
A Unified Formal Specification and Analysis of the new Java
Memory Models

By
Varsha Awhad

A THESIS
Submitted in partial fulfillment of the requirements

for the degree of
MASTER OF SCIENCE IN COMPUTER SCIENCE

MICHIGAN TECHNOLOGICAL UNIVERSITY
2002

This thesis, ”A Unified Formal Specification and Analysis of the new Java Memory Models ”, is hereby ap-
proved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE IN COMPUTER
SCIENCE.

DEPARTMENT Computer Science

Signatures:

Thesis Advisor:
Dr. Charles Wallace

Department Chair:
Dr. Linda Ott

Date:

2

Acknowledgments

This thesis has reached its completion because of the guidance and support of several people. I would like
to thank my advisor Dr. Charles Wallace, for his consistent encouragement and excellent guidance. It has
been a privilege working under him. I would also like to thank Guy Tremblay, for his comments on an earlier
draft of this paper, and José Nelson Amaral, for his thoughts on Location Consistency. I would like to thank
our department chair Dr. Linda Ott, and my committee members Dr. Steve Seidel and Dr. Allan Struthers,
for their insights, time and understanding support.

I would like thank my parents, without whom this higher education would not have been possible. Last
but not the least, I would like to thank my friend Pratik Chandan for his moral support. He has been with
me at every step.

3

Abstract

In a multithreaded program running on a multiprocessor platform, different processors may observe op-
erations in different orders. This may lead to surprising results not anticipated by the programmer. The
problem is exacerbated by common compiler and hardware optimization techniques. A memory (consis-
tency) model provides a contract between the system designer and the software designer that constrains
the order in which operations are observed. Every memory model strikes some balance between strictness
(simplifying program behavior) and laxness (permitting greater optimization).

With its emphasis on cross-platform compatibility, the Java programming language needs a memory
model that is satisfactory to language users and implementors. Everyone in the Java community must
be able to understand the Java memory model and its ramifications. The description of the original Java
memory model suffered from ambiguity and opaqueness, and attempts to interpret it revealed serious
deficiencies. Two memory models have been proposed as replacements. Unfortunately, these two new
models are described at different levels of abstraction and are represented in different formats, making
it difficult to compare them.

In the work presented here we formalize these models and develop a unified representation of them.
We do so using Abstract State Machines, a formal operational semantics methodology. Using the mathe-
matical models we develop we compare the two Java Memory Models to a modified form of the Location
Consistency model which we propose as a model for Java. In doing so we takesteps towards developing
a generic framework that can be applied to any model for the purpose of study and comparison.

4

Contents

1 Introduction 1

2 Overview of the new Java memory models 4
2.1 Manson-Pugh JMM . 4
2.2 Commit-Reconcile-Fence (CRF) JMM . 5
2.3 Location Consistency JMM . 6

3 ASM for the Manson-Pugh Model 7

4 ASM for the CRF Model 11

5 ASM for the Location Consistency JMM 17

6 Comparisons of the Java memory models 20
6.1 Manson-Pugh vs. LC . 20
6.2 Manson-Pugh/LC vs. CRF . 25

7 Semantics for Final Fields. 28

8 Conclusion 32

A Introduction to Abstract State Machines (ASMs) 35

B Semantics of the Manson - Pugh Model 37
B.1 Full semantics of the Manson - Pugh Model . 38

C Semantics of the CRF Model 40

5

1 Introduction

As parallelism becomes ever more prevalent in the computing world, the shared memory paradigm is emerg-
ing as a popular approach to building parallel systems and applications. A shared memory multiprocessor
machine is characterized by a collection of processors that exchange information with one another through
a global address space [1, 7]. In such machines, memory may be partitioned in many ways. For instance,
in bus-based shared memory, processors access a separate monolithic main memory area over a bus; in dis-
tributed shared memory, each processor may have local access to some portion of the shared memory, but
remote memory accesses require communication via a network. The advantage of shared memory is that
programmers writing applications for such machines are shielded from details about the physical distribu-
tion of memory. Each processor views the same global address space and accesses remote memory locations
through the standard read and write instructions found in uniprocessor machines, rather than through spe-
cial message-passing operations [14].

The behavior of a program running on a shared memory machine depends on the order in which memory
operations are made visible to processors. Due to the physical distribution of memory, operations cannot be
made visible instantaneously to all processors, so there is no simple notion of a single order of operations.
Indeed, many common optimization techniques may complicate the ordering even further:

• Shared memory machines have various buffers where data written by a processor can be stored before
they are shared with other processors. Freshly written values may remain in write buffers until it is
convenient to propagate them to other processors. Processors may choose to read outdated values from
their local caches to avoid the cost of remote reads.

• Compilers may permute program instructions into an order more advantageous from a performance
perspective. Similarly, processors may execute instructions out of program order. Typically, such re-
orderings are chosen carefully so as to be imperceptible in a uniprocessor context, but they cannot be
hidden from other processors operating concurrently on a shared address space.

In a totally unregulated shared memory machine, programmers would find it impossible to predict the be-
havior of their applications. Optimizations at the hardware or compiler level can have consequences for
even simple programs. Consider the fragments of Java code in Fig. 1. A programmer accustomed to the
simple uniprocessor model might be surprised to find Thread T1 reading the value 1 written by Thread T2,
or likewise T2 reading the value 1 written by T1, but this is of course an inevitable consequence of shared

1

P refers to the same object in both code fragments;
Initially, P.x == 0 and P.y == 0

Thread T1 Thread T2

P.x = 1; P.y = 1;
result1 = P.y; result2 = P.x;

Figure 1: A simple parallel program.

memory. On the other hand, the programmer would be even more surprised to find both T1 and T2 reading
the value 0. If T1 reads 0, it seems intuitive that at the time of its read, (1) T1’s write to P.x, appearing as
it does before T1’s read in program order, must have completed; (2) T2’s write of 1 to P.y must not have
completed, since T1 read the value 0 for P.y; (3) T2’s read of P.x, since it follows T2’s write in program order,
must not have completed. From this reasoning, it seems inevitable that T2 will read the value 1 written by
T1. Yet it is quite possible for T1 and T2 to read 0, if the writes remain buffered, or if a compiler chooses to
reorder the instructions in both programs.

To avoid complete chaos, every shared memory machine has an underlying memory (consistency) model,
a contract between a program and the underlying machine architecture that constrains the order in which
memory operations become visible to processors [7]. By constraining the order of operations, a memory
model determines which values can legally be returned by each read operation. The most common memory
model, sequential consistency (SC) [22], ensures that memory operations performed by the various proces-
sors are serialized, or seen in the same order by all processors, and that the common order preserves the
order dictated by each program. This results in a model similar to the simple and familiar uniprocessor
model. In the example of Fig. 1, it would not be possible for T1 and T2 to both read 0 under SC, since the
write-before-read order is maintained for both programs.

Because of the requirement that all memory operations be serialized, the SC model is quite restrictive; it
requires a high level of interprocessor communication in order to keep caches consistent, and it prohibits
most reordering operations at the compiler and hardware levels. Other memory models [12, 9, 3, 28, 8] have
been proposed to relax the requirements imposed by SC and therefore allow a wider range of optimizations.

Relaxed memory models place fewer constraints on the memory system than SC, and a smaller set of con-
straints permits more parallelism and requires less interprocessor communication. However, the results of
some program executions may be quite counterintuitive to programmers familiar with uniprocessor or se-
quential consistency. As program behavior becomes less restricted, reasoning about programs becomes more
difficult.

Memory models are subtle, hard to describe, and even harder for the average programmer to understand.
The original memory model for the Java programming language [13], written in natural language, suffered
from serious imprecision and ambiguity [17]. The possibility of multiple interpretations of the memory model
threatens Java’s promise of “write once, run anywhere” software. Furthermore, the language designers them-
selves were victims of their memory model’s complexity; they did not realize that their memory model not
only disallowed many common optimizations but also failed to guarantee some basic safety properties [25].

There have been two recent attempts to come up with a better model: one by Manson and Pugh [24] and
another by Maessen, Arvind and Shen [23] that uses the basic operations of the Commit-Reconcile-Fence
(CRF) model [28]. We shall call the former the Manson-Pugh JMM (Java memory model) and the latter the
CRF JMM. In both models, the authors realize the importance of precise description. However, the notations
describing the two models are quite different. Manson and Pugh donot give a formal semantics for theie
notation and use an operational pseudocode reminiscent of ASM, while the CRF JMM is described through
a combination of algebraic rules (imposing constraints on instruction reordering) and term-rewriting rules
(giving the behavior of the memory system). Furthermore, the levels of abstraction of the two models are

2

quite different. Manson and Pugh conceive of a history of abstract write operations whose relative ordering
determines which values are readable at any given time. Where the values of these abstract writes are stored
is intentionally left unspecified. The CRF JMM takes a lower-level view, describing a particular memory
system architecture with a cache for each thread and a single common main memory area. Furthermore, Java
operations are actually translated into finer-grained CRF operations, and rules are given for legal reorderings
of CRF operations. The lower level of abstraction may be more satisfying in its concreteness, but it comes
at a cost. For instance, in cache-only memory architectures [18, 20], there is no single fixed main memory
area; rather, data dynamically move to the threads that access them. In such architectures, the notions of
cache and main memory are blurred in a way that is hard to capture in CRF.

In this document, we develop a unified representation of the memory models using the operational semantics
methodology of Abstract State Machines (ASM) [2]1. This makes it easier to compare the models. We also
define a modified version of the Location Consistency (LC) memory model [8], in ASM terms, and prove
that it is identical to the Manson-Pugh JMM. Finally, we prove that the CRF JMM is more restrictive than
either the Manson-Pugh JMM or the LC JMM.

We provide a brief introduction to ASMs as an appendix. For more information refer to [35] and [36].

1Our ASM notation is taken from Gurevich’s Lipari Guide [16] and 1997 ASM Guide [15]. We also use the seq rule proposed
in Börger and Schmid [5].

3

2 Overview of the new Java memory models

The new Java memory models [23, 24] preserve the fundamental ideas of the original [13]. Each thread
executes Java bytecode instructions sequentially, with read (load) and write (store) operations performed
on a number of variables. A variable is a location at which values are stored. In a shared memory system,
there may be multiple instantiations of a single variable (e.g., cached by various threads), so there may be
multiple values associated with a single variable at any time. The programmer may specify certain variables
as volatile; such variables obey additional consistency constraints.

Threads may also perform basic synchronization operations. Each object has an associated monitor, on which
threads perform lock (enter) and unlock (exit) operations. Lock and unlock instructions are guaranteed to
be nested appropriately: a thread may enter a monitor m and then enter another monitor n without exiting
m, but in this case it must exit n before exiting m.

2.1 Manson-Pugh JMM

Manson and Pugh describe their JMM in terms of a global system that maintains a history of write
operations. The global system operates sequentially: in each step, it atomically executes one instruction
from a thread. Execution involves firing an operational-style rule, similar to an ASM rule. Examples are
shown in Figure 2.

writeNormal (Write< v, w, g >): overwrittent ∪ = previoust(v)
previoust += < v, w, g >
allWrites += < v, w, g >

readNormal (Variable v): Choose < v, w, g > from allWrites(v) - overwrittent(v)
Return w

Figure 2: Sample rules from the Manson-Pugh model [24].

Writes are flagged as previous or overwritten with respect to a given thread. Manson and Pugh informally
describe these terms as follows: “[f]or each thread t, at any given step, overwrittent is the set of writes that
thread t knows are overwritten and previoust is the set of all writes that thread t knows occurred previously”

4

[24]. Aside from the anthropomorphic nature of this characterization, it is a little misleading: for instance,
it seems unintuitive that t may read a value it did not “know” occurred previously, yet in the Manson-Pugh
JMM it is possible for a thread t to read a value written by a write not in previoust.

The significance of previous and overwritten is this: any write marked as overwritten by a thread t does not
have a readable value according to t. A local write by t is immediately marked as previous according to t. A
remote write is marked as previous according to t only after some synchronization between t and the writer.
A write is marked as overwritten according to t only if it has already been marked as previous and another
write intervenes (either a local write by t or a remote write followed by synchronization with t). Thus every
write considered overwritten by t is also considered previous by t.

Writes are also marked as previous or overwritten with respect to each monitor. A lock operation has the
effect of taking all writes that are previous or overwritten with respect to the locked monitor m and marking
them similarly with respect to the locking thread t. An unlock has a similar effect, marking all previous or
overwritten writes with respect to the unlocking thread t and marking them similarly with respect to the
unlocked monitor m.

Volatile variables are different in that there is a single value marked readable for all threads and this globally
readable value is the only readable value. The level of consistency is higher; all threads agree on a single
value as the unique readable value. Furthermore, volatile variables are similar to threads and monitors in
that they mark certain writes as previous or overwritten. Operations on volatile variables are similar to
lock and unlock operations. A volatile read, like a lock, takes all writes marked previous or overwritten by
the read variable and marks them previous or overwritten by the reading thread. A volatile write, like an
unlock, takes all writes marked previous or overwritten by the writing thread and marks them previous or
overwritten by the written variable.

Final fields are like constant variables. A variable is final if it instantiates a field designated as final in some
object. A value can be assigned to a final field either in the field’s declaration or in the object’s constructor.
The field must be assigned a value by the time the final constructor of the object has terminated. Once a
value has been assigned to a final field it cannot be reassigned. Final fields can be accessed without locking,
which means they do not have to be reloaded at synchronization points.

2.2 Commit-Reconcile-Fence (CRF) JMM

Java bytecode is translated into a sequence of finer-grained CRF instructions. Each Java instruction cor-
responds to a particular sequence of CRF instructions. For instance, the CRF translation of a Java load
instruction includes a reconcile instruction (ensuring a fresh value for the load), followed by a loadl (load-local)
instruction (ensuring that a value is in the thread’s cache). A Java store instruction has as its translation
a storel (store-local) (ensuring that the new value is stored locally) and a following commit (ensuring the
value is propagated to main memory). Fence instructions are also added in the translation to prevent certain
kinds of instruction reordering.

Once this translation is done, CRF instruction can be reordered, modulo certain constraints. The abstract
machine executes the resulting sequence of pending CRF instructions, each labeled with a unique result tag
“r”. When an instruction is executed, its result is associated with the result tag in a completion map.

Each thread has of a sequence of pending instructions, a set of completed instructions and a cache which
maps addresses to values tagged with a state of either Clean or Dirty. The contents of the cache can be
moved atomically to and from the main memory. Cache-to-cache data movement is possible only via the
main memory. The model has two kinds of rules: local rules that execute CRF instructions and act purely
on the cache; and background rules that move values to and from the main memory. Figure 3 shows some
of these rules. Typically, local rules do little in terms of state updates; their primary task is to block until
certain thread-local conditions are met. It is the duty of the background rules to effect the state changes

5

that allow local operations to complete.

Local Rules:

(r = Storel(a, v); instr, comp, cache[a := −,−])⇒ (instr, r =
√

/comp, cache[a := v, Dirty])

(r = Loadl(a); instr, comp, cache[a := v, s])⇒ (instr, r = v/comp, cache[a := v, s])

(r = Commit(a, v); instr, comp, cache)⇒ (instr, r =
√

/comp, cache)
where a is not in cache or a is Clean

(r = Reconcile(a, v); instr, comp, cache)⇒ (instr, r =
√

/comp, cache)
where a is not in cache or a is Dirty

Background Rules:

(instr, comp, cache[a := v, s])⇒ (instr, comp, cache)
where s is Clean (Eject a cache entry)

(instr, comp, cache)/threads, memory[a := v]⇒ (instr, comp, cache[a := v, Clean])/threads, memory[a := v])
where cache contains no mapping for a (Fetch a value from main memory)

(instr, comp, cache[a := v, Dirty])/threads, memory[a := −]⇒
(instr, comp, cache[a := v, Clean])/threads, memory[a := v] (Write back a value to main memory)

Figure 3: Sample rules from the CRF JMM [23].

Global states are defined as terms, and updates to global states are represented by rewriting terms, following
the style of Shen and Arvind [27]. Examples are shown in Figure 3. This leads to rather unwieldy notation;
even though each state change is typically quite local in scope, it requires an entire rewriting of the term. Thus
for the nonexpert user, it can be difficult to find where the state is changing at each step. This is in contrast
to ASM’s locality principle for dynamics [4], which allows us to concentrate only on the changes to the states.

2.3 Location Consistency JMM

The Location Consistency (LC) memory model, proposed by Gao and Sarkar [8], was not proposed specif-
ically as a memory model for Java, but in this paper we define a version of it appropriate for Java. In
the model, the state of a memory location is described as a partially ordered set of instruction executions.
Whenever an instruction is executed, a record of the operation is added to the partially ordered set of oper-
ations on that location.

Chains of operations are formed in two ways: by a thread making a series of local operations, in which case
the operation instances are linearly ordered, and by synchronization operations, where the operations of a
locking thread are ordered with respect to operations performed by the previous unlocking thread. When
a location is read the value returned is the value associated with a maximal write in the partially ordered
set for that location. Since the history is a partial order rather than a total order, there may be multiple
maximal write values that are legal candidates for a read operation.

LC has been formalized using ASM [31]. However, it is not exactly appropriate to Java, since LC lock
operations are performed on locations (variables) rather than monitors, and a lock on a location affects
the visibility of writes only on that location [30]. Thus we present a modified version of LC in which
synchronization operations affect the visibility of writes to all variables.

6

3 ASM for the Manson-Pugh Model

In the ASM JMMMP , representing the Manson-Pugh JMM, there are two types of agents. Thread agents
(members of the universe Thread) execute Java instructions (members of the universe Instruction). These
instructions are of four types: read, write, lock and unlock. A write operation generates a write instance
(a member of the universe WriteEvent), which is added to the system history. A variable (a member of the
universe Variable) and a value (a member of the universe Value) are associated with the write instance. A read
operation generates a read instance (a member of the universe Read), selects a write instance that is legally
readable, and reads the value of that write instance. A lock or unlock operation performs a synchronization
with a given monitor (a member of the universe Monitor). Monitors are agents that control thread ownership.
Figure 4 shows the universe for JMMMP . The functions for this model are described in Figure 5.

Universe Description
WriteEvents Write Instances
ReadEvents Read Instances
Threads Threads
Variables Variables
Monitors Monitors
Values Values that can be assigned to a variable
InstTypes Java Instruction Types: {Read, Write,Lock,Unlock}
Instructions Java Instructions

Figure 4: JMMMP : Universes.

As long as a Thread is not waiting for ownership of a monitor, it starts work on its next instruction, given
by the monitored function currInst. The functions type, var, monitor, and val give the various parameters
associated with each instruction. Read, write, and unlock operations are atomic, while a lock operation may
require a complementary action by a Monitor agent, granting ownership to the requested monitor. Each
write, lock, and unlock action updates the functions previous? and overwritten? appropriately. The Thread
module is given in Fig. 6. In this model we ignore final fields. See section 7 for an ASM description of Final
Fields

7

Function Profile/Description
currInst Thread → Instruction

Gives the current operation for the thread. (monitored)
type Instruction → {Read, Write, Lock, Unlock}

Returns the type of the given operation.
var Instruction ∪ WriteEvent → Variable

Returns the variable associated with the given operation.
monitor Instruction → Monitor

Returns the monitor associated with the given operation.
val Instruction ∪ WriteEvent ∪ VolatileVariable → Value

Returns the value associated with the given operation/volatile variable.
previous? WriteEvent × (Thread ∪ Monitor ∪ VolatileVariable) → Boolean

Is the given write considered previous by the given thread/monitor?
overwritten? WriteEvent × (Thread ∪ Monitor ∪ VolatileVariable) → Boolean

Is the given write considered overwritten by the given thread/monitor?
locks Thread × Monitor → Nat

Returns the number of locks that a thread has on a monitor.

Figure 5: JMMMP : Functions.

Monitors grant exclusive access to one thread at a time, and a thread may build up multiple locks on a single
monitor, in which case it needs to perform multiple unlocks before any other thread can be granted a lock
on the monitor. If some thread already has a claim on a monitor, then that thread may either increment or
decrement its number of locks. If no thread has a claim, the monitor agent may choose a thread to grant a
claim to. The Monitor module is given in Fig. 7. When a thread t is granted a lock on a monitor m, then
the number of locks by t on monitor m (given by function locks) is incremented.

A write to a volatile variable v updates the globally visible value for v. Similarly, a read of a volatile variable
simply uses this unique value; there is no choice involved. The previous? and overwritten? functions are
updated similarly to the lock and unlock operations. The special rules for volatile variables are given in
Fig. 8.

8

module Thread:
let inst = Self.currInst

case inst.type of
Read: Read inst.var
Write: Write inst.val to inst.var
Lock: Lock inst.monitor
Unlock: Unlock inst.monitor

rule Read v: (Perform a read of variable v)
if VolatileVariable(v) then Read volatile v
else

extend Read with r
choose w: WriteEvent: w.var = v and not w.overwritten?(Self)

r.var := v r.val := w.val

rule Write val to v: (Write value val to variable v)
if VolatileVariable(v) then Write val to volatile v
else

extend WriteEvent with w
w.var := v w.val := val
w.previous?(Self) := True

do-forall w: WriteEvent: w.var = v and w.previous?(Self)
w.overwritten?(Self) := true

rule Lock m: (Get a lock on monitor m)
if Self.locks(m)6=undef then

Self.locks(m) := Self.locks(m)+1
do-forall w: WriteEvent: w.previous?(m)

w.previous?(Self) := true
do-forall w: WriteEvent: w.overwritten?(m)

w.overwritten?(Self) := true

rule Unlock m: (Release a lock on monitor m)
Self.locks(m) := Self.locks(m)-1
do-forall w: WriteEvent: w.previous?(Self)

w.previous?(m) := true
do-forall w: WriteEvent: w.overwritten?(Self)

w.overwritten?(m) := true

Figure 6: JMMMP : Thread module.

9

module Monitor:
if (∀t: Thread) t.locks(Self)=undef then

choose t: Thread
t.locks(Self) := 0

else
choose t: Thread: t.locks(Self)=0

t.locks(Self) := undef

Figure 7: JMMMP : Monitor module.

rule Read volatile v: (Perform a read of volatile variable v)
extend Read with r

r.var := v r.val := v.val
do-forall w: WriteEvent: w.previous?(v)

w.previous?(Self) := true
do-forall w: WriteEvent: w.overwritten?(v)

w.overwritten?(Self) := True

rule Write val to volatile v: (Write value val to volatile variable v)
extend WriteEvent with w

w.var := v v.val := v
do-forall w: WriteEvent: w.previous?(Self)

w.previous?(v) := true
do-forall w: WriteEvent: w.overwritten?(Self)

w.overwritten?(v) := true

Figure 8: JMMMP : Rules for VolatileVariables.

10

4 ASM for the CRF Model

Universe Description
JavaInstructions Java Instructions: { Load,Store, Enter, Exit }
Values Values that can be read or written
Threads Threads
CacheStatus(s) Cache Entry Status: {Clean,Dirty,Frozen,Invalid}
Variables Variables
VolatileVariables Volatile variables: sub-universe of variables
FinalVariables Final Variables: sub-universe of variables
FenceAddress Fence Addresses:{v ∪m∪ {*V, *R, *L, *VR, *VRL}}
CRFInstructions Loadl,Storel,Commit,Reconcile,Fence.Freeze
Monitors(m) Monitors
InstructionType Instructions Types: { JavaInstTypes ∪ CRFInstTypes }

Figure 9: Universes.

The ASM JMMCRF , representing the CRF JMM, deals with instructions at two levels of abstraction: Java
instructions, as in JMMMP , and CRF instructions (members of the universe CRFInstruction). Figure 9 shows
the universe for JMMCRF . The functions for this model are described in Figure 10. The CRF JMM uses
“Load”, “Store”, “Enter” and “Exit” as names for the Java instructions, as opposed to “Read”, “Write”,
“Lock” and “Unlock” in the Pugh-Manson JMM. The actions of the ASM can be categorized as follows:
add a Java instruction (translating it into appropriate CRF instructions), reorder CRF instructions, execute
a CRF instruction, or initiate communication between a cache and main memory through a background
operation. The Thread module for JMMCRF is given in Fig. 11. In this section we omit final fields. Final
fields are discused in section 7.

CRF instructions are of the following types. A storel (store local) instruction writes a value to a thread’s
cache, without affecting main memory. The cache entry is flagged as dirty, indicating that its value must
eventually be written back to main memory. Functions cacheValue and cacheStatus give the cache state for
each thread and variable. The other CRF instructions do not affect the cache directly; rather, they block

11

Function Profile/Description
currJavaInst Thread → JavaInstruction

Gives the current instruction for the thread. (monitored)
cacheValue Thread × Variable → Value

Returns the value cached by the given thread for the given variable.
cacheStatus Thread × Variable → {CacheStatus}

Returns the status of the given thread’s cache entry for the given variable.
memoryValue Variable → Value

Returns the main memory value of the given variable.
type JavaInstructions × CRFInstructions → InstructionType

Returns the instruction type
var JavaInstruction ∪ CRFInstruction → Variable

Returns the variable associated with the given instruction.
val JavaInstruction ∪ CRFInstruction → Variable

Returns the variable associated with the given instruction.
addInst Sequence(CRFInstruction) × CRFInstruction → Sequence(CRFInstruction)

Adds the given CRF instruction to the end of the given sequence.
swapAt Sequence(CRFInstruction) × Nat → Sequence(CRFInstruction)

Gives the result of swapping the instruction at the given index with its successor.
CRFInsts Thread → Sequence(CRFInstruction)

Returns the sequence of instructions for the given thread.
Loadl, Reconcile, Commit Variable → CRFInstruction

Returns a Loadl/Reconcile/Commit instruction with the given variable parameter.
Lock, Unlock Monitor → CRFInstruction

Returns a Lock/Unlock instruction with the given monitor parameter.
Storel Variable × Value → CRFInstruction

Returns a Storel instruction with the given parameters.
Fence {R, W} × {R, W} × FenceAddress × FenceAddress → FenceInst

Returns a Fence instruction with the given parameters.
addr CRFInstruction → Variable ∪ Monitor

Returns the variable/monitor associated with the given instruction.
preInst, postInst CRFInstruction → {R,W}

Returns the pre/post-instruction type of the fence instruction.
preAddr, postAddr CRFInstruction → FenceAddress

Returns the pre/postaddress of a fence instruction.

Figure 10: JMMCRF : Functions.

module Thread:
choose among

Add Java instruction
Reorder CRF instructions
Execute CRF instruction
Perform background operation

Figure 11: JMMCRF : Thread module.

12

rule Proceed : (Remove current CRF instruction from the list of pending instructions)
Self.CRFInsts := Self.CRFInsts.tail

rule Proceed when cache status not s: (Proceed when the cache status of the current address is not s)
let v = Self.CRFInsts.head.addr

if Self.cacheStatus(v) 6= s then Proceed

rule Execute CRF instruction:
let inst = Self.CRFInsts.head

case inst.type of
Storel: Self.cacheValue(inst.addr) := inst.val

Self.cacheStatus(inst.addr) := Dirty
Proceed

Loadl: Proceed when cache status not Invalid
Reconcile: Proceed when cache status not Clean
Commit: Proceed when cache status not Dirty
Fence: Proceed
Lock: if Self.locks(inst.monitor)6=undef then

Self.locks(inst.monitor) := Self.locks(inst.monitor)+1
Proceed

Unlock: Self.locks(inst.monitor) := Self.locks(inst.monitor)-1
Proceed

Figure 12: JMMCRF : Rule for execution of CRF instructions.

until certain cache conditions are met through execution of background operations. A loadl (load local)
instruction completes only when an entry for the given variable has been loaded into main memory. A
reconcile instruction completes only when there is no cache entry for the given variable is either nonexistent
or dirty. This ensures that subsequent local loads use a relatively up-to-date value. A commit instruction
completes only when a cache entry for the given variable is either nonexistent or clean. This ensures that any
previous local store has had its value written back to main memory. Each CRF instruction has an associated
type field. Each storel, loadl, reconcile, commit, lock, and unlock instruction has an addr field, giving the
variable or monitor on which the instruction operates. In addition, each Storel instruction has a val field.
Finally, a fence instruction has meaning only in terms of restricting certain kinds of instruction reordering;
in terms of actual execution, a fence behaves as a no-op. Functions Storel, Loadl, etc. give CRF instructions
with the appropriate parameters. Figure 12 shows the rule for executing a CRF instruction.

rule Perform background operation:
choose v: Variable

case Self.cacheStatus(v) of
Invalid: Self.cacheValue(v) := v.memoryValue

Self.cacheStatus(v) := Clean
Clean: Self.cacheValue(v) := undef

Self.cacheStatus(v) := Invalid
Dirty: Self.cacheStatus(v) := Clean

v.memoryValue := Self.cacheValue(v)

Figure 13: JMMCRF : Rule for background operations.

13

The interaction between cache and main memory that permits completion of these instructions is accom-
plished through so-called background operations. They do the following: in the case of a dirty cache entry,
write the cached value to main memory and mark the entry clean; in the case of a clean cache entry, remove
it; in the case of a nonexistent cache entry, create one and give it the current value stored in main memory.
The function memoryValue gives the current value in main memory for each variable. Fig. 13 gives the rule
for background operations.

rule Add CRF instructions inst1 . . . instk:
Self.CRFInsts := Self.CRFInsts.addInst(inst1)

seq . . .
seq Self.CRFInsts := Self.CRFInsts.addInst(instk)

rule Add Java instruction:
let inst = Self.currJavaInst

case inst.type of

Load: if VolatileVariable(inst.var) then
Add CRF instructions Fence(W,R,*V,inst.var), Reconcile(inst.var),Loadl(inst.var),

Fence(R,R,inst.var,*VR), Fence(W,R,inst.var,*R)
else
Add CRF instructions Reconcile(inst.var), Loadl(inst.var)

Store: if VolatileVariable(inst.var) then
Add CRF instructions Fence(R,W,*VR,inst.var),Fence(W,W,*VR,inst.var),Storel(inst.var,inst.val),

Commit(inst.var)
else
Add CRF instructions Storel(inst.var,inst.val), Commit(inst.var)

Enter:
Add CRF instructions Fence(W,W,*L,inst.monitor), Lock(inst.monitor), Fence(W,R,inst.monitor,*VR),

Fence(W,W,inst.monitor,*VRL)
Exit:

Add CRF instructions Fence(W,W,*VR,inst.monitor), Fence(R,W,*VR,inst.monitor),
Unlock(inst.monitor)

Figure 14: JMMCRF : Rules for adding CRF instructions.

As a Java instruction is added, it is translated into a sequence of CRF instructions (given by the func-
tion CRFInsts). The function addInst returns the CRFInstruction sequence achieved by appending a given
CRFInstruction to a given sequence. This sequence can be permuted, with certain exceptions. For instance,
a local load instruction on a given variable cannot be executed before a reconcile instruction on the same
variable that precedes it in original program order; this would subvert the intent of the reconcile, to ensure
that a fresh value is loaded in at the local load. The function swapAt takes a sequence of CRFInstructions
and an index i into the sequence and returns the result of swapping the instructions at indices i and i + 1.
Fig. 14 and Fig. 15 give the rules for adding Java instructions and reordering CRF instructions, respectively.

Fence instructions control reordering of other CRF instructions. Each fence has a pre-instruction type and
a post-instruction type. A pre-instruction type of R indicates that the fence prevents certain kinds of read
instruction from moving after the fence, while a pre-instruction type of W means that certain writes cannot
be moved after the fence. Similarly, the post-instruction type indicates what kinds of instruction (read or
write) are prevented from moving before the fence. In addition, a fence has a preaddress and a postaddress.
These restrict the scope of the fence to instructions on certain addresses. A fence (pre/post)address may be

14

term a.inFenceAddr?(fa): Is address a included in fence address fa?
a = fa
or (VolatileVariable(v) and fa ∈{*V, *VR, *VRL})
or (Variable(a) and not VolatileVariable(a) and fa ∈{*R, *VR, *VRL})
or (Monitor(a) and fa ∈{*L, *VRL})

term inst1.fencedBefore?(inst2): Is instruction inst1 prevented from moving after (fence) instruction inst2?
inst2.type=Fence and inst1.type ∈{Loadl, Commit, Lock, Unlock}
and inst1.addr.inFenceAddr?(inst2.preAddr)
and (inst1.type=Loadl ⇒ inst2.preInst=R)
and (inst1.type=Commit ⇒ inst2.preInst=W)

term inst2.fencedAfter?(inst1): Is instruction inst2 prevented from moving before (fence) instruction inst2?
inst1.type=Fence and inst2.type ∈{Reconcile, Storel, Lock, Unlock} and inst2.addr.inFenceAddr?(inst1.postAddr))
and (inst2.type=Reconcile ⇒ inst1.postOp=R)
and (inst2.type=Storel ⇒ inst1.postOp=W)

term swappable?(inst1, inst2): Can instruction inst1 be swapped with the following instruction inst2?
not inst1.fencedBefore?(inst2) and not inst2.fencedAfter?(inst1)
and inst1.type=Loadl ⇒ not(inst2.type=Storel and inst2.addr=inst1.addr)
and inst1.type=Storel ⇒ not(inst2.type ∈{Loadl, Storel, Commit} and inst2.addr=inst1.addr)
and inst1.type=Lock ⇒ not(inst2.type=Unlock and inst2.addr=inst1.addr)
and inst1.type=Reconcile ⇒ not(inst2.type=Loadl and inst2.addr=inst1.addr)

rule Reorder CRF instructions:
choose i: Nat: Self.CRFInsts.at(i+1)6=undef and swappable?(Self.CRFInsts.at(i), Self.CRFInsts.at(i+1))

Self.CRFInsts := Self.CRFInsts.swapAt(i)

Figure 15: JMMCRF : Rules for reordering CRF instructions.

15

a single variable or monitor, or it may be a wildcard reference such as *V, *VR, or *VRL. The fence address
*V refers to “all volatile variables”, *VR to “all (regular and volatile) variables”, and *VRL to “all variables
and locks”. Thus for instance, a fence with pre-instruction type W, post-instruction type R, preaddress
*V, and postaddress v (for some variable v) disallows movement of preceding write instructions on volatile
variables after the fence and disallows movement of following read instructions on variable v before the fence.
The FenceAddress universe is defined as Variable ∪ Monitor ∪ {*V,*R,*L,*VR,*VRL}. Each Fence instruction
has associated preInst, postInst, preAddr, and postAddr fields.

16

5 ASM for the Location Consistency JMM

Universe Description
WriteEvents Write instances in system history
ReadEvents Read instances
Threads Threads
Variables Variables
Monitors Monitors of Threads
Values Values that can be assigned to a variable
Locks Locks
Unlocks Unlocks

Figure 16: JMMLC : Universes.

Function Profile/Description
≺ Event × Event → Boolean

Precedence relation between events.
latest Thread × Variable → Event

Returns the latest event issued by the given thread on the given variable.
latestUnlock Monitor → UnlockEvent

Returns the latest unlock event issued by the given monitor.

Figure 17: JMMLC : Functions.

We restrict the Location Consistency memory to make it appropriate to Java. The resulting ASM is called
JMMLC . The ASM is a modification of JMMMP , involving modifications to the rules for reads, writes,
locks and unlocks. The JMMLC uses the functions from JMMMP . Additional functions that we define for

17

rule Order e after d: (Make event e a successor of event d, in the relation ≺)
if d 6= undef then d ≺ e := true

rule Read v:
extend ReadEvent with rd

choose w: Write: w.var = v and not (∃w′: WriteEvent) w ≺+ w′ ≺∗ Self.latest(w.var)
rd.val := w.val

rule Write val to v:
extend WriteEvent with w

w.var := v w.val := val
Order w after Self.latest(v)
Self.latest(v) := w

rule Lock m:
if Self.locks(m)6=undef then

Self.locks(m) := Self.locks(m)+1
extend LockEvent with `

Order ` after m.latestUnlock
do-forall v: Variable

Order ` after Self.latest(v)
Self.latest(v) := `

rule Unlock m:
extend UnlockEvent with u

Self.locks(m) := Self.locks(m)-1
do-forall v: Variable

Order u after t.latest(v)
Self.latest(v) := `

m.latestUnlock := u

Figure 18: JMMLC : Rules for thread operations.

18

JMMLC are shown in Fig. 17. The modified rules are shown in Fig. 18. Like the LC model, in JMMLC

the memory system is represented as an order ≺ on operation instances or events (members of the universe
Event). As operations complete, events are generated and added to the order. The events issued by a single
thread are ordered linearly. With a write to a given variable, a new write event is issued and ordered after
the writing thread’s local events on that variable. The function latest maintains the most recently issued
events by each thread on each variable.

Events ordered by different threads may be ordered through lock and unlock actions. Each lock or unlock
operation is seen as acting on all variables, so a lock or unlock event is ordered with respect to all events
issued by the thread. This is where the LC JMM differs from the general LC model: an acquire or release
operation in LC is performed on a particular location, and the resulting event is ordered only with regard to
local events on that location. Similarly to the general model, each lock event on a given monitor is ordered
after the previous unlock event on that monitor. The function latestUnlock maintains the most recently
issued unlock events for each monitor.

Like the Manson-Pugh JMM, reading involves a choice of a legal write event. Here the order ≺ deter-
mines the legality of each write event. We use ≺+ and ≺∗ to represent the transitive closure of ≺ and the
reflexive, transitive closure of ≺, respectively. As long as there is no chain of the form w ≺+ w′ ≺∗ et,
where w and w′ are write events and et is an event performed by thread t, w is a readable value according to
t. Read events have no effect on the readability of subsequent write events, so they are not added to the order.

19

6 Comparisons of the Java memory models

We now use our ASMs to reason about the behavior of the JMMs. We restrict our attention to non-volatile
variables. We first show that the Manson-Pugh and LC JMMs are identical in that they allow exactly the
same possible behaviour. Next, we show that the CRF JMM is more restrictive than either the Manson-Pugh
or the LC JMM.

6.1 Manson-Pugh vs. LC

In both the Manson-Pugh and LC JMMs, the synchronization operations (lock and unlock) ensure that
other threads are informed of previous write operations. However, threads may share values without syn-
chronization. In a system with a centralized main memory, this may occur through the normal actions of
cache writeback and fetch. The fact that there is no synchronization forcing these actions from happening
does not imply that they do not happen. Note that in the absence of all synchronization, all writes are
visible to a thread (except any writes of its own that it has subsequently overwritten). Indeed,it is more
accurate to think of synchronization operations restricting the visibility of certain writes by rather than
making Writes visible. When writes are interleaved with synchronization operations, the resulting chains of
write and synchronization operations may cause further writes to be considered overwritten. We introduce
the notion of synchronization chain to capture this idea.

A synchronization chain begins with a write w and ends with an action by a thread or monitor x. (We
express this as w ; x.) The thread or monitor x is informed of the existence of w through a subsequent
chain of synchronization operations, including an unlock action by the writer of w and a subsequent unlock
operation on x (if x is a monitor) or lock operation by x (if x is a thread). (A trivial synchronization chain
exists between w and the thread that performed w.) If another write w′ forms part of the chain containing
w (which we express as w ; w′), w is considered overwritten by w′ and is not a readable value.

Definition. Let w be a write event issued at a move W by a thread s. Let Y be any move after W.

• For thread t, w ; t at Y if

– s = t, or

– for some Monitor m, w ; m at a move X in (W,Y), and t locks m at X.

20

• For monitor m, w ; m at Y if

– s unlocks m at a move X in (W,Y), or

– for some Thread t, w ; t at a move X in (W,Y), and t unlocks m at X.

• For any WriteEvent w′ issued by a Thread t at a move X, w ; w′ if w ; t at X.

Lemma 1 In a run of JMMMP , let w be a write event issued at a move W , and let Y be any move after
W . For any thread or monitor x, w.previous?(x) at Y if and only if w ; x at Y .

Proof. By induction on the number of moves between W and Y .

Base step: The interval (W,Y) is empty. At W , w.previous?(s) is updated to true, and w.previous?(x) is not
updated to true for any other x. Hence, w.previous?(x) at Y only if x = s. Furthermore, since there is no
lock or unlock move in (W,Y), w ; x only if x = s.

Inductive step: The interval (W,Y) is nonempty. Let X be the last move before Y , and assume that the
claim holds at X.

Assume to the contrary that at Y , w.previous?(x) but w 6; x. Then w 6; x at X, and by the induc-
tive hypothesis,not w.previous?(x). Therefore w.previous?(x) must be updated to true at X. By examination
of the ASM rules, there are two ways in which this can happen:

• A lock by (Thread) x on a Monitor m such that w.previous?(m) at X. By the inductive hypothesis,
w ; m. Then w ; x at Y .

• An unlock by a Thread t on (Monitor) x such that w.previous?(t) at X. By the inductive hypothesis,
w ; t. Then w ; x at Y .

In either case, w ; x at Y , contradicting our assumption.

Conversely, assume that at Y , w ; x but not w.previous?(x). Then not w.previous?(x) at X, and by the
inductive hypothesis, w 6; x. Therefore a synchronization chain from w to x must be created at X. There
are two ways in which this can happen:

• A lock by (Thread) x on a Monitor m such that w ; m. By the inductive hypothesis, w.previous?(m)
at X, so w.previous?(x) := true at X.

• An unlock by a Thread t on (Monitor) x such that w ; t. By the inductive hypothesis, w.previous?(t)
at X, so w.previous?(x):= true at X.

In either case, w.previous?(x) at Y , contradicting our assumption. 2

Lemma 2 In a run of JMMMP , let w be a WriteEvent issued at a move W , and let Y be any move after
W . For any Thread or Monitor x, w.overwritten?(x) at Y if and only if there is a WriteEvent w′ such that
w ; w′ and w′ ; x at Y .

Proof. By induction on the number of moves between W and Y .

Base step: The interval (W,Y) is empty. At W , w.overwritten?(y) is not updated to true for any y, so
not w.overwritten?(x) at Y . Furthermore, there is no write w′ issued in (X, Y).

Inductive step: The interval (W,Y) is nonempty. Let X be the last move before Y , and assume that the
claim holds at X.

21

Assume that at Y , w.overwritten?(w) but there is no WriteEvent w′ as described. Then there is also no
such w′ at X, so by the inductive hypothesis, not w.overwritten?(x) at X. Thus w.overwritten?(w) := true
at X. There are three ways in which w.overwritten?(x) can be updated to true:

• a write by (Thread) x, issuing a WriteEvent w′. In this case, w.overwritten?(x) := true only if w.previous?(x).
By Lemma 1, w ; x at X. Furthermore, by definition w′ ; x at Y .

• a lock by (Thread) x on a Monitor m such that w.overwritten?(m) at X. By the inductive hypothesis,
there is a WriteEvent w′ issued by a Thread t at W ′ in (W,X) such that w ; t at W ′ and w′ ; m at
X. Then at Y , w′ ; x.

• an unlock by a Thread t on (Monitor) x such that w.overwritten?(t) at X. By the inductive hypothesis,
there is a WriteEvent w′ issued by a Thread s at W ′ in (W,X) such that w ; s at W ′ and w′ ; t at
X. Then at Y , w′ ; x.

In each case, there is a WriteEvent w′ for which w ; w′ ; x, contradicting our assumption.
Conversely, assume that at Y , there is a WriteEvent w′ such that w ; w′ ; x, but not w.overwritten?(x).

Then there is no such w′ at X, so the move at X must establish w ; w′ ; x for some w′. There are three
ways in which this can happen:

• a write by (Thread) x (issuing WriteEvent w′) such that w ; x at X. (In this case, w′ ; x trivially at
Y .) By Lemma 1, w.previous?(x) at X, so w.overwritten?(x) := true at X.

• a lock by (Thread) x on a Monitor m, where there is a WriteEvent w′ with w ; w′ ; m. (In this case,
w′ ; x at Y .) By the inductive hypothesis, w.overwritten?(m) at X, so w.overwritten?(w) := true at
X.

• an unlock by a Thread t on (Monitor) x, where there is a WriteEvent w′ with w ; w′ ; t. (In this
case, w′ ; x at Y .) By the inductive hypothesis, w.overwritten?(t) at X, so w.overwritten?(x) := true
at X.

In each case, w.overwritten?(x) at Y, contradicting our assumption. 2

Next, we show that the notions of “previous” and “overwritten” have counterparts in the LC JMM. A write is
considered previous by a thread or monitor if it precedes the latest event by the thread/monitor, according
to ≺. A write is considered overwritten if there is a chain including the write and a local event by the
thread/monitor that includes another, intervening write.

term w.LC-previous?(x):
Thread(x) ⇒ w ≺∗ x.latest(w.var)
and Monitor(x) ⇒ w ≺+ x.latestUnlock

term w.LC-overwritten?(x):
Thread(x) ⇒ (∃w′: WriteEvent) w ≺+ w′ ≺∗ x.latest(w.var)
and Monitor(x) ⇒ (∃w′: WriteEvent) w ≺+ w′ ≺+ x.latestUnlock

Lemma 3 In a run of JMMLC , let w be a WriteEvent issued at a move W , and let Y be any move after W .
For any Thread or Monitor x, w.LC-previous?(x) at Y if and only if w ; x at Y .

22

Proof. By induction on the number of moves between W and Y . Let s be the Thread that issues w.

Base step: The interval (W,Y) is empty. For any Thread or Monitor x, w.LC-previous?(x) at Y only if
x is a Thread and w = latestLocalEvent(x,w.var), in which case s = x and hence w ; x at Y . Con-
versely, since there are no synchronization actions in (W,Y), w ; x at Y only if s = x, in which case
w = latestLocalEvent(x,w.var) and hence w.LC-previous?(x).

Inductive step: The interval (W,Y) is nonempty. Let X be the last move before Y , and assume that the
claim holds at X.
Assume to the contrary that at Y , w.previous?(x) but w 6; x at Y . Then w 6; x at X, so by the inductive

hypothesis, not w.previous?(w) at X. Thus w.previous?(w) must become true at X. There are only two ways
in which this can occur:

• a lock by (Thread) x on a Monitor m, such that w ≺ m.latestUnlock. By the inductive hypothesis,
w ; m at X. Then at Y , w ; x at X.

• an unlock by a Thread t on (Monitor) x, such that w � latestLocalEvent(t, w.var). By the inductive
hypothesis, w ; t at X. Then at Y , w ; x at X.

In either case, w ; x at Y , contradicting our assumption.
Conversely, assume to the contrary that at Y , w ; x but not w.previous?(w). Then not w.previous?(w) at

X, so by the inductive hypothesis, w 6; x. Thus a synchronization chain from w to x must be created at X.
There are two ways in which this can happen:

• A lock by (Thread) x on a Monitor m such that w ; m. Let ` be the LockEvent issued at X. By the
inductive hypothesis, w.previous?(w) at X, so w ≺ ` := true and latestLocalEvent(x,w.var) := ` at X.

• An unlock by a Thread t on (Monitor) x such that w ; t. Let u be the UnlockEvent issued at X. By
the inductive hypothesis, w.previous?(t) at X, so w ≺ u := true and x.latestUnlock := u at X.

In either case, w.previous?(w) at Y , contradicting our assumption. 2

Lemma 4 In a run of JMMLC , let w be a WriteEvent issued at a move W , and let Y be any move after W .

• For any Thread t, w.LC-overwritten?(t) at Y if and only if there is a WriteEvent w′ such that w ; w′

and w′ ; t at Y .

• For any Monitor m, w.LC-overwritten?(m) at Y if and only if there is a WriteEvent w′ such that w ; w′

and w′ ; m at Y .

Proof. By induction on the number of moves between W and Y .

Base step: The interval (W,Y) is empty. There is no WriteEvent issued in (X, Y), and there is no w′ for
which w ≺ w′ := true at X, so there is no Thread or Monitor x for which w.LC-overwritten?(x) at Y .

Inductive step: The interval (W,Y) is nonempty. Let X be the last move before Y , and assume that the
claim holds at X.

Assume to the contrary that at Y , w.LC-overwritten?(x) for some Thread or Monitor x, but there is
no WriteEvent w′ as described. Then there is also no such w′ at X, so by the inductive hypothesis,
not w.LC-overwritten?(x) at X. There are three ways in which w.LC-overwritten?(w) can come to be true at
Y :

• a write by (Thread) x, issuing a WriteEvent w′, where w.LC-previous?(x). (In this case, w ≺ w′ := true
and latestLocalEvent(x, w.var) := w′ at X, so we have w ≺ w′ = latestLocalEvent(x, w.var) at Y .) By
Lemma 3, w ; x at X. Furthermore, by definition w′ ; x at Y .

23

• a lock by (Thread) x on a Monitor m such that w.LC-overwritten?(m) at X. (In this case,
w ≺ w′ ≺ m.latestUnlock at X for some WriteEvent w′. At X, a LockEvent ` is issued, w′ ≺ ` := true,
and latestLocalEvent(x, w.var) := `, so we have w ≺ w′ ≺ latestLocalEvent(x, w.var).) By the inductive
hypothesis, there is a WriteEvent w′ issued by a Thread t at W ′ in (W,X) such that w ; t at W ′ and
w′ ; m at X. Then at Y , w′ ; x.

• an unlock by a Thread t on (Monitor) x such that w.LC-overwritten?(w) at X. (In this case,
w ≺ w′ ≺ latestLocalEvent(t, w.var) at X for some WriteEvent w′. At X, an UnlockEvent u is issued,
w′ ≺ u := true, and x.latestUnlock := u, so we have w ≺ w′ ≺ m.latestUnlock.) By the inductive
hypothesis, there is a WriteEvent w′ issued by a Thread s at W ′ in (W,X) such that w ; s at W ′ and
w′ ; t at X. Then at Y , w′ ; x.

In each case, there is a WriteEvent w′ for which w ; w′ ; x, contradicting our assumption.

Conversely, assume to the contrary that at Y , there is a WriteEvent w′ as described but not w.LC-overwritten?(w).

Then not w.LC-overwritten?(x) at X, so by the inductive hypothesis, there is no WriteEvent w′ such that
w ; w′ ; x at X. Hence the move at X must establish w ; w′ ; x for some w′. There are three ways in
which this can happen:

• a write by (Thread) x (issuing WriteEvent w′) such that w ; x at X. (In this case, w′ ; x trivially at
Y .) By Lemma 3, w.LC-previous?(x) at X, so w ≺ w′ := true and latestLocalEvent(x, w.var) := w′ at
X.

• a lock by (Thread) x on a Monitor m, where there is a WriteEvent w′ with w ; w′ ; m. (In this
case, w′ ; x at Y .) By the inductive hypothesis, w.overwritten?(m) at X, so w ≺ ` := true and
latestLocalEvent(x,w.var) := ` at X.

• an unlock by a Thread t on (Monitor) x, where there is a WriteEvent w′ with w ; w′ ; t. (In this case,
w′ ; x at Y .) By the inductive hypothesis, w.overwritten?(t) at X, so w ≺ u := true and x.latestUnlock
:= u at X.

In each case, w.LC-overwritten?(x) at Y , contradicting our assumption. 2

Theorem 1 If a value is not readable in a run of JMMLC , then that value is not readable in an equivalent
run of JMMMP .

First consider a run of JMMLC , in which Thread t performs a read Rd of variable v, but there is a write
event w on v that is not readable.

According to the read rules for the LC model, w is not readable only if w.LC-overwritten?(t) at Rd.
By Lemma 4, w.overwritten?(t) only if there is a write w′ such that w ; w′ ; t at Rd.
By Lemma 2, w.overwritten?(t)at Rd at any equivalent run in JMMMP .
Hence at Rd, w is not read in any equivalent run of JMMMP .

Theorem 2 If a value is not readable in a run of JMMMP , then that value is not readable in an equivalent
run of JMMLC .

First consider a run of JMMMP , in which Thread t performs a read Rd on variable v but there is some write
event w on v which is not readable.

According to the read rules for the JMMMP model, w is not readable only if w.overwritten?(t) at Rd.
By Lemma 2, w.overwritten?(t) only if there is a write w′ such that w ; w′ ; t at Rd.
By Lemma 4, w.LC-overwritten?(t) at Rd.

Hence according to the read rules of the JMMLC model, at Rd, w is not read in any equivalent run of
JMMLC .

24

Finally, we note that any write is readable in JMMLC as long as LC-overwritten? evaluates to false, and
any write is readable in JMMMP as long as overwritten? evaluates to false. Let runs of JMMLC and JMMMP

be equivalent if they involve the same operations by the same threads/monitors in the same order. We
conclude the following:

Corollary A value is readable in JMMLC if and only if that value is readable in an equivalent run of
JMMMP .

6.2 Manson-Pugh/LC vs. CRF

Having established the equivalence of the Manson-Pugh JMM and the LC JMM, we now compare these two
models to the CRF JMM. Here we face an additional level of complexity. In all three models, each thread
services a sequence of Java instructions. But in the CRF JMM, the actions of reading and writing are done
at the level of CRF instructions, which are derived from Java instructions and then possibly reordered. In
reasoning about the values actually written and read (to local caches) in the CRF JMM, we must look at the
level of CRF instructions. But to provide a comparison to the other models, we must relate the relevant CRF
instructions back to the Java instructions that triggered them, bearing in mind that instruction reordering
may occur between the issuing of the Java instruction and the execution of the CRF instruction.
To this end, we introduce some notation. Let m be a move at which a CRF instruction is executed. This
instruction was generated at an earlier move, in which a Java instruction was issued and translated into
CRF. We refer to the earlier move as m. We then establish that the CRF JMM is at least as constrained as
the other two models.

Lemma 5 Let ll be a local load in a run of JMMCRF , and let sl be the local store that wrote the value read
at ll. Then there is no store operation S such that sl ; S ; t at ll.

Let ll be a loadl of Variable v by Thread t. We trace the value read at ll to a previous storel operation sl
and then show that there can be no store operation S such that sl ; S ; t at ll. There are three cases:

Case 1. At ll, cacheStatus(t, v)=dirty.

Case 2. At ll, cacheStatus(t, v)=clean.

Case 2a. The last move before ll at which cacheStatus(t, v) := clean is a (t, v) writeback wb.

Case 2b. The last move before ll at which cacheStatus(t, v) := clean is a fetch f on v by t.

In case 1, there must be a (t, v) storel before ll at which cacheStatus(t, v) := dirty; let sl be the last one. In
(sl, ll), there is no (t, v) writeback, since this would update cacheStatus(t, v) := clean. Only such a writeback
can update cacheStatus(t, v) := clean, and commit(sl) occurs only if cacheStatus(t, v)=clean. Therefore,
commit(sl) does not occur in (sl, ll).

In case 2a, there is no (t, v) fetch updating cacheStatus(t, v) := clean in (wb, ll). wb occurs only if cacheStatus(t, v)=dirty;
let sl be the last (t, v) storel before wb to update cacheStatus(t, v) := dirty. Since cacheStatus(t, v)=clean at
commit(sl), wb must precede commit(sl).

In cases 1 and 2a, sl and ll are performed by t, and there is no storel by t on v in (sl, ll). Since sl � ll, it
must be that sl < ll, and no store S to v by t can occur in (sl, ll), since storel(S) is either � sl or � ll.
Hence there is no store S by t such that sl ; S, so the only way in which sl ; S ; t for any store S is if
S is performed by a Thread other than t. For this to happen, there must be an unlock U and a lock L by t
such that S < U < L < ll. In this case we have the following contraints,

• sl � commit(sl) � prefenceww(U) � unlock(U), and

• lock(L) � postfencewr(L) � reconcile(ll) � ll,

25

so sl < commit(sl) < reconcile(ll) < ll.

In case 1 these constraints cannot be met, since commit(sl) does not occur in (sl, ll).

In case 2a, at reconcile(ll), cacheStatus(t, v) must be either dirty or undef. Because cacheStatus(t, v) :=
clean at wb and there is no storel in (wb, reconcile(ll)) to update cacheStatus(t, v) := dirty, it must be that
cacheStatus(t, v)=undef at reconcile(ll). At ll, cacheStatus(t, v)6= undef, but since there is no storel or fetch
in (reconcile(ll), ll) to update cacheStatus(t, v)to a non-undef value the above constraints cannot be met.
Hence in cases 1 and 2a there is no store operation S such that sl ; S ; t.

In case 2b, there is no (t, v) writeback updating cacheStatus(t, v) := clean in (f, ll). At f , CV(t, v) :=
v.memVal. Let wb be the last writeback of v (by some thread r) updating v.memVal before f . At wb,
cacheStatus(r, v)=dirty; let sl be the latest storel (at which cacheStatus(r, v) := dirty) before wb.
Assume there is a store S such that sl ; S ; t. Let s be the Thread that performs S. We show that
storel(S) does not occur in (sl, ll), and therefore it cannot be the case that sl ; S ; t. There are three
cases:

• r = s = t. Then since sl is the last (t, v) storel before wb, storel(S) is not in (sl, wb).

Furthermore, storel(S) is not in (wb, f). If storel(S) did occur in this interval, then at storel(S),
cacheStatus(t, v) := dirty, but at f , cacheStatus(t, v)=undef. Hence there would have to be a (t, v) eject j
in (storel(S), f). At j, cacheStatus(t, v)=clean, which would require a (t, v) writeback in (storel(S), j).
However, since wb is the last writeback to v before ll, this is impossible.

Finally, storel(S) is not in (f, ll). If storel(S) did occur in this interval, then at storel(S), cacheStatus(t, v)
:= dirty, but cacheStatus(t, v)=clean at ll. Hence there would have to be a (t, v) writeback in (storel(S), ll)
(at which cacheStatus(t, v) := clean). This is impossible since there is no (t, v) writeback in (f, ll).

• r = s 6= t. Since sl is the last (t, v) storel before wb, storel(S) is not in (sl, wb). Furthermore, storel(S)
is not in (wb, ll). If it did occur in this interval, there must be an unlock U by r followed by a lock L
by t such that S < U < L < ll. In this case,

– storel(S) � commit(S) � prefenceww(U) � unlock(U), and

– lock(L) � postfencewr(L) � reconcile(ll) � ll,

so wb < storel(S) < commit(S) < ll. At storel(S), cacheStatus(r, v) := dirty, but at commit(S),
cacheStatus(t, v)=clean, so there would have to be an (r, v) writeback in (storel(S), commit(S)) to
update cacheStatus(r, v) := clean. This is impossible since wb is the last writeback to v before ll.

• r 6= s 6= t. Then there must be an unlock Ur by r, a lock Ls and unlock Us by s, and a lock Lt by t
such that sl < Ur < Ls < S < Us < Lt < ll. We have

– sl � commit(sl) � prefenceww(Ur) � unlock(Ur)

– lock(Ls) � postfenceww(Ls) � storel(S) � commit(S) � prefenceww(Ur) � unlock(Ur), and

– lock(Lt) � postfencewr(Lt) � reconcile(ll) � ll,

so sl < commit(sl) < storel(S) < commit(S) < reconcile(ll) < ll.

First, storel(S) is not in (wb, ll). If it did occur in this interval, then cacheStatus(t, v) := dirty at
storel(S) but cacheStatus(t, v)=clean at ll, so there would have to be a (t, v) writeback in (storel(S), ll),
to update cacheStatus(t, v) := clean. This is impossible since wb is the last writeback to v before ll.

26

Furthermore, storel(S) is not in (sl, wb). If it did occur in this interval, unlock(Ur) would have to be in
(sl, storel(S)) and commit(sl) would have to be in (sl, unlock(Ur)). At storel(S), cacheStatus(t, v) :=
dirty, but at commit(sl), cacheStatus(t, v)=clean, so there must be a (t, v) writeback in (sl, commit(sl))
to update cacheStatus(t, v) := clean. This is impossible since wb is the last writeback to v before ll.

In Case 1 and Case 2, since there is no S for which sl ; S ; t at ll, sl is readable at ll according to JMMLC

and JMMPM . 2

Corollary A value is readable in JMMCRF only if that value is readable in an equivalent run of JMMMP .

The converse of the above corollary is not true, as can be shown by a simple example. Let T1 and T2

be Threads accessing a common Variable x. The Threads execute the following instruction sequences:

T1: write(x, 1); read(x); read(x)

T2: write(x, 2)

Assume that x=0 initially. It is easy to show that in any run of JMMCRF with the above sequences of Java
instructions, if T1 first reads 2, it cannot then read 1. First, note that T1’s Storel and Loadl instructions
follow the program order of the original Java instructions, since the swappable? predicate prevents the Storel
from being ordered after the initial Loadl.

At T1’s first loadl, T1.cacheValue(x)=2. This is only possible if a fetch (background) operation earlier up-
dated T1.cacheValue(x) := x.memoryValue. At the time of this fetch, T1.cacheStatus(x)=Invalid. Thus an
earlier writeback (background) operation must have updated T1.cacheStatus(x) := Clean, followed by an
ejection updating T1.cacheStatus(x) := Invalid. After this writeback, T1.cacheStatus(x)=Clean, so T1 never
performs another writeback. Since x.memoryValue=2 at the time of T1’s fetch, a writeback operation must
have updated x.memoryValue := T2.cacheValue(x), and this writeback must have followed T1’s writeback.
Thus x.memoryValue remains 2, and the value 1 is no longer available to read.

No such constraint exists for the Manson-Pugh JMM. Let w1 and w2 be the WriteEvents issued by T1 and
T2, respectively. Since there is no synchronization between T1 and T2, w2 6; T1 at the time of T1’s second
read, so there is no w′ such that w1 ; w′ ; T1. By Lemma 2, w1 is readable.

27

7 Semantics for Final Fields.

Figure 19shows the additional functions for the final field semantics in JMMMP . knownfrozen represents the
set of writes to final fields that are known to be frozen. The function FinalValue returns the value associated
with the. The function defaultValue returns the defaultValue associated with a final field. Figure 20 and
Figure 21 show the execute rules and the rules for the final fields in JMMCRF .

Function Profile/Description
knownFrozen Threads ∪ VolVar ∪ Monitor → Boolean

Returns true if the variable is known to be frozen
FinalValue Variable → Value

Returns the final value for given variable
defaultValue Variable → Value

Returns the default value for the given variable

Figure 19: JMMMP : Functions for final fields.

28

rule WriteFinal val to v: (Write final value val to variable v)
extend WriteEvent with w

w.var := v
v.finalValue := val

rule FreezeFinal v: (Freeze the final value to variable v)
do-forall w: WriteEvent: w.overwritten?(self)

w.overwritten?(v) := true
v.knownFrozen(self) := True

29

rule ReadFinal v: (Perform a read of final variable v)
extend ReadEvent with r
r.var := v
if v.knowFrozen? then
do-forall w: WriteEvent: w.overwritten?(v)

w.overwritten?(self) := true
r.val := v.finalValue

else
ChooseAmong

r.val := v.finalValue
r.val := v.defaultValue

endif

rule Lock m: (Get a lock on monitor m)
if Self.locks(m)6=undef then

Self.locks(m) := Self.locks(m)+1
do-forall w: WriteEvent: w.previous?(m)

w.previous?(Self) := true
do-forall w: WriteEvent: w.overwritten?(m)

w.overwritten?(Self) := true
do-forall w: WriteEvent: w.knownFrozen?(m)

w.knowFronzen?(Self) := true

rule Unlock m: (Release a lock on monitor m)
Self.locks(m) := Self.locks(m)-1
do-forall w: WriteEvent: w.previous?(Self)

w.previous?(m) := true
do-forall w: WriteEvent: w.overwritten?(Self)

w.overwritten?(m) := true
do-forall w: WriteEvent: w.knownFrozen?(Self)

w.knownFrozen?(m) := true

rule Read volatile v: (Perform a read of volatile variable v)
extend Read with r

r.var := v r.val := v.val
do-forall w: WriteEvent: w.previous?(v)

w.previous?(Self) := true
do-forall w: WriteEvent: w.overwritten?(v)

w.overwritten?(Self) := True
do-forall w: WriteEvent: w.knownFrozen?(v)

w.knownFrozen?(Self) := true

rule Write val to volatile v: (Write value val to volatile variable v)
extend WriteEvent with w

w.var := v v.val := v
do-forall w: WriteEvent: w.previous?(Self)

w.previous?(v) := true
do-forall w: WriteEvent: w.overwritten?(Self)

w.overwritten?(v) := true
do-forall w: WriteEvent: w.knownFrozen?(Self)

w.knownFrozen?(v) := true

30

rule Execute CRF instruction:
let inst = Self.CRFInsts.head

case inst.type of
Freeze: if Self.cacheValue(inst.addr = inst.val) and Self.cacheStatus(inst.addr)= Clean then

Self.cacheValue(inst.addr) := inst.val
Self.cacheStatus(inst.addr) := Frozen
Proceed

else
Proceed

endif

Figure 20: JMMCRF : Rule for execution of CRF instructions.

rule Add Java instruction:
let inst = Self.currJavaInst

case inst.type of

Load: Add CRF instructions Reconcile(inst.var), Loadl(inst.var), Freeze(inst.var)

Store: Add CRF instructions Storel(inst.var,inst.val), Commit(inst.var), Freeze(inst.var)

Figure 21: JMMCRF : Rules for adding CRF instructions for Final Fields.

31

8 Conclusion

We have presented formal semantics of the two proposed replacements for the Java memory model, as well
as a variant of Location Consistency appropriate to Java, using the common formalism of Abstract State
Machines. Using a single specification technique allows us to compare the models easily. Since the original
descriptions of the models are so different, in devising a unified formalization we run the risk of what Börger
calls the “formal system straitjacket” [4]: by forcing the specifications to conform to a rigid format, we may
lose the essence of the original descriptions. However, ASM’s descriptive flexibility allows us to keep our
specifications close to the originals.
Researchers involved with the Java memory model have recognized the importance of precise specification.
Several formalizations of the original Java memory model have appeared [11, 17, 26]. Yang, Gopalakrishnan,
and Lindstrom [34, 33] give specifications of the new Java memory models in terms of their Uniform Memory
Model (UMM) framework, based on an operational approach similar to ASM. The authors demonstrate the
benefits of formal specification by discovering several mistakes in the original description of the Manson-
Pugh proposal. This work is designed for automated verification, and as a result the translation from the
original descriptions to UMM is rather involved. For instance, the Manson-Pugh Java memory model is
expressed in terms closer to our version of Location Consistency. Integrating our high-level specifications
with a lower-level framework like UMM seems an interesting direction for future research.

Predicting the behavior of multithreaded Java applications on various platforms is difficult; even experts can
fail to catch subtle but important errors [10, 19]. For Java programmers using multithreading, the ability
to simulate executions on different architectures would be a great advantage. We provide executable ver-
sions of our ASM specifications, using the XASM tool [32]. Of course, this work ignores the details of Java
statements and expressions, as well as important issues like class loading and object initialization. There
exist executable ASM specifications of Java that include such details [29, 21], but they do not deal with the
underlying memory model. Our next goal is to provide a complete specification of Java that integrates the
memory model with other features of the language.

32

References

[1] Adve, S.V., Gharachorloo, K.: Shared Memory Consistency Models: A Tutorial. Research Report 95/7,
Digital Western Research Laboratory (1995)

[2] ASM Home Page. http://www.eecs.umich.edu/gasm/

5A Unified Formal Specification and Analysis of the New Java Memory Models.

[3] Blumofe, R.D., Frigo, M., Joerg, C.F., Leiserson, C.E., Randall, K.H.: An Analysis of DAG-consistent
Distributed Shared-Memory Algorithms. Proc. ACM SPAA”, (1996) 297–308

[4] Börger, E.: Why Use Evolving Algebras for Hardware and Software Engineering? In: Bartosek, M.,
Staudek, J., Wiedermann, J. (eds.): SOFSEM ’95: 22nd Seminar on Current Trends in Theory and
Practice of Informatics. LNCS 1012, Springer-Verlag (1995) 236–271

[5] Börger, E. and Schmid, J.: Composition and Submachine Concepts for Sequential ASMs In: Clote, P.,
Schwichtenberg, H. (eds.): Computer Science Logic (Proceedings of CSL 2000). LNCS 1862, Springer-
Verlag (2000) 41–60

[6] Cenciarelli, P., Knapp, A., Reus, B., Wirsing, M.: ¿From Sequential to Multi-Threaded Java: An Event-
Based Operational Semantics. In: Johnson, M. (ed.): Algebraic Methodology and Software Technology.
Springer-Verlag (1997) 75–90

[7] Culler, D.E., Singh, J.P., Gupta, A.: Parallel Computer Architecture: A Hardware/Software Approach.
Morgan Kaufmann (1999)

[8] Gao, G.R., Sarkar, V.: Location Consistency — A New Memory Model and Cache Consistency Protocol.
IEEE Trans. on Comp. 49(8) (2000) 798–813

[9] Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A., Hennessy, J.: Memory Consistency
and Event Ordering in Scalable Shared-Memory Multiprocessors. Proc. ISCA (1990) 15–26

[10] Goetz, B.: Double-Checked Locking: Clever, but Broken. JavaWorld 6(2) (2001)

[11] Gontmakher, A., Schuster, A.: Java consistency: Non-operational characterizations for Java memory
behavior. ACM Trans. on Comp. Sys. 18(4) (2000) 333–386

[12] Goodman, J.R.: Cache Consistency and Sequential Consistency. Technical Report 1006, Computer
Science Dept., U. of Wisconsin–Madison (1989)

[13] Gosling, J., Joy, B., Steele, G.: The Java Language Specification. Addison-Wesley (1996)

[14] Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, N., Saphir, W., Snir, M.: MPI: The
Complete Reference. MIT Press (1998)

[15] Gurevich, Y.: May 1997 Draft of the ASM Guide. Technical Report CSE-TR-336-97, EECS Department,
Univ. of Michigan.

[16] Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. In: Börger, E. (ed.): Specification and Validation
Methods. Oxford University Press (1995) 9–36

[17] Gurevich, Y., Schulte, W., Wallace, C.: Investigating Java concurrency Using Abstract State Machines.
In: Gurevich, Y., Kutter, P.W., Odersky, M., Thiele, L. (eds.): Abstract State Machines: Theory and
Applications. LNCS 1912. Springer-Verlag (2000) 151–176

[18] Hagersten, E., Landin, A., Haridi, S.: DDM — A Cache Only Memory Architecture. IEEE Computer
25(9) (1992) 44–54

[19] Holub, A.: Warning! Threading in a Multiprocessor World. JavaWorld 6(2) (2001)

33

[20] Joe, T.: COMA-F: A Non-Hierarchical Cache Only Memory Architecture. Ph.D. Thesis, Stanford Univ.
(1995)

[21] Kutter, P.W.: Montages — Engineering of Programming Languages. Ph.D. Thesis, Eidgenössische
Technische Hochschule Zürich (2002)

[22] Lamport, L.: How to Make a Multiprocessor Computer that Correctly Executes Multiprocess Programs.
IEEE Transactions on Computers C-28(9) (1979) 690–691

[23] Maessen, J.-W., Arvind, Shen, X.: Improving the Java Memory Model Using CRF. Proc. OOPSLA
(2000) 1–12

[24] Manson, J., Pugh, W.: Multithreaded Semantics for Java. CS Technical Report 4215, Univ. of Maryland
(2001)

[25] Pugh, W.: Fixing the Java Memory Model. Proc. ACM Java Grande (1999)

[26] Roychoudhury, A., Mitra, T.: Specifying Multithreaded Java Semantics for Program Verification. Proc.
ICSE (2002)

[27] Shen, X., Arvind: Specification of Memory Models and Design of Provably Correct Cache Coherent
Protocols. CSG Memo 398, Laboratory for Computer Science, MIT (1997)

[28] Shen, X., Arvind, Rudolph, L.: Commit-Reconcile & Fences (CRF): A New Memory Model for Archi-
tects and Compiler Writers. Proc. ISCA (1999) 150–161

[29] Stärk, R., Schmid, J., Börger, E.: Java and the Java Virtual Machine: Definition, Verification, Valida-
tion. Springer-Verlag (2001)

[30] Wallace, C., Tremblay, G., Amaral, J.N.: On the Tamability of the Location Consistency Memory
Model. Proc. PDPTA (2002)

[31] Wallace, C., Tremblay, G., Amaral, J.N.: An Abstract State Machine Specification and Verification
of the Location Consistency Memory Model and Cache Protocol. J. Universal Computer Science 7(11)
(2001) 1088–1112

[32] XASM Home Page. http://www.first.gmd.de/~ma/xasm/

[33] Yang, Y., Gopalakrishnan, G., Lindstrom, G.: Formalizing the Java Memory Model for Multithreaded
Program Correctness and Optimization. Technical Report UUCS-02-011, Univ. of Utah.

[34] Yang, Y., Gopalakrishnan, G., Lindstrom, G.: Analyzing the CRF Java Memory Model. Proc. Asia-
Pacific Software Engineering Conference (2001) 21-28

[35] James Huggins, Charles Wallace: ASM 101: An Abstract State Machine Primer (Draft) (2002)

[36] Yuri Gurevich: Evolving Algebras : An Attempt to Discover Semantics Electrical Engineering and
Computer Science Department The University of Michigan, Ann Arbor

34

A Introduction to Abstract State Machines (ASMs)

ASMs are a formal operational semantics methodology for documenting software. The advantage of using
an ASM specification over a natural language description is that it removes the ambiguity found in natural
languages and has a precise meaning. The advantage of an ASM specification over a regular programming
language is that a complete ASM can be written at a high level of abstraction, which may not be possible
using a programming language without making decisions about the design of the system. Hence an ASM
specification can be written much earlier in the software development cycle. ASMs can document a system
at various levels of abstraction, and one can write more than one ASM at various stages of development.
Because of the formal basis of ASM, it is also a very useful tool for verification.

An ASM is very similar to a computer program, consisting of rules which are equivalent to statements
in a normal program. However, in an ASM all the subrules of a program are executed in parallel. Hence in
an ASM program we have a parallel logic as against sequential logic in a normal program.

An ASM for a system has two parts to it: the state, and the program or rule that describes how the state
can be changed. An ASM state includes a superuniverse : the set of all data values. Universes are subsets
of the superuniverse and consist of different kinds of data. ASM rules operate on these data. Universes can
in fact be considered as functions that return true for all universe members and false for all non-members.
The state of an ASM is further described by a set of functions, which describe how the elements of the
superuniverse are related. Rules make changes to the states. A run of a sequential ASM program can be
considered as a sequence of states, where a new state is obtained by simultaneously applying all rules of the
program to the current state.

An ASM term can be defined as a variable, or a nullary (0-ary) function name or f(t1,t1..tn) where f is
an n-ary function name and t1,t2..tn are terms. Every term evaluates to an element of the superuniverse.

Some of the basic types for ASMs are described below:
1. Update Rule.

foo(t1,t2...tn) := t0

When this rule is executed, the value of the function foo(at the given terms t1,t2..tn) is updated to the
value of the term t0.

2.Conditional Rule:

if cond then
rule1

else
rule2

endif

To execute this rule, execute rule1 if cond evaluates to true, else execute rule2.

3. do-inparallel Rule:

35

do-inparallel
rule1
rule2
.....
rulen

enddo

When this rule is executed rules 1 through n are executed in parallel.
(The keywords do-inparallel an enddo are often omitted for brevity).

4. Choose Rule:

choose x: U: Px
rule1(x)

ifnone
rule2

endchoose

To execute this rule choose x from the Universe U such that Px evaluates to true and then execute rule1
with x set to that value. If there is no x in universe U such that Px is true, then execute rule2.

5. do-forall Rule

do-forall x: U: cond(x)
rule(x)

enddo

To execute this rule, for every value of x in Universe U for which cond(x) evaluates to true, execute rule for
that value of x. All the executions for different values of x are done in parallel.

In the above discussion we considered ASMs for sequential programs. However we can also design ASMs for
distributed environments. In this case we have multiple agents executing different rules. Agents are elements
of the universe. Functions map each agent to its ASM program. Agents execute their programs concurrently,
updating the global state. Fairness is not guaranteed among the agents: one agent may run for a long time,
causing starvation of the other agents. Fairness or any other property of concurrent execution, can be establ-
ished by simple restricting attention to a class of ”legal” runs.

36

B Semantics of the Manson - Pugh Model

The following lists the Java Memory Model rules proposed by Manson and Pugh [24]. We have ommited the
rules for precient writes. However the follwing rules are sufficient for comparison of the models.

writeNormal (Write< v, w, g >)
overwrittent ∪ = previoust(v)
previoust += < v, w, g >
allWrites += < v, w, g >

readNormal (Variable v)
Choose < v, w, g > from allWrites(v) - overwrittent(v)
Return w

lock (Monitor m)
previoust ∪ = previousm

overwrittent ∪ = overwrittenm

unlock (Monitor m)
previousm ∪ = previoust

overwrittenm ∪ = overwrittent

readVolatile (Variable v)
previoust ∪ = previousv

overwrittent ∪ = overwrittenv

return volatileValuev

writeVolatile (Write< v, w, g >)
volatileValuev = w
previousv ∪ = previoust

overwrittenm ∪ = overwrittent

writefinal (Write< v, w, g >)
finalValuev = w

freezeFinal (Variable v)
finalValuev = w
overwrittenv = overwrittent

knownFrozent+= v

readFinal (Local< a, oF, kF >, Element e)
Let v be the final variable reference by a.e
if v ∈ kF

oF’ = overwrittenv

return < finalV aluev, kF, oF > ∪ overwrittenv

else
w = either finalValuev or defaultValuev

return< w, kF, oF >

37

B.1 Full semantics of the Manson - Pugh Model

For the interested reader we list the full semantics by Manson and Pugh [24].

updateReference(Value w, knownFrozen kf)
if w is primitive return w
let[r, k]= w
return[r, k∪ kF]

initWrite(Write< v, w, g >)
w′ = updateReference(w,knownFrozent)
allWrites += < v,w′, g >
uncommittedt += < v, w′, g >

performWrite(Write< v, w, g >)
w′ = updateReference(w,knownFrozent)
Assert < v, w′, g >/∈ previousReadst

overwrittent ∪ = previoust(v)
previoust += < v, w, g >
uncommittedt -= < v, w′, g >

readNormal(Local< a,oF,kF>)
Let v be the variable referenced by a.e
Choose < v, w, g > from allWrites(v) -oF

-uncommittedt - overwrittent

previousReadst += < v, w, g >
< r,kF′ >=updateReference(w,knownFrozent)
return < r,kF′,oF>

guaranteedReadOfWrite(Value < a, oF,kF>,
Element e, GUID g)
Let v be the variable referenced by a.e
Assert ∃ < v,w’,g >∈ previoust

-uncommittedt - overwrittent

previousReadst += < v, w, g >
< r,kF′ > = updateReference(w,knownFrozent)
return < r,kF′,oF>

guaranteedRedundantRead(Value < a, oF,kF>,
Element e, GUID g)
Let v be the variable referenced by a.e
Let < v,w,g’> be the write seen by g
Assert < v,w’,g >∈ previousReadst

-uncommittedt - overwrittent

previousReadst += < v, w, g >
< r,kF′ > = updateReference(w,knownFrozent)
return < r,kF′,oF>

38

readStatic(Variable v)
Choose < v, w, g > from allWrites(v)

-uncommittedt - overwrittent

previousReadst += < v, w, g >
< r,kF′ > = updateReference(w,knownFrozent)
return < r, φ,kF’>

lock (Monitor m)
Acquire/increment lock on m
infot ∪ =infom

unlock (Monitor m)
infom ∪ =infot

Release/decrement lock on m

readVolatile(Local< a,oF,kf>,Element e)
Let v be the volatile referenced by a.e
if uncommittedVolatileValuev 6= n/a) or

(readThisVolatilet,<w,infot> = false)
infot ∪ = infov

return <volatileValuev,kF,oF>
else

<w,infou > = uncommittedVolatileValuev

volatileValuev=w
infov ∪ = infou

initVolatileWrite(Write< v, w, g >)
Assert uncommittedVolatileValuev 6= n/a)
∀t ∈ threads

readThisVolatilet,<w,infot> = false
uncommittedVolatileValuev = < w, infot >

performVolatileWrite(Write< v, w, g >)
uncommittedVolatileValuev = n/a) or

volatileValuev=w
infov ∪ = infou

writefinal (Write< v,w, g >)
finalValuev = w

freezeFinal (Variable v)
finalValuev = w
overwrittenv = overwrittent

knownFrozent+= v

39

C Semantics of the CRF Model

The following lists the semantics for the CRF Model [23].

Local Rules:
(r = Storel(a, v); instr, comp, cache[a := −,−]) ⇒ (instr, r =

√
/comp, cache[a := v,Dirty])

(r = Loadl(a); instr, comp, cache[a := v, s]) ⇒ (instr, r = v/comp, cache[a := v, s])

(r = Commit(a, v); instr, comp, cache) ⇒ (instr, r =
√

/comp, cache)
where a is not in cache or a is Clean

(r = Reconcile(a, v); instr, comp, cache) ⇒ (instr, r =
√

/comp, cache)
where a is not in cache or a is Dirty

(r = Fence(a, b); instr, comp, cache) ⇒ (instr, r =
√

/comp, cache)

(r = Freeze(a); instr, comp, cache[a := v, Clean]) ⇒ (instr, r = v/comp, cache[a := v, Frozen])

(r = Freeze(a, v); instr, comp, cache) ⇒ (instr, r =
√

/comp, cache)

Background Rules:

(instr, comp, cache[a := v, s]) ⇒ (instr, comp, cache)
where s is Clean (Eject a cache entry)

(instr, comp, cache)/threads,memory[a := v] ⇒ (instr, comp, cache[a := v, Clean])/threads,memory[a := v])
where cache contains no mapping for a (Fetch a value from main memory)

(instr, comp, cache[a := v,Dirty])/threads, memory[a := −] ⇒
(instr, comp, cache[a := v, Clean])/threads,memory[a := v] (Write back a value to main memory)

Local Rules:

(r = Lock(l); instr, comp, cache[l := n, Locked]) ⇒ (instr, r = n/comp, cache[l := n + 1, Locked])

(r = Unlock(l); instr, comp, cache[l := n + 1, Locked]) ⇒ (instr, r = n/comp, cache[l := n, Locked])

Background Rules:

(instr, comp, cache)/threads,memory[l := 0] ⇒ (instr, comp, cache[l := 0, Locked])/threads,memory[a := v])

(instr, comp, cache)/threads,memory[l := 0, Locked] ⇒ (instr, comp, cache)/threads,memory[l := 0])

