantiated objects from the call 
graph. 

Figure 6 shows the effect of static analysis on user 
code size. As before, white represents the region of op- 
portunity for finer analysis - those functions that were 
not live during the trace and were not eliminated by 
static analysis. 

Our measurements include only first-order effects of 
code size reduction due to the elimination of entire func- 
tions. There is a secondary code-size reduction caused 
by resolving virtual call sites, since calling sequences for 
direct calls are shorter than for virtual calls. We also did 
not measure potential code expansion (or contraction) 
caused by inlining of resolved call sites. Finally, due 
to technical problems our code size measurements are 
for unoptimized code, and we were not able to obtain 
measurements for deltablue. 

On average, 42% of the code in the seven large bench- 
marks is not executed during our traces. Class Hierar- 
chy Analysis eliminates an average of 24% of the code 
from these benchmarks, and Rapid Type Analysis gets 
about one percent more. 

CHA and RTA do very well at reducing code size: 
in five of the seven large benchmarks, less than 20% of 
the code is neither executed nor eliminated by static 
analysis. Only ixx and id1 contain significant portions 
of code that was neither executed nor eliminated (about 
40%). 

We were surprised to find that despite the fact that 
RTA does substantially better than CHA at virtual 
function resolution, it does not make much difference 
in reducing code size. 

Unique Name does not remove any functions because 
it only resolves virtual calls; it does not build a call 
graph. 

3.5 Static Complexity 

Another important advantage of static analysis is its 
use in programming environments and compilers. For 
instance, in presenting a user with a program browser, 
the task of understanding the program is significantly 
easier if large numbers of dead functions are not in- 
cluded, and if virtual functions that can not be reached 
are not included at virtual call sites. 

In addition, the cost and precision of other forms of 
static analysis and optimization are improved when the 
call graph is smaller and less complex. 

Figure 7 shows the effect of static analysis on elimi- 
nating functions from the call graph. This is similar to 
Figure 6, except that each function is weighted equally, 
instead of being weighted by the size of the compiled 
code. As we stated above, since Unique Name does not 
build a call graph, it does not eliminate any functions. 

Once again, Class Hierarchy Analysis eliminates a 
large number of functions, and Rapid Type Analysis 
eliminates a few more. 

Figure 8 shows the effect of static analysis on the 
number of virtual call arcs in the call graph. At a virtual 
call site in the call graph for a C++ program, there is 
an arc from the call site to each of the possible virtual 
functions that could be called. 

Class Hierarchy Analysis removes call arcs because 
it eliminates functions, and so any call arcs that they 
contain are also removed. Rapid Type Analysis can 
both remove dead functions and remove virtual call arcs 
in live functions. For example, refer back to Figure 1 
at the beginning of this paper: even though main0 is 
a live function, RTA removes the call arc to A : : f oo (> 
at the call that produces result.3 because it. discovers 
that no objects of type A are ever created. 

Surprisingly, despite the large number of virtual call 
sites that are resolved in most programs, relatively few 
virtual call arcs are removed in three of the seven large 
benchmarks. In those programs, the virtual function 
resolution is due mostly to Class Hierarchy Analysis. 
CHA, by definition, resolves a function call when there 
is statically only a single possible target function at the 
call site. Therefore, the call site is resolved, but the 
call arc is not removed. On the other hand, because 
RTA actually removes call arcs in live functions, it may 
eliminate substantial numbers of call arcs, as is seen in 
the case of hotwire. 

3.6 Speed of Analysis 

We have claimed that a major advantage of the algo- 
rithms described in this paper is their speed. Table 4 
shows the cost of performing the Class Hierarchy Analy- 
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Figure 6: User Code Size Reduction 
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Figure 8: Elimination of Virtual Call Arcs 
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Size Analysis Time Compile RTA 
Benchmark (lines) CHA RTA Time Overhead 

sched 5,712 1.90 1.94 921 < 0.1% 
ixx 11,157 5.12 5.22 367 1.4% 
lcom 17.278 6.27 6.50 218 3.0% 
hotwire 51335 2.05 2.06 160 1.3% --- 
simulate 6,672 2.67 2.75 49 5.6% 

id1 30,288 5.71 6.42 450 1.4% 
taldict 11,854 1.66 1.78 45 4.0% 
deltablue 1,250 0.42 0.44 18 2.4% 

richards 606 0.30 0.32 9 3.6% 

Table 4: Compile-Time Cost of Static Analysis (timings are in seconds on an 80 MHz PowerPC 601). Compile time 
is for optimized code, and includes linking. Rightmost column shows the overhead of adding RTA to the compilation 
process. 

sis and Rapid Type Analysis algorithms on an 80 MHz 
PowerPC 601, a modest CPU by today’s standards. 
The total time to compile and link the program is also 
included for comparison. We do not include timings 
for Unique Name because we implemented it on top of 
CHA, which would not be done in a real compiler. Since 
Unique Name performed poorly compared to CHA and 
RTA, we did not feel it was worth the extra effort of a 
“native” implementation. 

RTA is not significantly more expensive than CHA. 
This is because the major cost for both algorithms is 
that of traversing the program and identifying all the 
call sites. Once this has been done, the actual analysis 
proceeds very quickly. 

RTA analyzes an average of 3310 non-blank source 
lines per second, and CHA is only marginally faster. 
The entire 17,278-line lcom benchmark was analyzed in 
6.5 seconds, which is only 3% of the time required to 
compile and link the code. On average, RTA took 2.4% 
of the total time to compile and link the program. 

We expect that these timings could be improved upon 
significantly; our implementation is a prototype, de- 
signed primarily for correctness rather than speed. No 
optimization or tuning has been performed yet. 

Even without improvement, 3300 lines per second is 
fast enough to include in a production compiler without 

significantly increasing compile times. 

4 Related Work 

4.1 Type Prediction for C++ 

Aigner and H6lzle [3] compared the execution time per- 
formance improvements due to elimination of virtual 

function calls via class hierarchy analysis and profile- 
based type prediction. Our work differs from theirs 
in that we compare three different static analysis tech- 
niques, and in that we demonstrate the ability of static 
analysis to reduce code size and reduce program com- 
plexity. We also use dynamic information to bound the 
performance of static analysis. 

Type prediction has advantages and disadvantages 
compared with static analysis. Its advantages are that 
it resolves more calls, and does not rely on the type- 
correctness of the program. Its disadvantages are that 
it requires the introduction of a run-time test; it requires 
profiling; and it is potentially dependent upon the input 
used during the profile. 

Ultimately, we believe that a combination of static 
analysis with type prediction is likely to be the best 
solution. 

In Aigner and Hiilzle’s study, excluding the trivial 
benchmarks deltablue and richards and weighting 
each program equally, Class Hierarchy Analysis resolved 
an average of 27% of the dynamic virtual function calls 
(and a median of 9%). They said they were surprised 
by the poor performance of CHA on their benchmarks, 
since others had found it to perform well. In our mea- 
surements, CHA resolved an average of 51% of the dy- 
namic virtual calls, so it seems that there is considerable 
variation depending upon the benchmark suite. In fact, 
we got different results for the one large benchmark that 
we had in common, ixx, due to a different input file and 
possibly a different version of the program. 

Type prediction can always “resolve” more virtual 
calls than static analysis, because it precedes a direct 
call with a run-time test. Call sites resolved by sta- 
tic analysis do not need to perform this test, and one 
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would therefore expect the execution time benefit from 
static resolution to be greater than that from type pre- 
diction. This trend is indeed evident in their execution 
time numbers: for only one of their benchmarks does 
type feedback provide more than a 3% speedup over 
Class Hierarchy Analysis. This is despite the fact that 
in all but one of the benchmarks, type prediction re- 
solves a significantly larger number of virtual calls. 

4.2 Alias Analysis for C++ 

The most precise, and also most expensive, proposed 
static method for resolving virtual function calls is to 
use interprocedural flow-sensitive alias analysis. Pande 
and Ryder [19, 181 have implemented an alias analysis 
algorithm for C++ based on Landi et al.‘s algorithm 
for C [15]. This analysis is then used to drive virtual 
function elimination. They give preliminary results for 
a set of 19 benchmark programs, ranging in size from 
31 to 968 lines of code. 

In comparison with our RTA algorithm, which 
processes about 3300 lines of source code per second 
(on an 80 MHz PowerPC 601), the speed of their al- 
gorithm ranges from 0.4 to 55 lines of source code per 
second (on a Spare-10). At this speed, alias analysis 
will not be practical in any normal compilation path. 

We have obtained their benchmark suite; Figure 9 
shows the performance of our static analysis algorithms 
on the 9 programs that we could execute (since their 
analysis is purely static, not all programs were actu- 
ally executable). Of these 9, two are completely poly- 
morphic (no resolution is possible), and two were all or 
almost all resolved by Rapid Type Analysis or Class Hi- 
erarchy Analysis. So for four out of nine, RTA does as 
well as alias analysis. 

RTA resolved 33% of the virtual call sites in objects, 
compared to about 50% by alias analysis (for compar- 
ative data, see their paper [19]). For the remaining 
four (derivi , deriv2, family, and off ice) fast sta- 
tic analysis did not resolve any virtual call sites, and 
significant fractions of the call sites were dynamically 
monomorphic. Alias analysis was able to resolve some 
of the virtual call sites in derivl and deriv2, and all of 
the virtual call sites in family and off ice. However, 
the latter two programs are contrived examples where 
aliases are deliberately introduced to objects created in 
the main routine. 

Because of the small size and unrealistic nature of 
the benchmarks used by Pande and Ryder, we hesitate 
to make any generalizations based on the results of our 
comparison. Two of our seven large benchmarks, sched 
and lcom, appear to be programs for which alias analy- 
sis could perform better than RTA. These programs 

make use of disjointed polymorphism, as discussed in 
Section 3.3.2. 

Over all, our benchmarks and Pande and Ryder’s in- 
dicate that for most programs, there is relatively little 
room for improvement by alias analysis over RTA. How- 
ever, there are definitely cases where alias analysis will 
make a significant difference. The ideal solution would 
be to use RTA first, and only employ alias analysis when 
RTA fails to resolve a large number of monomorphic 
calls. 

In a similar vein as Pande and Ryder, Carini et al. [7] 
have also devised an alias analysis algorithm for C++ 
based on an algorithm for C and Fortran [lo, 51. We are 
currently collaborating with them on an implementation 
of their algorithm within our analysis framework. This 
will allow a direct comparison of both the precision and 
the efficiency of alias analysis 

4.3 Other Work in C++ 

Porat et al. [21] implemented the Unique Name op- 
timization in combination with type prediction in the 
IBM xlC compiler for AIX, and evaluated the results 
for 3 benchmark programs. Their two large benchmarks 
were identical to two of ours: taldict and lcom. They 
achieved a speedup of 1.25 on taldict and a speedup 
of 1.04 on Icorn, using a combination of Unique Name 
and type prediction. Our estimates and experiments in- 
dicate that a significantly higher speedup is achievable 
for taldict using Rapid Type Analysis. 

Calder and Grunwald [6] implemented the first virtual 
function resolution algorithm for C++. Their Unique 
Name algorithm (which might more accurately be called 
“Unique Signature”) is very fast, since it only requires 
a linear scan over the method declarations in the pro- 
gram. Calder and Grunwald implemented Unique Name 
as a link-time analysis, and found it to be quite effec- 
tive. With their benchmarks, it resolved anywhere from 
2.9% to 70.3% of the virtual calls executed by the pro- 
gram. We found it to be not nearly so effective on our 
benchmarks, and it was significantly outperformed by 
Rapid Type Analysis. 

Srivastava [22] developed an analysis technique with . 
the sole object of eliminating unused procedures from 
C++ programs. He builds a graph starting at the root 
of the call graph. Virtual call sites are ignored; in- 
stead, when a constructor is reached, the referenced 
virtual methods of the corresponding class are added 
to the graph. His algorithm could also be used to re- 
solve virtual function calls by eliminating uninstanti- 
ated classes from consideration and then using Class 
Hierarchy Analysis. His technique is less general than 
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RTA because the resulting graph is not a true call graph, 
and can not be used as a basis for further optimization. 

4.4 Other Related Work 

Related work has been done in the context of other 
object-oriented languages like Smalltalk, SELF, Cecil, 
and Modula-3. Of those, Modula-3 is the most similar 
to c++. 

Fernandez [ 131 implemented virtual function call 
elimination as part of her study on reducing the cost of 
opaque types in Modula-3. She essentially implemented 
Class Hierarchy Analysis, although only for the purpose 
of resolving virtual calls, and not for eliminating dead 
code. 

Diwan et al. [12] have investigated a number of 
algorithms for Modula-3, including an interprocedural 
uni-directional flow-sensitive technique, and a “name- 
sensitive” technique. 

For the benchmarks they studied, their more power- 
ful techniques were of significant benefit for Modula-3, 
because they eliminated the NULL class as a possible tar- 
get. However, when NULL is ignored (as it is in C-t-t-), 
in all but one case the more sophisticated analyses did 
no better than class hierarchy analysis. This is inter- 
esting because we found several cases in which Rapid 
Type Analysis was significantly better than Class Hier- 
archy Analysis - this may indicate that class instantia- 
tion information is more important than the flow-based 
information. 

Because of the wide variation we have seen even 
among our C++ benchmarks, it seems unwise to ex- 
trapolate from Modula-3 results to C++. However, de- 
spite the difference between their and our algorithms, 
the basic conclusion is the same: that fast static analy- 
sis is very effective for statically typed object-oriented 
languages. 

Dean et al. [ll] studied virtual method call elimina- 
tion for the pure object-oriented language Cecil, which 
includes support for multi-methods. They analyzed the 
class hierarchy as we do to determine the set of type- 
correct targets of a virtual method call, and used this 
information to drive an intraprocedural flow analysis of 
the methods. Their method is not directly comparable 
to RTA: it uses more precise information within proce- 
dures, but performs no interprocedural analysis at all. 
Measured speedups for benchmarks of significant size 
were on the order of 25%, and code size reduction was 
also on the order of 25%. 

There has been considerable work on type inference 
for dynamically typed languages [20, 8, 1, 171. In a 
recent paper [2], Agesen and HGlzle showed that type 

inference can do as well or better than dynamic re- 
ceiver prediction in the SELF compiler, and proceeded 
to extrapolate from these results to C++ by excluding 
dispatches for control structures and primitive types. 
However, C++ and SELF may not be sufficiently similar 
for such comparisons to be meaningful. 

5 Conclusions 

We have investigated the ability of three types of static 
analysis to improve C++ programs by resolving virtual 
function calls, reducing compiled code size, and reduc- 
ing program complexity to improve both human and 
automated program understanding and analysis. 

We have shown that Rapid Type Analysis is highly 
effective for all of these purposes, and is also very fast. 
This combination of effectiveness and speed make Rapid 
Type Analysis an excellent candidate for inclusion in 
production C++ compilers. 

RTA resolved an average of 71% of the virtual func- 
tion calls in our benchmarks, and ran at an average 
speed of 3300 non-blank source lines per second. CHA 
resolved an average of 51% and UN resolved an aver- 
age of only 15% of the virtual calls. CHA and RTA 
were essentially identical for reducing code size; UN is 
not designed to find dead code. RTA was significantly 
better than CHA at removing virtual call targets. 

Unique Name was shown to be relatively ineffective, 
and can therefore not be recommended. Both RTA and 
CHA were quite effective. In some cases there was little 
difference, in other cases RTA performed substantially 
better. Because the cost of RTA in both compile-time 
and implementation complexity is almost identical to 
that of CHA, RTA is clearly the best of the three algo- 
rithms. 

We have also shown, using dynamic traces, that the 
best fast static analysis (RTA) often resolves all or al- 
most all of the virtual function calls (in five out of the 
seven large benchmarks). For these programs, there is 
no advantage to be gained by using more expensive sta- 
tic analysis algorithms like flow-sensitive type analysis 
or alias analysis. Since these algorithms will invariably 
be at least one to two orders of magnitude more expen- 
sive than RTA, RTA should be used first to reduce the 
complexity of the program and to determine if there are 
significant numbers of virtual call sites left to resolve. 
In some cases, this will allow the expensive analysis to 
be skipped altogether. 
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