
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 1

Analysis and Testing of Programs With
Exception-Handling Constructs

Saurabh Sinha and Mary Jean Harrold

Abstract— Analysis techniques, such as control flow, data
flow, and control dependence, are used for a variety of
software-engineering tasks, including structural and regres-
sion testing, dynamic execution profiling, static and dy-
namic slicing, and program understanding. To be applica-
ble to programs in languages, such as Java and C++, these
analysis techniques must account for the effects of exception
occurrences and exception-handling constructs; failure to do
so can cause the analysis techniques to compute incorrect re-
sults and thus, limit the usefulness of the applications that
use them. This paper discusses the effects of exception-
handling constructs on several analysis techniques. The
paper presents techniques to construct representations for
programs with explicit exception occurrences—exceptions
that are raised explicitly through throw statements—and
exception-handling constructs. The paper presents algo-
rithms that use these representations to perform the de-
sired analyses. The paper also discusses several software-
engineering applications that use these analyses. Finally,
the paper describes empirical results pertaining to the oc-
currence of exception-handling constructs in Java programs,
and their effects on some analysis tasks.

Keywords— Exception handling, control-flow analysis,
control-dependence analysis, data-flow analysis, program
slicing, structural testing.

I. Introduction

MANY software-engineering tasks, such as test-
coverage analysis, test-case generation, regression

testing, dynamic execution profiling, impact analysis, and
static and dynamic slicing (e.g., [1], [2], [3], [4]), require in-
formation about the control flow, control dependence, and
data dependence among statements in a program. Previ-
ous research has addressed the problems of computing such
analysis information for individual procedures (intraproce-
dural)1 [5] and for interacting procedures (interprocedural)
[6]. Some of this research has addressed the problems of
performing analyses for programs with transfers of control,
such as continue and goto statements, that can affect the
analyses at the intraprocedural level (e.g., [7]). Other re-
search has addressed the problems of performing analy-
ses for programs with transfers of control, such as exit()
statements, that can affect the analyses at the interpro-
cedural level [8]. To be applicable to programs written in
languages, such as Java [9] and C++,2 however, these anal-
ysis techniques should, to the extent possible, account for
the effects of exception-handling constructs.

Exception-handling constructs provide a mechanism for
raising exceptions and a facility for designating protected
code by attaching exception handlers to blocks of code.

1Analyses and representations that can be applied to individual
procedures can also be applied to individual methods. Thus, we
sometimes use “procedure” to mean both procedure and method.

2See http://www.cygnus.com/misc/wp/ for ISO/ANSI C++ stan-
dard.

Failure to account for the effects of exception-handling con-
structs in performing analyses can result in incorrect analy-
sis information, which in turn can result in unreliable soft-
ware tools. For example, a branch-coverage testing tool
for C++ that fails to recognize the flow of control among
exception-handling constructs cannot adequately measure
the branch coverage of a test suite. As a further example,
a slicing tool for Java that fails to recognize the flow of
control among exception-handling constructs cannot accu-
rately compute control and data dependence, which may
result in incorrect slices.

The additional expense that is required to perform anal-
yses that account for the effects of exception-handling con-
structs may not be justified unless these constructs occur
frequently in practice. To determine the frequency with
which Java programs use exception-handling constructs, we
conducted a study in which we examined a variety of Java
programs. For each subject, we determined the percentage
of methods that contained either a throw or a try state-
ment. The number of methods in the subjects ranged from
89 to 12,304. Table I lists the subjects and summarizes the
results of the study.

The data in the table illustrate that, on average, 8.1%
of the methods contain some form of exception-handling
construct. In a previous study [10], with a smaller suite
of Java subjects, we examined the occurrence of exception-
handling constructs in classes. In that study, we observed
that 23.3% and 24.5% of the classes contained try and
throw statements, respectively. In another recent study,
Ryder and colleagues [11] also studied the frequency with
which Java programs use exception-handling constructs,
and found that 16% of the methods that they examined
contained exception-handling constructs. Our subjects in-
clude four of the subjects that were used in their study,
which explains the differences in the results. The results
of the two studies are similar for the four subjects—jas,
jasmin, joie, and jflex—that were common to both
studies. These results support our belief that, in practice,
the use of exception-handling constructs in Java programs
is significant enough that it should be considered during
various analyses.

Recently, several researchers have considered the effects
of exception-handling constructs on various types of anal-
yses. One approach constructs control-flow representation
for exception-handling constructs, and uses the representa-
tion to perform data-flow analyses [12]. Another approach
considers the control flow caused by exceptions while per-
forming points-to and data-flow analyses [13], [14]. Other
research has analyzed the flow of exceptions, and built tools
to facilitate understanding of the exceptional behavior of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 2

TABLE I

Frequency of occurrence of exception-handling constructs in Java programs.

Subject Number of Number of Methods with
Name Description classes methods EH constructs

antlr Framework for compiler construction 175 1663 175 (10.5%)
debug Sun’s Java debugger 45 416 80 (19.2%)
jaba Architecture for analysis of Java bytecode 312 1615 200 (12.4%)
jar Sun’s Java archive tool 8 89 14 (15.7%)
jas Java bytecode assembler 118 408 59 (14.5%)
jasmin Java assembler interface 99 627 54 (8.6%)
java cup LALR parser generator for Java 35 360 32 (8.9%)
javac Sun’s Java compiler 154 1395 175 (12.5%)
javadoc Sun’s HTML document generator 3 99 17 (17.2%)
javasim Discrete event process-based simulation package 29 216 37 (17.1%)
jb Parser and lexer generator 45 543 55 (10.1%)
jdk-api Sun’s JDK API 712 5038 582 (11.6%)
jedit Text editor 439 2048 173 (8.4%)
jflex Lexical-analyzer generator 54 417 31 (7.4%)
jlex Lexical-analyzer generator for Java 20 134 4 (3.0%)
joie Environment for load-time transformation of Java classes 83 834 90 (10.8%)
sablecc Framework for generating compilers and interpreters 342 2194 106 (4.8%)
swing-api Sun’s Swing API 1588 12304 583 (4.7%)

Total 3951 30400 2467 (8.1%)

programs [15], [16]. None of that research, however, con-
siders the effects of exceptions on analysis techniques such
as control dependence and program slicing.

To facilitate such analyses for software-engineering tasks,
we investigated the effects of exception-handling constructs
on various types of analyses, developed new techniques
to perform these analyses in the presence of exceptions,
and developed representations for the analysis informa-
tion, which can be used for other analyses and applica-
tions. In this paper, we present our results for two analysis
techniques: control-flow and control-dependence analyses.
We also discuss briefly the use of our analysis informa-
tion in two applications: program slicing and structural
testing. We discuss the problems and solutions for Java-
like exception-handling constructs; constructs in other lan-
guages, such as C++, can be analyzed similarly. In the
Java exception-handling paradigm, an exception can be
raised explicitly through a throw statement, or implicitly,
through a call to a library routine or by the runtime envi-
ronment. The techniques presented in the paper apply only
to explicitly raised exceptions. Our current work includes
investigation of ways to extend our techniques to include
the analysis of implicitly raised exceptions. We also restrict
our discussion to problems, representations, and analyses
for exception-handling constructs; techniques for handling
other features of object-oriented languages, such as poly-
morphism and object flow, are discussed elsewhere (e.g.,
[13], [17], [18]).

In this paper, apart from the study of the frequency
with which exception-handling constructs occur in Java
programs (Table I), we also present the results of two other
empirical studies. We performed these studies using our
program analysis system, Java Architecture for Bytecode
Analysis (JABA), written in Java, that analyzes Java byte-
code files.3 The first empirical study evaluates the precision

3JABA provides language-dependent analysis for Java programs (at
the byte-code level) that is required for use in language-independent
tools that are part of the Aristotle Analysis System [19].

of the control-flow representations that we construct for
exception-handling constructs, and suggests that exhaus-
tive type-inference analysis may not be required for deter-
mining exception types for throw statements. The second
empirical study examines the effects of exception-handling
constructs on control dependences. The results from this
study indicate that a control-dependence computation that
ignores the effects of exception-handling constructs can fail
to identify a number of dependences in a program. These
omitted dependences can have significant impact on the
accuracy of tools that require such dependences.

The next section gives an overview of exception-handling
constructs and specifies those constructs that our tech-
niques handle. After introducing an example that is used
throughout the rest of the paper, Section III discusses the
effects of exception-handling constructs on several types
of analyses. Next, Section IV presents our analysis tech-
niques, the representations constructed by the techniques,
and some empirical studies pertaining to the techniques.
Then, Section V briefly discusses the use of our represen-
tations for program slicing and structural testing. Section
VI evaluates our analysis techniques in terms of their accu-
racy and limitations, and discusses the tradeoffs involved
in analyzing exception-handling constructs with various de-
grees of accuracy. Section VII discusses related work. Fi-
nally, Section VIII presents conclusions and potential fu-
ture work.

II. Exception-Handling Constructs

This section provides an overview of exception-handling
constructs in Java, our language model; details of the Java
language can be found in Reference [9]. Other languages,
such a C++ and Ada, provide similar exception-handling
mechanisms.

In Java, an exception is an object: each exception
is an instance of a class that is derived from the class
java.lang.Throwable. An exception can be raised at any
point in the program through a throw statement. The

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 3

// handler for ExceptionType1

// handler for ExceptionType2

// handler for all exceptions

try {
// guarded section
 . . .
}
catch (ExceptionType1 t1) {

 . . .
}

 . . .
}
 . . .
catch (Exception e) {

 . . .
}
finally {
// cleanup code
 . . .
}

catch (ExceptionType2 t2) {

Java exceptions

synchronous

uncheckedchecked

1. explicitly

5. asynchronous

2. implicitly 3. explicitly 4. implicitly
raised raised raised raised

Fig. 1. The syntax of exception-handling constructs in Java (left), and a classification of Java exception types (right).

expression associated with the throw statement denotes
the exception object. The expression can be a variable
(e.g., throw e), a method call (e.g., throw m()), or a new-
instance expression (e.g., throw new E()). A throw state-
ment can appear anywhere in the program—it may or may
not be enclosed in a try statement.

A try statement provides the mechanism for designat-
ing guarded code, by associating exception handlers with
the code. A try statement consists of a try block, and
optionally, a catch block and a finally block. The legal
instances of a try statement are try–catch, try–catch–
finally, and try–finally. The code on the left in Fig-
ure 1 shows a typical try statement. A try block contains
statements whose execution is monitored for exception oc-
currences. A catch block, which may be associated with
each try block, is a sequence of catch clauses that specify
exception handlers. Each catch clause specifies the type
of exception it handles, and contains a block of code that
is executed when an exception of that type is raised in
the associated try block. A catch clause also specifies a
variable that is initialized with the handled exception, and
whose scope is limited to the block of code for that catch
clause. A try statement can have a finally block. The
code in a finally block is always executed, regardless of
how control transfers out of the try block. Control may
exit a try block by reaching the last statement in the try
block, through an exception that may or may not be han-
dled in the associated catch block, or because of break,
continue, or return statements.

Java follows the non-resumable model of exception han-
dling: after an exception is handled, control does not return
to the point at which the exception was raised, but con-
tinues at the first statement following the try statement
where the exception was handled. A Java exception can
be propagated up on the call stack: if a method raises but
does not handle an exception, the exception is reraised in
the context of the caller of that method.

Exceptions in Java can be classified according to several
criteria; the graph on the right in Figure 1 shows the classi-
fication criteria. These criteria reflect the semantics of rais-
ing an exception, and impose requirements on the way in
which an exception must be handled. For example, a Java
exception can be synchronous or asynchronous. A syn-
chronous exception occurs at a particular program point,
and is caused by an expression evaluation, a statement ex-
ecution, or an explicit throw statement. An asynchronous
exception, on the other hand, can occur at arbitrary, non-
deterministic points in the program. A synchronous excep-
tion can be checked or unchecked. For a checked exception,
the compiler must find a handler or a signature declaration
for the method that raises the exception. For an unchecked
exception, the compiler does not attempt to find such a han-
dler or a signature declaration. A synchronous exception is
explicitly raised if the exception is raised by a throw state-
ment in the application being analyzed. A synchronous ex-
ception is implicitly raised if the exception is raised through
a call to a library routine or by the runtime environment.
The source of an implicitly raised exception, therefore, lies
outside the application being analyzed. For example, a call
to the Java API method java.util.Stack.pop() can raise
a EmptyStackException; an expression that dereferences
an object reference can cause the Java runtime environment
to raise a NullPointerException.

The techniques that we discuss in this paper do not ap-
ply to asynchronous exceptions; a safe approximation of
program points that can raise such exceptions may include
all statements in the program. The techniques also do not
apply to implicitly raised exceptions. The analysis of these
types of exceptions is beyond the scope of this paper; our
current research includes investigating ways to extend our
work to include them.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 4

III. Effects of Exception-Handling Constructs

on Analysis Techniques

Exception-handling constructs belong to a class of con-
trol structures that cause arbitrary interprocedural con-
trol flow, and affect program-analysis techniques in similar
ways. Other examples of such control structures include
interprocedural jump statements, such as the setjmp()–
longjmp() calls in C, and halt statements, such as the
exit() call in C. Such constructs affect the flow of con-
trol across procedures, and in doing so, affect all analyses
that are derived from control-flow analysis. The common
effect of such control structures is that, at a call site, con-
trol may not return from the called procedure back to the
call site. Instead, control may return to a different point
in the calling procedure, or control may not return to the
calling procedure at all. Through such an effect, the con-
trol structures influence program-analysis techniques, such
as control-flow analysis, data-flow analysis, and control-
dependence analysis.

The emphasis of our previous [20] and ongoing research
is to characterize the control structures formally, to provide
not only a better understanding of the common effects of
the control structures on analysis techniques, but to facili-
tate the development of a uniform approach to performing
accurate analyses in their presence. Although recent re-
search has addressed some of the issues for program anal-
yses and program understanding that arise in the presence
of exception-handling constructs [13], [14], [12], [16], [15],
none of that research describes the problems and the solu-
tions for the general form of exception-handling constructs.
Previous research [21], [7], [22] has addressed the problem
of computing slices in the presence of control structures
that cause arbitrary intraprocedural control flow, but those
results do not apply to arbitrary control flow across proce-
dures. We discuss related work in more detail in Section
VII. In this paper, we restrict the discussion of the prob-
lems and solutions for exception-handling constructs.

In the remainder of this section, we first describe a pro-
gram that we use to illustrate the concepts presented in the
paper. We then discuss the effects of exception-handling
constructs on three program-analysis techniques: control-
flow analysis, data-flow analysis, and control-dependence
analysis.

A. The Vending-Machine Program

The vending-machine program, shown in Figure 2, sim-
ulates the actions of a vending machine.4 The machine
lets a user insert coins, request a refund, or select an item
using a numeric keypad. If the user selects a valid item
and enters coins of value sufficient to cover the cost of the
item, the machine dispenses the selected item. If the user
makes an erroneous selection, the machine asks the user
to reenter the selection; the user may reenter the selec-
tion or request a refund of the coins. The machine keeps
track of the number of erroneous selections entered by a

4We adapted this example from the one by Kung and colleagues
that appeared in Reference [23].

user. Once the number of erroneous selections exceeds a
predetermined value, the machine aborts the transaction
and returns the user’s coins. Figure 3 explains the various
error conditions that may arise during a transaction and
presents a class hierarchy of exceptions that correspond to
those conditions.

Method main() (lines 42–58) presents the user with the
three options, and based on the user’s action, invokes one
of three methods, defined in the class VendingMachine,
to process the action. Method insert() (lines 5–9) first
ensures that the user has entered a valid coin, and then
increments the current value by the value of the coin;
insert() raises an exception if the user enters an invalid
coin. Method returnCoins() (lines 10–14) refunds coins
with a value equal to the current value, and resets the cur-
rent value; returnCoins() raises an exception if the cur-
rent value is zero. Method vend() (lines 15–28) accepts
the user’s selection, and if the current value is not zero, in-
vokes method dispense() defined in the Dispenser class.
Method dispense() (lines 29–41) performs several error
checks to ensure that the selection is a valid item (line 30),
the selection is available for dispensing (line 33), and the
current value covers the cost of the selection (line 37). If
any of these checks fails, the code raises an exception (line
40). If all checks pass, dispense() simulates dispensing
of the item by printing a message (line 41). On success-
ful completion of dispense(), vend() updates appropri-
ate state variables (lines 19–20), and calls returnCoins()
to return the balance to the user (line 21). If dispense()
raises an exception that signals an erroneous selection (lines
32, 35), vend() handles the exception (line 22) and incre-
ments currAttempts. When currAttempts exceeds the
constant MAX ATTEMPTS, vend() rethrows the caught ex-
ception (line 27), which causes main() to abort the trans-
action.

We omit the details of methods, such as value() and
available() in the Dispenser class, that are not relevant
to our presentation; such methods raise no exceptions. For
brevity, we also exclude the details of the constructors of
some of the classes, and the initializations of constants such
as MAX ATTEMPTS and MIN SELECTION.

B. Effects of Exceptions on Control-Flow Analysis

Control-flow analysis determines, for each program state-
ment s, those statements in the program that could follow s
in some execution of the program. Many program-analysis
techniques, such as data-flow and control-dependence anal-
yses, and software-engineering tasks, such as structural
and regression testing, use control-flow information. These
techniques typically construct a control-flow representation
for the program being analyzed. For these analyses to be
useful, and for these applications to be effective in the pres-
ence of exception-handling constructs, the control-flow rep-
resentation should incorporate the exception-induced con-
trol flow.

The vending-machine program of Figure 2 exemplifies
the complexity that the presence of exception-handling
constructs can introduce in the control flow in a program.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 5

 public void vend(int selection) {
15 if (currValue == 0) {
16 throw new ZeroValueException();
 }
 try {

 }
22 catch(SelectionException s) {
23 currAttempts++;
24 if (currAttempts < MAX_ATTEMPTS) {
25 showMsg("Enter selection again");
 }
 else {

27 throw s;
 }
 }
28 catch(ZeroValueException z) {

 }
 }

26 currAttempts = 0;

}

public class VendingMachine {

 1 totValue = 0;
 2 currValue = 0;
 3 currAttempts = 0;
 4 d = new Dispenser();
 }

10 if (currValue == 0) {

12 showMsg("Coins returned");
 }

13 currValue = 0;

 private int totValue;
 private int currValue;
 private int currAttempts;
 private Dispenser d;

 9 showMsg("current value = "+currValue);

 public void insert(Coin coin) {
 5 int value = valueOf(coin);
 6 if (value == 0) {
 7 throw new IllegalCoinException();
 }
 8 currValue += value;

 }

 public VendingMachine() {

11 throw new ZeroValueException();

 }

14 currAttempts = 0;

 public void returnCoins() {

21 returnCoins();

17 d.dispense(currValue, selection);

19 totValue += currValue - bal;
20 currValue = bal;

18 int bal = d.value(selection);

34 showMsg("selection "+sel+" is unavailable");

 }
 else {
33 if (!available(sel)) {

35 e = new SelectionNotAvailableException();
 }
 else {
36 int val = value(sel);
37 if (currVal < val) {
38 e = new IllegalAmountException(val-currVal);
 }
 }
 }
39 if (e != null) {
40 throw e;
 }
41 showMsg("Take selection");
 }
}

30 if (sel < MIN_SELECTION || sel > MAX_SELECTION) {

32 e = new IllegalSelectionException();
31 showMsg("selection "+sel+" is invalid");

29 Exception e = null;
 public void dispense(int currVal, int sel) {
public class Dispenser {

58 showMsg("Value is zero. Enter coins");

 public static void main() {
42 VendingMachine vm = new VendingMachine();
43 while (true) {
 try {
 try {
44 switch(action) {
45 case INSERT: vm.insert(coin);
46 case VEND: vm.vend(selection);

 }

50 vm.returnCoins();
 }
51 catch(IllegalCoinException i) {
52 showMsg("Illegal coin");
53 vm.returnCoins();
 }

56 showMsg("Enter more coins"+val);
 }

57 catch(ZeroValueException z) {

 }

 }

 }
 }

54 catch(IllegalAmountException i) {
55 int val = i.getValue();

 }
48 catch(SelectionException s) {
49 showMsg("Transaction aborted");

47 case RETURN: vm.returnCoins();

Fig. 2. Java code for the vending-machine program: class VendingMachine (top), class Dispenser (bottom left), and method main() (bottom
right).

For example, in method insert(), control does not reach
line 8 if the predicate in line 6 evaluates to true; instead,
the exception raised in line 7 terminates the execution of
insert(), and transfers control to a caller of insert().
For further example, consider the call to dispense() in line

17. Following the call, control may not return to the call
site: if dispense() raises an exception, control may return
to line 22 of vend() or control may not return to vend()
at all. Through such effects, exception-handling constructs
can influence control flow not only within a method, but

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 6

SelectionException (S)

ZeroValueException (ZV)

Exception

SelectionNot-

Exception Condition

IllegalCoin

unavailable

User enters a number that does not

User selects an item that costs more

User inserts an illegal coin

User selects an item that is temporarily
Available

IllegalAmount

User selects an item, or requests a
refund without inserting any coins

ZeroValue

IllegalSelection

correspond to a valid selection

than the value of the coins inserted

(IA)

(IC)

(SNA)(IS)

IllegalSelectionException SelectionNotAvailableException

IllegalAmountException

IllegalCoinException

Fig. 3. Hierarchy of exception-related classes (and their abbreviated names) for the vending-machine program (left), and conditions that
cause various exceptions to be raised (right).

across methods, and can introduce complex control-flow
paths in a program.

The control-flow relation that exists in a program can be
represented as a control-flow graph (CFG) in which nodes
represent statements, and edges represent the flow of con-
trol between statements [24].

Recent work [12] describes an intraprocedural represen-
tation of Java exception-handling constructs. That work,
however, does not consider several issues related to control
flow. For example, the work does not consider the con-
trol flow caused by the presence of finally blocks, and it
does not model the propagation of exceptions by methods.
In Section IV-A, we analyze the control flow caused by
exception-handling constructs, and describe our approach
for creating intraprocedural and interprocedural represen-
tations of programs that contain those constructs.

C. Effects of Exceptions on Data-Flow Analysis

Data-flow analysis techniques compute data-flow facts,
such as definition-use pairs, reaching definitions, available
expressions, and live variables, that hold at different pro-
gram points. Data-flow information is used in activities
such as program slicing [25], [26], [27], data-flow testing
[1], [2], [28], and compiler optimizations [24]. A data-flow
problem can be formulated as a set of equations that com-
pute data-flow facts, and those data-flow facts are com-
puted and propagated iteratively throughout the program,
using a control-flow representation. The solution of the
data-flow problem is the fixed-point solution of the equa-
tions. In the presence of exception-handling constructs, the
data-flow facts must be propagated also along the excep-
tional control-flow paths, so that the computed data-flow
solutions approximate conservatively the true data-flow so-
lutions.

To illustrate, consider the effect of exception-handling
constructs on the computation of definition-use pairs. A
definition-use pair is a pair (d, u), where d is a statement
that defines a variable v (references and changes v), u is a
statement that uses v (references but does not change v),
and there is a path in the program from d to u along which v

is not redefined. Exception-handling constructs may cause
a definition-use computation to miss definition-use pairs in
two ways. First, a definition-use pair may not be detected
because the pair occurs along only an exceptional-control
flow path that is not modeled by the control-flow repre-
sentation. For example, in the vending-machine program,
there exists such a pair that includes statement 42, where
vm is defined, and statement 53, where vm is used. This
definition-use pair is not detected if the exceptional control
flow from statement 7 to statement 51 is not modeled by the
control-flow representation. Second, exception-handling
constructs introduce additional definition-use pairs in a
program through the exception object. The definition of
exception object e in statement 38, and its subsequent use
as i in statement 55 is an example of such a definition-use
pair.

A data-flow relation can be represented as a data-
dependence graph in which nodes represent program state-
ments and edges represent the data dependence between
statements. In such a graph, for definition-use pairs, a
data-dependence edge exists between nodes n1 and n2 if
(n1, n2) is a definition-use pair.

Several researchers have recently addressed the prob-
lem of performing data-flow analyses in the presence of
exception-handling constructs. Some researchers [13], [14]
do not explicitly create a control-flow representation for
exceptions; instead, they modify the data-flow analyses to
compute and traverse the intraprocedural and interproce-
dural exceptional control-flow paths while performing the
desired analyses. Other researchers [12] represent some
exceptional control flow explicitly, and modify the data-
flow analyses to compute the remaining exceptional control
flow while performing the analyses. With the control-flow
representation that we define in Sections IV-A.1 and IV-
A.2, existing algorithms for data-flow analyses require ei-
ther no modifications or minor modifications to function in
the presence of exception-handling constructs. The other
approaches work as well for performing the data-flow anal-
yses; our representation provides an alternative approach
to performing the analyses.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 7

D. Effects of Exceptions on Control-Dependence Analysis

Control-dependence analysis [5] determines, for each pro-
gram statement, the predicates that control the execution
of that statement. Informally, a statement s is control de-
pendent on (p, ‘L’)—where p is a predicate and ‘L’ is the
label associated with one of p’s branches—if, in the CFG,
there are two edges out of the node for p such that follow-
ing the edge labeled ‘L’ causes the node for s to be reached
definitely, whereas following the other edge may cause that
node not to be reached [29]. A statement in procedure P
that is control dependent on no predicates in P is control
dependent on entry into P . Control-dependence informa-
tion is required for analyses, such as slicing, that are used
for software-engineering tools, such as debuggers, impact
analyzers, and regression testers.

Traditional definitions of, and algorithms for comput-
ing, control dependence [5], [29], [30], [31] function at the
intraprocedural level, and inaccurately model the control
dependences when they are applied to programs that con-
tain exception-handling constructs. One factor that causes
the traditional definitions and algorithms to be inadequate
is the presence of potentially non-returning call sites (PN-
RCs) [8]: call sites to which control may not return from the
called methods. Through their effects on interprocedural
control flow, exception-handling constructs cause PNRCs
in a program, and necessitate the computation of interpro-
cedural control dependence. For example, in the vending-
machine program, the call site in line 17 is a PNRC be-
cause, following the call, control may return to statement
22 rather than to statement 17, or control may not return
to vend() at all. This causes statements that follow the
call site, such as statement 20, to be control dependent on
conditional statements in the called methods. For exam-
ple, statement 20 is control dependent on (39, ‘F’), which
belongs in dispense(). Traditional techniques, however,
identify statement 20 as control dependent on entry into
vend().

In the presence of exception-handling constructs, control
dependences of certain statements—those that appear in a
catch block—might be computable only in the interpro-
cedural context; such statements have no intraprocedural
control dependences. For example, the execution of state-
ments 51–53, which belong to main(), is controlled by de-
cisions that are made in insert(). Therefore, to identify
the control dependences for such statements, interprocedu-
ral control dependences must be computed.

The control-dependence relation is represented as a
graph. A control-dependence graph (CDG) [5] contains a
node for each predicate and statement in a procedure, and
an edge labeled ‘L’ from predicate p to statement s if s is
control dependent on (p, ‘L’). A unique root node denotes
the entry predicate, and represents the control dependences
of those statements that are reached when control enters
the procedure.

Past work that has attempted the computation of in-
terprocedural control dependence [32] considers only the
effects of halt statements, and suffers from several draw-
backs. Recent work [8] has addressed those drawbacks, but

considers only the effects of halt statements. In Section IV-
B, we present an approach that computes interprocedural
control dependences in the presence of exception-handling
constructs.

IV. Analysis Techniques to Accommodate

Exception-Handling Constructs

In this section, we describe techniques for control-flow
and control-dependence analysis that account for the ef-
fects of exception-handling constructs, and therefore, can
be applied to programs that contain such constructs.

A. Control-Flow Analysis

As we discussed in Section III-B, the presence of
exception-handling constructs creates control-flow paths
within and across methods. To be precise, the intrapro-
cedural and interprocedural control-flow representations
must contain these paths.

A.1 Intraprocedural analysis

When an exception is raised in a try block, control trans-
fers to the catch clause that handles the raised exception.
This catch clause may be associated with the try block in
which the exception is raised, or may be associated with a
lexically enclosing try block. The parameter of the match-
ing catch clause is bound to the thrown object, and the
handler code is executed. Following the execution of the
handler code, normal execution resumes at the first state-
ment that follows the try statement in which the excep-
tion was handled. Before control exits a try statement, the
finally block of the try statement is executed, if it exists,
regardless of whether control exits the try statement with
an unhandled exception.

The block-level control-flow graph, shown in Figure 4,
summarizes the control flow into and out of a try state-
ment. The figure shows a try statement and its component
blocks; the conditions causing the control flow between the
blocks are numbered and listed next to the figure. As the
figure illustrates, there are several control-flow paths within
a try statement. For example, the path (5, 8, 12) is taken
if the try block raises an exception, the catch block han-
dles the exception but raises another exception, and the
finally block raises no exception. Paths starting at edges
13, 14, or 15 are taken if a nested try statement propa-
gates an exception. For example, path (13, 6, 11) is taken
if a nested try statement propagates an exception that is
handled in the catch block, and then the finally block
raises another exception.

Figure 4 illustrates that a Java finally block can ex-
ecute in one of two contexts: a normal context or an ex-
ceptional context. A finally block executes in a normal
context when (1) control reaches the end of a try block
or a catch block, or (2) control leaves a try statement
because of an unconditional transfer statement, such as
break, continue, or return. A finally block executes
in an exceptional context when control leaves a try state-
ment because of an unhandled exception. The context
of execution of a finally block determines where control

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 8

try block raises exception; catch block does not handle

15 nested block propagates exception; catch block does not
handle exception; finally block specified

14 nested block propagates exception; catch block does not
exception

13 nested block propagates exception; catch block handles

7

another exception
finally block propagates previous exception, or raises12

11 finally block raises exception
finally block raises no exception10
no finally block
catch block handles exception; raises another exception;9
finally block specified
catch block handles exception, raises another exception;8
catch block handles exception; no finally block
catch block handles exception; finally block specified

exception; no finally block

6
exception
try block raises exception; catch block handles5
exception; finally block specified
try block raises exception; catch block does not handle

handle exception; no finally block

try block raises no exception; finally block specified
try block raises no exception; no finally block

4

3
2
1

exceptional exit

Method

(exceptional)(normal)

statement

normal exit

from nested block
try

exception propagated

normal exit

exceptional exit

blockfinally

blockcatchblocktry

blockfinally

3 4

5

6 7 8 9

13 14 15

10 11 12

1 2

Fig. 4. Intraprocedural control flow in Java exception-handling constructs.

flows from that finally block: In a normal context, con-
trol flows to the statement that follows the try statement,
or control flows to the target of an unconditional transfer
statement; in an exceptional context, control flows to an
enclosing finally block, an enclosing catch handler, or
control exits the method with an unhandled exception.

To represent exceptional-handling constructs, a CFG
constructed by our algorithm contains nodes that represent
throw statements, catch handlers, and finally blocks,
and edges that represent the normal and exceptional con-
trol flow caused by those constructs. A throw node can
have multiple successors in a CFG; these successors are
determined by the types of exceptions that can be raised
at the corresponding throw statement. To determine the
potential exception types, we perform type inference, and
create one outgoing edge from the throw node for each
type of exception.5 We label each edge with the type of
exception that causes that edge to be traversed during pro-
gram execution. The multiple successors of a throw node
are based on exception types because distinct exception
types can cause control to be transferred to distinct pro-
gram points. Figure 5 presents the CFGs for the methods
of the vending-machine program that are constructed using
our approach. The throw statement in line 40 of the pro-
gram can raise one of three types of exceptions: IA, IS, or
SNA. Therefore, the CFG node for that statement has three
outgoing edges—one for each type of exception—that are
labeled with the corresponding exception types. If a throw
statement raises only one type of exception, the CFG node
for that statement has a a single labeled outgoing edge.
For example, node 11 has a single outgoing edge labeled
‘ZV’ because the corresponding throw statement raises an

5Section IV-A.3 provides further discussion of type inferencing.

exception whose type is always ZV.
A method may propagate an exception by raising, but

not handling, that exception. To model the propagation of
exceptions by a method, the CFG contains exceptional-exit
nodes. An exceptional-exit node is an exit point in the CFG
that has a type T associated with it, and represents the
propagation of an exception of type T by the correspond-
ing method. A method may propagate an exception that
was raised directly in that method, or indirectly, through
a called method. The CFG of a method has as many
exceptional-exit nodes as the distinct types of exceptions
that are raised directly, but not handled, in the method.
In Figure 5, the CFG for vend() has three exceptional-exit
nodes because vend() propagates three types of directly
raised exceptions: IS, SNA, and ZV. The CFGs for insert()
and returnCoins() have one exceptional-exit node each
because both these methods propagate one type of directly
raised exception. Method vend() propagates an indirectly
raised exception, IA, through the call to dispense(); the
exceptional-exit nodes for such exceptions are created in
the interprocedural representation (Section IV-A.2).

In the CFG, the node for a catch handler that han-
dles directly raised exceptions has incoming edges for those
exceptions. The node for a catch handler that handles
only indirectly raised exceptions, however, has no incom-
ing edges in the CFG; such a node has incoming edges in
the interprocedural representation. Because all handlers in
the vending-machine program handle only indirectly raised
exceptions, the catch nodes for those handlers have no in-
coming edges.

A finally block can execute in different contexts such
that following the execution of statements in the block,
control flows to different points in different contexts. There
are two alternative approaches to model such control flow

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 9

5

6

insert

Vending
Machine

1, 2, 3, 4

exit

exit

main

8, 97

12, 13, 14

returnCoins

exit

dispense

29

30

17b

21a

21b

15

vend

exit

16

27

18, 19, 20

23

24

26 25

17a

31, 32

34, 35

38

41

exceptional
exit(IS)

exceptional
exit(IA)

exceptional
exit(SNA)

exceptional
exit(IC)

exceptional
exit(ZV)

exceptional
exit(ZV)

exceptional

28:ZV

exceptional
exit(SNA)exit(IS)

11

10

exit

F

FT

T F
T

I R
V

42a

42b

43

44

46a

46b

45a

45b

47a

47b

50a

50b

54(IA)

55, 56 58

52 49

53b

53a 57(ZV)
IC

ZV

TF

TF

T

F

TF

T

F

TF

33

36

37

40

39

exit

ZV

IA SNAIS

48(S)

22(S)

51(IC)

intraprocedural
control flow

IS SNA

Fig. 5. The control-flow graphs for methods of the vending-machine program constructed by our approach.

without introducing paths that represent invalid entry–exit
sequences for finally blocks. One approach creates a sep-
arate CFG for each finally block, and inserts call nodes
to the finally blocks for both contexts of execution. The
other approach avoids creating a separate CFG for each
finally block, and instead inlines a finally block once for
each of its different contexts of execution. The second ap-
proach becomes impractical if finally blocks appear fre-
quently and are large. For simplicity of presentation, the
vending-machine program excludes finally blocks. Refer-
ence [33] describes examples that illustrate the control-flow
representation for finally blocks.

Figure 6 provides an overview of the CFG-construction
algorithm [33]. The algorithm operates in three steps:
First, the algorithm creates an incomplete CFG in which
throw nodes have no outgoing edges; next, the algorithm
performs type inferencing using the incomplete CFG to de-
termine potential exception types for throw statements;5

finally, the algorithm completes the CFG by adding out-

algorithm ConstructCFG
input AST : abstract-syntax tree for procedure P
output CFG : control-flow graph for procedure P

begin ConstructCFG
/* Step 1: construct incomplete CFG */

1. construct control-flow graph with no outgoing edge from
throw nodes
/* Step 2: perform type inference5 */

2. perform intraprocedural flow-sensitive type analysis
3. perform interprocedural flow-insensitive type analysis

/* Step 3: construct complete CFG */
4. create outgoing edges from throw nodes
5. create exceptional-exit nodes for propagated exception types
6. create nodes for execution of finally blocks in exceptional

contexts
end ConstructCFG

Fig. 6. Overview of the CFG-construction algorithm.

going edges from the throw nodes, and creating the neces-
sary exceptional-exit nodes and nodes that represent exe-
cution of finally blocks in exceptional contexts. The first
step of the algorithm can be implemented using either an

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 10

1 called method propagates no exceptions

 block in calling method
 calling method does not handle exception; no finally
4 called method propagates exception; catch block in

 block specified in calling method
 calling method does not handle exception; finally
3 called method propagates exception; catch block in

 calling method handles exception
2 called method propagates exception; catch block in

4321

try statement

(normal) (exceptional)

exceptional exit

exceptional exit

normal exit

Calling method

Called method

exceptional exit

normal exit

normal exit

blockfinally

blockcatchblocktry

blockfinally

Fig. 7. Interprocedural control flow in Java exception-handling constructs.

abstract-syntax tree, as described in Reference [33], or the
Java bytecodes. Our Java analysis tool, JABA,3 constructs
the CFGs using the bytecode-based implementation of the
algorithm.

A.2 Interprocedural analysis

The propagation of exceptions on the call stack creates
interprocedural exceptional control flow. Interprocedural
control flow is represented in an interprocedural control-
flow graph. An interprocedural control-flow graph (ICFG)
for a program P consists of CFGs for each method or pro-
cedure in P ; at each call site, the call node is connected to
the entry node of the called method by a call edge, and the
exit node of the called method is connected to the corre-
sponding return node by a return edge.

Figure 7 presents an interprocedural block-level control-
flow graph (similar to Figure 4) that shows the called
method B at the top, and its caller A below it. The call to
B within A’s try block is shown by a call edge. Following
the execution of B, control can return to A in one of four
ways; the edges corresponding to these returns are labeled
in the figure. If B propagates no exceptions, control re-
turns normally to the statement following the call site in
A. However, if B propagates an exception, control does
not return to the call site. If the try block in A has an as-
sociated catch handler that handles the raised exception,
control flows to that handler. If there is no such catch
handler associated with the try block but that block has a
corresponding finally block, control flows to the finally

block. If neither of the above is true, method A also propa-
gates the exception, and the search for a handler continues
in the caller of A.

To represent the interprocedural exceptional control
flow, the ICFG contains exceptional-return edges. An
exceptional-return edge is an interprocedural edge that con-
nects an exceptional-exit node of the called method to a
catch node, a node for a finally block, or an exceptional-
exit node of the calling method.

Figure 8 shows the ICFG for the vending-machine pro-
gram. Each call node is connected to the entry node of the
CFG of the called method by a call edge; the exit node of
that CFG is connected to the corresponding return node
by a return edge. If a method propagates an exception that
is caught in the caller of that method, the exceptional-exit
node for that exception type is connected to the appro-
priate node in the caller by an exceptional-return edge.
For example, insert() propagates IC that is caught in
statement 51 of main() (the caller of insert()). There-
fore, the exceptional-exit node in the CFG for insert()
is connected, by an exceptional-return edge, to node 51 in
the CFG for main(). A method may propagate an excep-
tion that is not handled in the immediate caller of that
method, but is handled in a method that lies further up
in the call chain. For example, main() calls vend(), and
vend() calls dispense(). dispense() propagates an ex-
ception of type IA; vend(), however, does not handle the
exception but propagates it up to main(). The chain of
exceptional-return edges in the ICFG reflects the exception

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 11

6

insert

Vending
Machine

1, 2, 3, 4

exit

exit

8, 9

12, 13, 14

7

exit

main

dispense

29

30

17b

returnCoins

21a

21b

15

vend

17a

27

18, 19, 20

23

26 25

28:ZV

31, 32

34, 35

38

41

16

exit(IS)

exceptional
exit(IA)

exceptional
exit(SNA)

exceptional
exit(IC)

exceptional
exit(ZV)

exceptional
exit(ZV)

exceptional
exit(IA)

exceptional

5

exceptional
exit(SNA)

exit

24

exceptional

exit(IS)

exit

11

10

FT

T F
T

I R
V

42a

42b

43

44

46a

46b

45a

45b

47a

47b

50a

50b

54(IA)

55, 56 58

52 49

53b

53a 57(ZV)
IC

ZV

TF

TF

T

F

TF

T

F

TF

33

36

37

40

39

exit

ZV

IA SNAIS

48(S)

22(S)

51(IC)

exceptional control flow
interprocedural

normal control flow
interprocedural

intraprocedural
control flow

IS SNA

F

Fig. 8. The interprocedural control-flow graph for the vending-machine program constructed by our approach.

propagation: the exceptional-exit node for type IA in the
CFG for dispense() is connected to the exceptional-exit
node for the same type in the CFG for vend(), which in
turn is connected to catch node 54 in the CFG for main().

The ICFG-construction algorithm [33] iteratively de-
termines, for each method, those propagated exception
types that are raised indirectly in the method, and adds
exceptional-exit nodes to the CFG of the method for those
exception types. For example, the ICFG-construction al-
gorithm determines that vend() propagates IA such that
IA is raised indirectly in vend() (through the call to
dispense()), and adds an exceptional-exit node for type
IA to the CFG of vend(). Figure 9 provides a high-level
view of the algorithm. The algorithm initializes a worklist
with the methods in the program (line 1), and then repeat-
edly removes a method N from the worklist and processes
all callers of N , until the worklist becomes empty (lines 2–
14). For each call site that calls N , the algorithm creates
call and return edges (line 5). The exception types that

are propagated by N (indicated by the exceptional-exit
nodes in the CFG of N) are raised indirectly in M . There-
fore, for each such exception type, the algorithm adds an
exceptional-exit node and nodes for finally blocks to the
CFG of M (line 7), if such nodes are required; for example,
if an exception type is propagated by N and is not caught
by M , the algorithm adds an exceptional-exit node for that
type to the CFG of M . For each exception type propagated
byN , the algorithm also creates an exceptional-return edge
(line 8). If the algorithm adds an exceptional-exit node to
the CFG of M , it adds M to the worklist (line 10), to ensure
that all callers of M are reprocessed.

Like other iterative data-flow algorithms, the ICFG-
construction algorithm can be implemented efficiently to
process methods in a reverse topological order of the pro-
gram’s call multigraph.6 Such an implementation processes

6A call multigraph for a program P contains a node N for each
method in P, and an edge from node Ni to node Nj for each call
site, in the method corresponding to Ni, that calls the method cor-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 12

algorithm ConstructICFG
input CFG : control-flow graph for each method in P
output ICFG : interprocedural control-flow graph for P
declare worklist : methods that are processed iteratively

begin ConstructICFG
1. initialize worklist with methods in P
2. while worklist is not empty
3. remove method N from worklist
4. foreach call site in method M that calls N
5. create call edge, return edge
6. foreach exceptional-exit node in the CFG of N
7. add exceptional-exit node, nodes for finally blocks

to the CFG of M , if required
8. create exceptional-return edge
9. if an exceptional-exit node added to the CFG of M

10. add M to worklist
11. endif
12. endfor
13. endfor
14. endwhile
end ConstructICFG

Fig. 9. Overview of the ICFG-construction algorithm.

each non-recursive method only once, and the recursive
methods iteratively, as shown in Figure 9, until a fixed
point is reached.

A.3 Type inferencing for exception types

The CFG construction requires information about excep-
tion types that can be raised at throw statements. Type
information can be computed with varying degrees of preci-
sion. More precise type information at a throw statement
includes fewer spurious exception types—types that can-
not be raised at the throw statement in any execution of
the program. The precision of the type inference deter-
mines the extent to which infeasible paths7 are introduced
in the control-flow representations. An imprecise (but safe)
approximation of exception types causes the addition of
unnecessary edges emanating from throw nodes; programs
paths that contain such edges are infeasible.

Type-inference algorithms (e.g., [34], [35]) attempt to
determine the types for each expression in a program by
solving type constraints or by propagating local type in-
formation throughout a program. Such techniques have
been applied traditionally to optimization of dynamically
dispatched function calls. Recent work [13] uses points-to
analysis to infer types in programs that contain exception-
handling constructs.

Type inference for exception types is required only for
those throw statements whose exception types cannot
be determined by an inspection of the throw statement;
the expressions of such throw statements are variables or
method calls. For example, a throw statement, such as the
one in line 11 of the vending-machine program, requires
no type inference because its expression is a new-instance
expression; the only type of exception that can be raised
at that statement is ZV. The throw statement in line 40,
however, requires type inference because it raises the ex-
ception object referenced by a variable, and different ex-

responding to Nj .
7A path is infeasible if there exists no input to the program that

causes the path to be executed.

TABLE II

Types of throw statement expressions.

throw throw statement expressions
Subject statements new instance variable method call

antlr 262 252 10 0
debug 61 56 5 0
jaba 220 219 1 0
jar 13 13 0 0
jas 215 215 0 0
jasmin 56 55 1 0
javacup 30 29 1 0
javac 129 127 2 0
javadoc 5 5 0 0
javasim 37 37 0 0
jb 56 55 1 0
jdk-api 703 683 20 0
jedit 76 76 0 0
jflex 49 49 0 0
jlex 3 3 0 0
joie 81 79 2 0
sablecc 142 142 0 0
swing-api 352 336 4 12

Total 2490 2431 47 12

ception objects are created and assigned to that variable
along different paths to the throw statement.

Our empirical evidence, based on the subjects listed
in Table I, suggests that, in practice, the expressions
of an overwhelming majority of throw statements are
new-instance expressions, and therefore, require no type-
inference analysis. Table II lists the types of throw-
statement expressions that appear in our subjects. As the
data illustrates, out of the 2490 throw statements that
appear in the subjects, only 59 have either a variable or
a method call as their expressions. Among these throw
statements, a variable expression appears four times more
frequently than a method-call expression. The remaining
throw statements, which constitute over 97% of the to-
tal throw statements, require no type-inference analysis.
Therefore, we believe that the use of an exhaustive type-
inference algorithm for inferring exception types may not
be justified.

To determine types for throw statements whose expres-
sions are not new-instance expressions, we consider four
computationally inexpensive approaches. The first ap-
proach is a conservative approximation that includes all
subtypes of the relevant exception type. For example, to
determine the exception types for the throw statement in
line 40 of the vending-machine program, the conservative-
approximation approach identifies all subtypes of class
Exception as the potential exception types.

The second approach is an intraprocedural flow-sensitive
analysis8 [33]. The analysis performs an iterative data-flow
analysis starting at a throw statement that raises an excep-
tion object dereferenced through a variable, and searches
backwards for statements that assign a type to that vari-
able. If the analysis reaches statements that define the
types on all paths to the throw statement, the analysis pre-
cisely identifies the exception types that (statically) reach
the throw statement. For example, this approach traverses

8A flow-sensitive analysis considers the control flow among state-
ments, whereas a flow-insensitive analysis ignores the control flow.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 13

TABLE III

Effectiveness of the type-inference approaches.

Type- Number of throw statements with Average
inference single 2–10 11–20 21–30 >30 number
approach type types types types types of types

Conservative 26 6 3 0 12 13.3
approx
Intra FS 28 6 3 0 10 11.5
analysis
Inter FI 29 8 2 8 0 5.6
analysis
Intra FS and 31 8 1 7 0 4.9
inter FI
analyses

backward on all paths from the throw statement in line
40, and precisely determines the types IA, IS, and SNA for
that throw statement. The analysis traverses backwards
only in the method that contains the throw statement. On
reaching the method boundary (at the method entry, a call
node, or a catch node), the analysis uses the conservative-
approximation approach, and includes in the solution all
subtypes of the relevant exception type. The intraprocedu-
ral flow-sensitive analysis is similar to the intraprocedural
type propagation described in Reference [36].

The third approach, similar to rapid type analysis [37], is
an interprocedural flow-insensitive analysis: it starts with
the conservative approximation, and refines that approxi-
mation by examining object-creation sites and return types
of all library calls. The refined approximation contains only
those types that are either instantiated in the program or
returned by a library routine. For example, to determine
exception types for the throw statement in line 27, the in-
terprocedural analysis first approximates S, IS, and SNA
as the potential exception types. The analysis then exam-
ines object-creation sites and return types of library calls,
and eliminates S from the type-inference solution. The in-
terprocedural flow-insensitive analysis can omit potential
exception types from the type-inference solution because a
library routine can return an exception object by encap-
sulating it in a class, and the analysis would fail to detect
that exception type.

The final approach is a combination of the intraprocedu-
ral flow-sensitive and the interprocedural flow-insensitive
analyses. This approach first performs the flow-sensitive
analysis, and if that analysis results in a conservative ap-
proximation, the approach uses the flow-insensitive analy-
sis to improve the precision of the type inference informa-
tion.

To evaluate these four approaches, we performed an em-
pirical study. The goal of the study was to compare the
precision of the type-inference information computed us-
ing the approaches. Using each of the four approaches, we
determined the potential exception types for the 47 throw
statements in the subjects that mention a variable. Ta-
ble III presents the data from the empirical study. For
each type-inference approach, the table lists the number of
throw statements for which the number of inferred excep-
tion types fall in various ranges.

The data in the table shows that the conservative ap-

proximation computed a single type for 26 throw state-
ments, but computed over 30 types for 12 throw state-
ments. For two of those 12 throw statements, the intrapro-
cedural flow-sensitive analysis succeeded in reducing the
number of exception types to one. However, the intrapro-
cedural flow-sensitive analysis did not cause a significant
reduction in the inferred types compared to the conser-
vative approximation. The average number of exception
types decreased marginally from 13.3, for the conserva-
tive approximation, to 11.5, for the intraprocedural flow-
sensitive analysis. The interprocedural flow-insensitive
analysis, however, caused a significant reduction in the
inferred types. With the interprocedural flow-insensitive
analysis, no throw statement had more than 30 exception
types. When the interprocedural flow-insensitive analy-
sis was used in isolation, the average number of exception
types was 5.6; when used in conjunction with the intrapro-
cedural flow-sensitive analysis, the average number of types
was 4.9.

The results from the study indicate that, in practice, the
intraprocedural flow-sensitive analysis may not offer much
benefit over the conservative approximation approach. The
interprocedural flow-insensitive analysis improves signifi-
cantly the precision of the type-inference solution, but as
noted, the analysis may omit potential types from the so-
lution. The scarcity of the data points is a threat to the
validity of these observations; further experimentation is
required to establish the veracity or the fallacy of the ob-
servations.

A.4 Complexity of control-flow analysis

The cost of ConstructCFG is linear in the size of a
method if the method contains no throw statements. To
process a throw statement, ConstructCFG (1) performs
type inferencing, and (2) determines CFG successors based
on the inferred types. The cost of type inferencing depends
on which approach to type inferencing is used. The cost
of the conservative approximation is O(ET), where ET is
the number of types in the exception hierarchy. The cost
of the intraprocedural flow-sensitive analysis is O(N + ET)
for reducible control flow, and O(N2 +ET) otherwise—N
is the number of nodes in the CFG for a method. The
interprocedural flow-insensitive analysis requires a prepro-
cessing time that is linear in the number of statements in a
program; this expense is incurred only once. The approach
then builds a list of instantiated types, and uses the list
to eliminate exception types that cannot be raised. If CT
is the number of types that are created in a program, the
cost of the flow-insensitive analysis is O(CT ∗ ET).

Let T be the number of throw statements in a method,
and let H and F be the numbers of catch handlers and
finally blocks, respectively, that enclose a call site in
a method. Let wcc(TI) be the worst-case complexity of
type inferencing and IT be the number of inferred ex-
ception types. For each type that is inferred for a throw
statement, ConstructCFG searches for a target among the
enclosing catch handler and processes enclosing finally
blocks. Therefore, the cost of processing a throw statement

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 14

is O(wcc(TI) + IT ∗ (H + F)). The overall cost of the
CFG construction is O(N + (wcc(TI) + IT ∗ (H + F))).

The cost of ConstructICFG is bounded by the number of
methods that it processes and the cost of processing each
method. If M is the number of methods in a program, in
the worst case, ConstructICFG may process O(M2) meth-
ods. For each method, the algorithm examines all call
sites in the method, and for a given call site, the algo-
rithm iterates over the exceptional-exit nodes in the called
method. For each exceptional-exit node, ConstructICFG
searches for a catch handler and processes finally blocks
in the calling method. If C and X are the numbers of
call sites and the number of exceptional-exit nodes, re-
spectively, in a method, the cost of processing a method
is O(C ∗ X ∗ (H + F)), where H and F are the number
of catch handlers and finally blocks, respectively, that
enclose a call site. Therefore, the cost of ICFG construc-
tion is O(M2 ∗ C ∗ X ∗ (H + F)). In practice, (H + F)
is a small constant. Moreover, X can also be bound by a
constant, by using an approach to ICFG construction that
uses a threshold value for distinct exception types. Such
an approach distinguishes exception types until the number
of exception types exceeds the threshold; once the number
exceeds the threshold, the approach summarizes the excep-
tion types using a single exceptional-exit node. Our future
work will investigate such approaches to constructing the
ICFG. ConstructICFG processes a polymorphic call site by
creating a distinct call edge for each method that can be
called (statically) through subtyping; therefore, the cost of
creating call and return edges is O(C ∗M).

B. Control-Dependence Analysis

In Section III-D, we discussed that exception-handling
constructs affect the control-dependence relations by caus-
ing potentially non-returning call sites (PNRCs), and ne-
cessitate the computation of interprocedural control depen-
dence.

Interprocedural control dependence is defined by apply-
ing the traditional definition of control dependence [5], [29]
to an interprocedural inlined flow graph [8]. An interpro-
cedural inlined flow graph (IIFG) of a program P contains,
for each method, a copy of the CFG of the method for
each context in which the method appears in P . As in an
ICFG, call, return, and exceptional-return edges connect
the CFGs in an IIFG; however, unlike an ICFG, at each
call site, a distinct copy of the CFG of the called method
is inlined. Thus, an IIFG can be exponential in the size of
a program, and is infinite for recursive programs.

Defining interprocedural control dependence using an
IIFG causes the control-dependence relation to provide a
closer approximation to semantic dependences [8]. Such
a definition of control dependence distinguishes each con-
text in which a method can be called, and computes node-
based interprocedural control dependences: distinct control
dependences for each context of execution of a statement.
However, computing node-based control dependences may
not be practical because of the exponential size of an IIFG.
An alternative approach is to ignore the context-based

distinctions, and compute statement-based interprocedural
control dependences: control dependences that exist in at
least one context of execution of a statement. Statement-
based control dependences are not as precise as node-based
control dependences because the computation summarizes
the control dependences that exist in different contexts;
however, statement-based control dependences preserve the
desirable property of approximating semantic dependences
[8].

The interprocedural control-dependence algorithm com-
putes statement-based control dependences without con-
structing an IIFG. The algorithm proceeds in two phases:
Phase 1 identifies PNRCs that are caused by throw state-
ments and halt statements, and uses this information to
compute partial control dependences; Phase 2 uses partial
control dependences to compute statement-based interpro-
cedural control dependences.

B.1 Computation of partial control dependences

The first step of Phase 1 identifies call sites that are
PNRCs. To identify PNRCs, the first step computes, for
each call site, the set of nodes to which control can return
following the call site. A call site, where control returns
to only the associated return node, is definitely returning,
and has no effect on control dependences. A call site, where
control can return to nodes other than the corresponding
return node, is a PNRC, and that call site affects the con-
trol dependences of statements that follow the call site. For
example, the set of nodes to which control can return fol-
lowing the call at node 17a includes nodes 17b, 22, and
ex-exit (IA); that call site, therefore, is a PNRC.

The PNRC-identification algorithm [38] uses a call multi-
graph to propagate iteratively information about exception
types and halt statements from called methods to their
callers. At each call site, using the information propagated
from the called method, the algorithm computes the po-
tential return sites. If a halt statement is reachable from
the called method, the algorithm adds a super-exit node
(explained later in this section) to the set of return sites
for the call site.

The call-multigraph-based PNRC algorithm is flow-
insensitive, and therefore, can suffer from imprecision in
the presence of statically unreachable code. A more pre-
cise version of the algorithm, which is based on the ICFG,
identifies and removes statically unreachable code before
performing the PNRC analysis. In practice, however, we
do not expect the imprecision caused by statically unreach-
able code to be significant.

After computing the set of return sites for each call site,
Phase 1 of the control-dependence computation constructs
an augmented control-flow graph that summarizes the ef-
fects of external control dependences on statements in a
method. An augmented control-flow graph (ACFG) for a
method M is a control-flow graph, augmented with place-
holder nodes that represent predicates in other methods
on which statements in M are control dependent. For
each PNRC in M , the ACFG contains a unique condi-
tional node, return predicate, that acts as a placeholder

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 15

27

18, 19, 20

23

26

24

RP17b

super exit

25

control flow

exceptional
exit(IA)

exceptional exceptional
exit(ZV)

exceptional
exit(IS)

28:ZV

exit(SNA)

control dependence

15

16 17a exceptional
exit(ZV)

22:S

16

RP21b
23 24

25 26 27 exit

18, 19, 20

21a

exceptional
exit(IS)

exit(SNA)

exceptional
exit(IA)

28:ZV 21b

vend

vend

17a

15

21b

21a

17b

exit

17b

exceptional

TF

TF

IA
22

17b

22:S

SNA
IS

21b 28

ZV

T

T T
F

TT

T

T
T

T T
F F

SNAIS

Fig. 10. The augmented control-flow graph for method vend() (left), and the augmented control-dependence graph for method vend()
(right).

TABLE IV

Intraprocedural control dependences for vend() computed using the CFG, and partial control dependences for the same

method computed using the ACFG.

Control Control Control Control
dependent on dependent on dependent on dependent on

Node (in CFG) (in ACFG) Node (in CFG) (in ACFG)
15 (entry,‘T’) (entry,‘T’) 23 undefined (RP17b,‘22’)
16 (15,‘T’) (15,‘T’) 24 undefined (RP17b,‘22’)
17a (15,‘F’) (15,‘F’) 25 (24,‘T’) (24,‘T’)
17b (15,‘F’) (RP17b,‘17b’) 26 (24,‘F’) (24,‘F’)

18, 19, 20 (15,‘F’) (RP17b,‘17b’) 27 (24,‘F’) (24,‘F’)
21a (15,‘F’) (RP17b,‘17b’) 28 undefined (RP21b,‘28’)
21b (15,‘F’) (RP21b,‘21b’) exit (15,‘F’)(24,‘T’) (RP17b,‘17b’)(24,‘T’)
22 undefined (RP17b,‘22’)

for the predicates on which return from the called method
is control dependent. A return-predicate node has an edge
(labeled with the target of the edge) to each node that is
a potential return site for the corresponding PNRC. An
ACFG also contains a unique node, super exit, that repre-
sents all exits from M .

Figure 10 shows the ACFG for method vend(). The
ACFG contains two return-predicate nodes, RP17b and
RP21b, because the call sites in statements 17 and 21 are
PNRCs. Node RP17b has three outgoing edges, one to
each node that appears in the set of return sites for call
node 17a; the edge to the exceptional-exit node is labeled
by the type of that exceptional-exit node. Similarly, node
RP21b has an outgoing edge to each node that appears in
the set of return sites for call node 21a.

Partial control dependences are the intraprocedural con-

trol dependences that are computed by applying a tra-
ditional technique for computing control dependences [5],
[30], [31] to the ACFG. The partial control dependences
for nodes that are control dependent on predicates in
called methods contain a return-predicate node. For ex-
ample, the partial control dependences of node 17b include
return-predicate node RP17b because node 17b is control
dependent on the predicate in statement 39 of method
dispense().

Table IV lists the intraprocedural control dependences
and the partial control dependences for the nodes in the
CFG for vend(). The comparison shows that the control
dependences computed using the ACFG differ from those
computed using the CFG for eleven nodes, whereas they are
the same for the remaining six nodes. Those six nodes—
nodes 15, 16, 17a, 25, 26, and 27—are not reachable from

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 16

the PNRCs in vend(), and therefore, are unaffected by
the PNRCs. The conditions that control the execution of
the corresponding statements do not change because of the
PNRCs.

An augmented control-dependence graph for a procedure
represents the partial control dependences for that proce-
dure. An augmented control-dependence graph (ACDG),
like the CDG, contains a node for each predicate and state-
ment in a procedure, and an edge from predicate p to
statement s if the partial control dependences for s include
predicate p. A unique entry node represents the control de-
pendences of those statements that are reached when the
procedure is called. If p represents a return predicate and
s is control dependent on (p, ‘L’), the ACDG contains an
edge from the node corresponding to ‘L’ to s; thus, the
ACDG contains no return-predicate nodes.

The graph on the right in Figure 10 shows the ACDG for
method vend(). Each node that is control dependent on
(p, ‘L’)—where p represents a return predicate—is made
control dependent on the node corresponding to ‘L’ in the
ACDG. For example, Table IV shows that node 21a is
control dependent on (RP17b, ‘17b’). Therefore, in the
ACDG, there exists an edge from node 17b to node 21a.
As the graph illustrates, the ACDG can have disconnected
components. The disconnected components represent the
effects of external control dependences: Each root node of
a component represents a point where control enters a pro-
cedure, and where external predicates control those state-
ments that are reached definitely from that entry point but
may not be reached otherwise. The unique entry node, and
other nodes, such as catch nodes and return nodes for PN-
RCs, represent such program points, and therefore, appear
as root nodes in the ACDG. These nodes serve as place-
holders for external predicates.

Partial control dependences have several useful applica-
tions: they can be used for computing slices [25], for com-
puting procedure-level control dependences, and for com-
puting interprocedural control dependences [8].

B.2 Computation of interprocedural control dependences

Partial control dependences contain correct control de-
pendences for all nodes that are control dependent on non-
placeholder nodes. However, to compute statement-based
interprocedural control dependences, the partial control
dependences that contain placeholder nodes—representing
entry or return predicates—must be adjusted. Phase 2 of
the control-dependence computation performs this adjust-
ment, and identifies for each node, the predicate nodes on
which that node is control dependent.

To compute interprocedural control dependences, Phase
2 constructs an interprocedural representation of the pro-
gram by connecting the ACDGs using call, return, and
exceptional-return edges. Figure 11 displays the graph con-
structed during Phase 2 of the control-dependence com-
putation. The control-dependence computation constructs
the graph, and traverses it once for each node that is con-
trol dependent on a placeholder. For each such node, the
computation traverses the graph backwards along all paths,

starting at the node, and identifies the closest predicates
that are reachable from the node; that node is control de-
pendent on those predicates. To identify such predicates,
the traversal along a path stops when it reaches a control-
dependence edge whose source is a non-placeholder; Figure
11 shows such edges with a different arrowhead to distin-
guish them from control-dependence edges whose sources
are placeholders.

For example, to identify the control dependences of node
20, the computation traverses backwards in the graph,
starting at node 20. On reaching the control-dependence
edge (39, exit), whose source is a non-placeholder, the com-
putation stops, and thus, identifies node 20 as control de-
pendent on (39, ‘F’).

The control-dependence computation processes a throw
node with multiple control-dependence successors like a
predicate. Thus, for example, traversing backwards from
node 23, the computation reaches node 40 along the edges
labeled ‘IS’ and ‘SNA’. The computation, therefore, identi-
fies (40, ‘IS’) and (40, ‘SNA’) as the conditions that control
node 23.

In some cases, the closest predicate that is reachable from
a node may not be the one on which the node is control de-
pendent. This occurs if, while traversing from a node n, the
algorithm reaches a predicate node p along outgoing edges
whose labels constitute the complementary set.9 In such
cases, n is not control dependent on p because, irrespective
of the decision made at p, n is definitely reached. There-
fore, to identify correct control dependences, the traversal
must continue from p. For example, while processing node
50a, the computation reaches node 27 along edges that are
labeled ‘IS’ and ‘SNA’; these two edges constitute the com-
plementary set of labels for that predicate. Therefore, the
traversal must continue from node 27, and identify (24, ‘F’)
as the condition that controls node 50a.

Figure 12 presents an overview of ComputeInterCD, the
algorithm that computes statement-based interprocedural
control dependences; additional details of the algorithm,
along with a proof of its correctness, can be found in Ref-
erence [38]. ComputeInterCD takes three inputs: (1) the
ACDGs for the methods in a program, (2) the list of nodes
that are control dependent on return predicates (CDRP),
and (3) the list of nodes that are control dependent on en-
try predicates (CDEP). The algorithm initializes ICDG by
connecting the ACDGs using call, return, and exceptional-
return edges (line 1), and then traverses ICDG, starting
at each node that is control dependent on a placeholder.
The algorithm processes CDRP and CDEP nodes in sep-
arate passes because the traversal of the graph differs for
the two types of nodes.

The algorithm first processes CDRP nodes (lines 2–19).
For each such node M , the algorithm traverses ICDG back-
wards starting at M to identify the closest predicates that
are reachable from M (line 3). If during the traversal the
algorithm reaches an entry node N (line 4), the algorithm

9The complementary set of labels for a predicate node is the set of
labels associated with outgoing edges from that node in the CFG. For
example, {‘IS’, ‘SNA’} is the complementary set of labels for node 27.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 17

23

exceptional
exit(ZV)

exceptional
exit(IA)

22:S

24

25

17b

2726

18, 19, 20

21a

exceptional
exit(IS)

exceptional
exit(SNA)

exceptional
exit(IA)

exit

1, 2, 3, 4 exit

12, 13, 14

28:ZV

exit

54(IA)

55, 56 49

50b

50a

48(S)

57(ZV)

58

53a

53b

52

51(IC)

control dependence on non-placeholder

21b

control dependence on placeholder

interprocedural normal control flow

interprocedural exceptional control flow

vend

exceptional
exit(SNA)

exceptional
exit(IS)

exit(ZV)
exceptional17a16

15

exit

44

10

returnCoins

insert

11

exit

exit(IC)
exceptional

8, 97

65

47b

47a

45b

45a

46b

46a

4342b42a

main

exit

Vending

41

39

40

37

38

34, 3536

31, 3233

29 30

dispense

Machine

T
T

T

TF

TF
F

T

F

FT

T

T T
F

TT

T

T
T

T T
F F

SNAIS

TT

T
TT

T

I
V

R

T

T

F

F

TT

T T T

T

T

T

T

F

F

T T
F

T

SNA

IS

IA

Fig. 11. The graph for the vending-machine program used for computing interprocedural control dependences: the ACDGs for the methods
are connected using call, return, and exceptional-return edges.

continues to traverse backwards along those call edges in-
cident on N that represent valid call–return sequences at
that point (line 5). If the algorithm reaches a predicate
node P along an edge labeled ‘L’ (line 7), the algorithm
checks whether P has been reached along edges whose la-
bels constitute a complementary set of labels for P . If
this is not the case (line 8), the algorithm adds (P , ‘L’) to
the control dependences for node M , and terminates the
traversal of ICDG along that path (line 9). If, on the other
hand, P has been reached along edges that constitute a
complementary set of labels for P , the algorithm removes
from CD(M) conditions that involve P because predicate
P does not control the execution of M (line 11); the algo-
rithm also continues to traverse ICDG starting at P (line
12). Finally, if during the traversal the algorithm reaches
a node P such that the control dependences of P have
been resolved—that is, CD(P) includes no placeholders—
the algorithm adds CD(P) to CD(M) and terminates the
traversal along that path. For example, while processing

node 10, the algorithm reaches node 50a, whose control
dependences were resolved previously. Therefore, the al-
gorithm adds (24, ‘F’)—the control dependences of node
50a—to the control dependences of node 10, and does not
traverse ICDG further along that path.

After processing all CDRP nodes, the algorithm pro-
cesses CDEP nodes (lines 20–29). The algorithm proceeds
in a similar manner. For each node M that is control
dependent on an entry predicate, the algorithm traverses
ICDG backwards If, during the traversal, the algorithm
reaches a node whose control dependences have already
been resolved (line 25), the algorithm adds that node’s con-
trol dependences to M ’s control dependences (line 26). If,
during the traversal, the algorithm reaches a predicate node
P along an edge labeled ‘L’ (line 22), the algorithm adds
(P , ‘L’) to the set of control dependences for M (line 23).
For example, while traversing backwards from node 29, the
algorithm reaches predicate node 15, and adds (15, ‘F’) to
the set of control dependences for node 29. On reaching

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 18

algorithm ComputeInterCD

input ACDG : ACDG of each procedure P in program P
CDEP : nodes whose partial CD includes an entry pred.
CDRP : nodes whose partial CD includes a return pred.

output interCD : interprocedural control dependences for P
declare ICDG : graph constructed by connecting the ACDGs using

call, return, and exceptional-return edges
CD(N) : control dependences of node N

begin ComputeInterCD
1. initialize ICDG by connecting ACDGs at call sites

/* Pass 1: resolve control dependences of CDRP nodes */
2. foreach node M in CDRP
3. walk ICDG starting at M
4. if an entry node is reached
5. walk ICDG along relevant call edges
6. endif
7. if a predicate node P is reached (along edge labeled ‘L’)
8. if P is not reached along complementary labels
9. add (P , ‘L’) to CD(M)

10. else
11. remove conditions involving P from CD(M)
12. traverse ICDG starting at P
13. endif
14. else
15. if a node P is reached such that CD(P) includes no

placeholders
16. add CD(P) to CD(M)
17. endif
18. endif
19. endfor

/* Pass 2: resolve control dependences of CDEP nodes */
20. foreach node M in CDEP
21. traverse ICDG starting at M
22. if a predicate node P is reached (along edge labeled ‘L’)
23. add (P , ‘L’) to CD(M)
24. else
25. if a node P is reached such that CD(P) includes no

placeholders
26. add CD(P) to CD(M)
27. endif
28. endif
29. endfor
end ComputeInterCD

Fig. 12. Overview of the algorithm for computing interprocedural
control dependences.

a predicate node, the algorithm does not test for and re-
solve complementary set of labels, which conforms to our
definition of interprocedural control dependence [8].

Table V lists the interprocedural control dependences for
nodes in the CFG of method vend(). As the table illus-
trates, for each node whose partial control dependences
include a placeholder (Table IV), the placeholders are re-
placed with the actual predicates on which that node is
control dependent.

B.3 Complexity of control-dependence analysis

Phase 1 of the control-dependence analysis identifies PN-
RCs and computes partial control dependences. Given
an ICFG, the PNRC analysis requires a traversal of the
ICFG; therefore, the cost of the PNRC analysis is linear
in the size of the ICFG. To compute partial control depen-
dences, Phase 1 applies an existing technique for control-
dependence computation [30], [31], [5], [39] to the ACFG of
each method; the costs of these techniques vary from linear
[30], [39] to quadratic [31], [5] in the size of the graph to
which they are applied.

Phase 2 of the control-dependence analysis uses the al-

TABLE V

Interprocedural control dependences for vend().

Control Control
Node dependent on Node dependent on

15 (44,‘V’) 23 (40,‘SNA’)(40,‘IS’)
16 (15,‘T’) 24 (40,‘SNA’)(40,‘IS’)
17a (15,‘F’) 25 (24,‘T’)
17b (39,‘F’) 26 (24,‘F’)

18, 19, 20 (39,‘F’) 27 (24,‘F’)
21a (39,‘F’) 28 (10,‘T’)
21b (10,‘F’) exit (39,‘F’)(24,‘T’)
22 (40,‘SNA’)(40,‘IS’)

gorithm ComputeInterCD, which traverses ICDG once for
each node that is control dependent on a placeholder.
Therefore, the worst-case complexity of ComputeInterCD
is O(N ∗ (N + E)), where N and E are the number of
nodes and edges, respectively, in ICDG. In practice, how-
ever, we expect the algorithm to visit, during a traversal,
only a fraction of the nodes and edges in ICDG , and thus,
exhibit an almost linear (in N) behavior. The algorithm
also incurs expense in processing CD(M). This expense
can be reduced by storing CD(M), which is a set of con-
ditions of the form (N , ‘L’), using a hash table, with N as
the key.

B.4 Effects of exceptions on partial control dependences

To determine the extent to which the presence of
exception-handling constructs affects control dependences,
we conducted a preliminary empirical study. The goal of
the study was to examine how the presence of exception-
handling constructs causes partial control dependences to
differ from intraprocedural control dependences. For each
subject, using JABA, we constructed the CFGs and the
ACFGs for the methods in that subject. To factor out the
effects of halt statements on control dependences, we re-
placed each halt statement10 with a no-op. We then used
the analysis tools from Aristotle Analysis System to con-
struct two CDGs for each method, one using the CFG
for that method and the other using the ACFG for that
method. Finally, for each node in the CFG (excluding non-
statement nodes such as entry and exit), we determined
whether that node had different control dependences in the
two CDGs.

Figure 13 presents the results of the study. It shows, for
each subject, the percentage of nodes that have the same
partial and intraprocedural control dependences, and those
that have different partial and intraprocedural control de-
pendences. The number at the top of each bar represents
the number of nodes in the CFGs of the corresponding sub-
ject. The figure illustrates that the control dependences of
a significant number of the nodes were affected. On aver-
age, the control dependences of over 41% of the nodes were
affected by the presence of exception-handling constructs.
The percentage of affected nodes ranged from 5.0%, for
jflex, to 57.2%, for swing-api.

These results are preliminary in that they do not in-
dicate the actual differences in the control dependences;

10The library method System.exit() is the halt statement in Java.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 19

Nodes with same
partial and
intraprocedural
control dependences

Nodes with different
partial and
intraprocedural
control dependences

80

28
73

8

10
33

7

100
41

08
5

11
91

7

26
65

3

45
76

24
23

75
46

10
98

60

44
42

4

13
50

4

61
49

96
56

26
85

6

24
41

88

60

jfle
x

de
bu

g

40

20

0 0

20

40

60

80

100

jab
a

jed
itjar jle

x
joi

e

sa
ble

cc

sw
ing

-a
pijas

jav
ad

oc

jav
as

im jb

jdk
-a

pi
jav

ac

jav
ac

up

jas
m

in
an

tlr

20
65

54
35

14
80

8

Fig. 13. Effects of exception-handling constructs on partial control dependences.

further empirical studies are required to determine such
differences. Further experimentation is also required to
study the effects of the differences in control dependences
on other analysis techniques, such as slicing, that use con-
trol dependences.

V. Other Analyses and Applications

Control-flow and control-dependence analyses are use-
ful for software-engineering and maintenance tasks, such
as slicing and structural testing. The representations and
analyses described in the previous section can be applied
to perform slicing and testing of programs that contain
exception-handling constructs.

A. Program Slicing

Program slicing is a technique for identifying transitive
control and data dependences in a program. A backward
slice for a program P , computed with respect to a slicing
criterion < s, V >, where s is a program point and V is
a set of program variables referenced at s, includes state-
ments in P that may influence the values of the variables
in V at s [27]. A slice can also be computed in the forward
direction; a forward slice includes those statements in P
that are influenced by the values of the variables in V at s.

There are two alternative approaches to computing slices
that either propagate solutions of data-flow equations us-
ing a control-flow representation [27], [25] or perform graph
reachability on dependence graphs [26]. The slicing algo-
rithms presented in References [27] and [26] make the lim-
iting assumption that, at each call site, control definitely
returns from the called procedure, and therefore, consider
only intraprocedural control dependences while computing
the slices. When applied to programs that contain control
structures, such as halt statements and exception-handling
constructs, those techniques fail to include those state-
ments in the slices that are related to the slicing criterion
through the effects of the control structures on control de-
pendence. Reference [25] extends the slicing algorithm of

Reference [27] to use partial control dependences during the
computation of slices; that extension correctly accounts for
the effects of halt statements on control dependence while
computing the slices. Using our control-flow representa-
tions, and with minor modifications, that extension can be
adapted to compute slices that also account for the effects
of exception-handling constructs. In recent work [20], we
have also extended the alternative slicing technique—one
that uses dependence graphs to compute slices—to account
for the effects of exception-handling constructs on control
dependence.

B. Structural Testing

Structural testing techniques [40] develop test cases to
cover various structural elements of a program. Control-
flow-based structural testing criteria use the flow of control
in a program to guide the selection test cases or to assess
the adequacy of a test suite. For example, in branch testing
[41], test cases are developed by considering inputs that
cause certain branches in the program under test to be
executed. Similarly, in path testing [42], [43], test cases are
developed to execute certain paths in the program. Data-
flow-based testing criteria use the data-flow relationships to
guide the selection of test cases or to assess the adequacy
of a test suite [44], [28], [45], [46]. For example the all-uses
criterion [46] requires that each definition-use pair in the
program under test be covered by test cases.

Exception-handling constructs introduce new structural
elements, such as exceptional control-flow paths, that
should be considered for coverage by structural testing
techniques. Existing tools for developing structural test
cases for Java programs, such as JavaScope,11 provide sim-
ple coverage criteria, such as the coverage of throw state-
ments and catch handlers. Such criteria require the cov-
erage of statements that raise exceptions and those that

11Sun Microsystems has discontinued the development and support
of JavaScope; previously, documentation on JavaScope was available
at www.sun.com/suntest/products/JavaScope.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 20

catch exceptions, and are similar in nature to the tradi-
tional criteria that require the coverage of statements or
branches. Previous work has shown that criteria, such as
branch testing, have weak fault-detection capabilities [47],
[48]. We therefore expect the all-throw and all-catch cri-
teria to also be weak in detecting faults. The criteria do
not require the testing of various exceptional control-flow
paths; they do not consider the different types of excep-
tions that can be raised at a statement, or the complex
control and data interactions, both within and across mod-
ules, that can result in the presence of exception-handling
constructs. There are simple types of faults, such as a miss-
ing handler, that may not be detected by these criteria. For
example, consider a faulty version of the vending-machine
program that is missing the catch handler in line 54. That
handler catches exceptions of type IA that are raised by the
throw statement in line 40. To detect this fault, a test case
must cause that throw statement to raise an exception of
type IA. However, the all-throw criterion simply requires
that the throw statement be covered, and does not con-
sider the types of exceptions. Therefore, a test case might
cover that statement but raise an exception of type other
than IA; a test suite developed in such a manner satisfies
the all-throw criterion but fails to detect the fault.

In recent work [49], we have developed a family of ex-
ception testing criteria to adequately test the behavior of
exception-handling constructs. These criteria subsume12

the all-throw and all-catch criteria, and test exception-
handling constructs with varying degrees of thoroughness.
For example, some of the criteria examine activations and
deactivations of exception objects, and require the coverage
of various paths between the activations and deactivations.
It is possible that, in practice, exception handling may be
used in ways such that the coverage of throw statements
and catch handler suffices for testing most of the interac-
tions caused by exception-handling constructs. However,
in some cases, it is beneficial to have a hierarchy of test-
ing criteria that offer the testers flexibility in the level of
testing that they perform. Furthermore, by exploring the
different types of interactions caused by exception-handling
constructs, the criteria provide a better understanding of
the types of interactions that are significant. Such insight
is valuable not only to provide automated support for test-
case generation, but also to verify the interactions infor-
mally through inspection. Our current work includes the-
oretical and empirical evaluations of the exception testing
criteria.

VI. Safety, Precision, and Practical Utility of

the Techniques

Program-analysis techniques often deal with intractable
problems whose correct solutions either have a prohibitive
expense associated with their computation or are un-
computable. Faced with such impediments, different ap-
proaches to performing the analyses compute solutions that
are approximations to the true solutions. Such approxima-

12A criterion subsumes another if any test suite that satisfies the
first criterion also satisfies the second criterion.

tions lead to an evaluation of the approaches in terms of
the relative safety and precision of the solutions computed
by the approaches. A safe solution is one that omits no
necessary element from the solution whereas a precise so-
lution is one that includes no spurious element in the so-
lution. Although increase in safety and precision increase
the usefulness of a solution, in practice, the benefits of a
safer and more precise analysis must be weighed against the
cost of performing the additional analysis. Both safety and
precision involve tradeoffs with the efficiency of the tech-
nique, and different approaches sacrifice either, depending
on the level of precision and safety that is desired in the
application of the solutions. For certain applications, such
as compiler optimizations, safety is required, to avoid in-
valid program transformations, whereas, for other applica-
tions, such as reverse engineering, safety is desirable but
not strictly necessary [50].

Our approach to the analysis of exception-handling con-
structs suffers both unsafety and imprecision. Our ap-
proach is unsafe because it ignores the control flow caused
by implicit exceptions. Implicit exceptions are raised either
in library routines or by the runtime environment. One
approach to analyze implicit exceptions that are raised in
library routines is to create summarized CFGs for those
library methods that propagate exceptions, and add them
to the ICFG. The summarized CFG for a library method
would contain nodes for only the entry, the exit, and the
exceptional exits.

To analyze implicit exceptions that are raised by the
runtime environment, however, representing each potential
control flow with explicit control-flow edges may cause the
control-flow representation to become too unwieldy to be
useful. Moreover, considering the effects of such implicit
exceptions on program-analysis techniques may cause the
techniques to generate solutions that are too large to be
useful. For example, if a statement s can raise runtime ex-
ceptions, a statement that follows s is control dependent on
s because s determines whether that statement executes.
If statements that raise runtime exceptions occur very fre-
quently, their effects would cause the control-dependence
relation to be too cumbersome to be useful. On the other
hand, ignoring such implicit exceptions, causes the control-
dependence analysis to miss dependences, some of which
may be significant.

In future work, we will investigate how the analysis of im-
plicit exceptions affects software-engineering and software-
maintenance tasks, and practical utility tools that support
those tasks. Depending on the particular application and
the desired cost of analysis, we may be willing to accept
the unsafety, or we may be able to summarize implicit ex-
ceptions and consider their effects on analysis techniques
differently than the effects of explicit exceptions.

The four type-inference approaches that we described in
Section IV-A.3 offer different levels of precision and safety
in the information that they generate. The most precise of
the four approaches is the one that combines flow-sensitive
and flow-insensitive analyses, but that approach can still
include unnecessary types in the type-inference solution.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 21

The approaches that use the flow-insensitive analysis can
omit potential exception types from the type-inference so-
lution, and therefore, are unsafe. The unsafety and impre-
cision of these approaches causes missing paths and infeasi-
ble paths, respectively, in the control-flow representations.
Such effects on control-flow representations affect applica-
tions that use the representations. For example, the pres-
ence of infeasible paths causes test requirements that are
generated using a structural testing criteria to be satisfied
by no input to the program. Missing paths causes test re-
quirementsto fail to test certain relationships in a program,
and therefore, inadequately test the program.

VII. Related Work

Choi and colleagues [12] describe an intraprocedural
control-flow representation called the factored control-flow
graph (FCFG) to analyze efficiently programs written in
languages, such as Java, that may have frequently occur-
ring exceptional control flow. The FCFG represents ex-
ceptional control flow caused by both explicit and implicit
exceptions. For explicit exceptions, the approach creates
edges that are similar to the edges created in our approach.
For implicit exceptions, however, the approach does not
create edges from each potentially exception-throwing in-
struction (PEI) because such instructions occur very fre-
quently. Instead, the approach merges several such instruc-
tions in the same basic block, and creates factored control-
flow edges from the basic block to catch handlers to sum-
marize the exceptional control flow for that basic block.
The approach creates one factored edge for each type of
implicit exception that can be raised by the statements in
a basic block. The approach derives the target of the im-
plicit exceptional exits from each PEI in a basic block on
demand. Choi and colleagues also describe modifications
to data-flow analysis techniques, such as reaching-definition
and live-variable analysis, that allow the techniques to work
correctly on the FCFG. That work differs from ours in
several ways. First, the work does not model the prop-
agation of exceptions across methods. Although Choi and
colleagues discuss alternative representations for interpro-
cedural control flow, their current tool does not construct
interprocedural representations. Second, the work does not
describe the behavior of, and representations for, finally
blocks. Third, the work does not discuss issues relating to
inferring exception types, and how they affect precision of
the FCFG and the analyses performed on the FCFG. Fi-
nally, the scope of the work is limited to data-flow analysis,
and it does not consider the effects of exceptions on control
dependence, slicing, and structural testing.

Chatterjee and Ryder [13] describe an approach to per-
forming points-to analysis that incorporates exceptional
control flow in languages such as Java. Their approach de-
rives the exceptional control flow during the points-to anal-
ysis, and does not represent it explicitly in an interprocedu-
ral control-flow graph. Their approach does not consider
implicit exceptions. In subsequent work [14], Chatterjee
and Ryder provide an algorithm for computing definition-
use pairs that arise because of exception variables, and

along exceptional control-flow paths. In this work, how-
ever, they ignore the control flow within finally blocks.
Chatterjee and Ryder do not describe representations for
exceptional control flow, and the scope of their work is lim-
ited to points-to and data-flow analysis.

Schaefer and Bundy [16] analyze the flow of exceptions
in Ada programs, and extract information that describes
how exceptions are propagated across modules. They de-
fine several relations that let them specify formally the set
of exceptions propagated by different blocks of code. The
goal of their analysis is to identify potential violations in
the code of application-specific guidelines that govern the
usage of exception handling. Robillard and Murphy [15]
have similar goals for Java programs. They describe a tool
that extracts the flow of exceptions in a Java program, and
generates views of the exception structure. These views
enable a developer to reason about the flow of exceptions
across modules, and identify program points where excep-
tions are caught unintentionally, or where finer-grained ex-
ception handling may be possible. The tool extracts poten-
tial implicit exceptions by examining module interface and
documentation. The techniques described by both Schafer
and Bundy [16] and Robillard and Murphy [15] omit report-
ing several common implicit exceptions because including
them can generate too much information, which adversely
affects the usability of their tools. Their techniques are pri-
marily intended for program understanding and detection
of inconsistencies in coding. Therefore, they do not con-
sider the effects of exceptions on various program-analysis
techniques and testing. Using our control-flow representa-
tions, we can generate information that is similar to the
information generated by their techniques.

Melski and Reps [51] present techniques for interproce-
dural path profiling, and briefly discuss how path profiles
for interprocedural exceptional control flow may be gen-
erated. Their work neither describes representations for
exceptional control flow, nor analyzes the effects of excep-
tional control flow on program-analysis techniques.

Other researchers have addressed the problem of com-
puting accurate slices for programs that contain arbitrary
intraprocedural control flow [21], [7], [22]. Such control flow
is caused by intraprocedural goto statements and state-
ments such as break and continue. Because statements,
such as break and continue, neither control other state-
ments nor use data values, they are never included in a
slice. References [21], [7], [22] present solutions in which
the statements are included in the slices, when necessary.
The same problem can occur in the presence of exception-
handling constructs: statements, such as throw and catch
can be excluded from slices. Our slicing technique for
exception-handling constructs [20] ensures that throw and
catch statements are included in the slices, when neces-
sary.

Ryder and colleagues [11] conducted a study of the us-
age patterns of exception-handling constructs in Java pro-
grams. They studied a suite of thirty-one Java programs,
which contained from two to 2,096 methods. They ex-
amined 10,161 methods, and found that, on average, 16%

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 22

of the methods contained either a throw statement or a
try statement. Our subjects contain four of the subjects
that were included in their study. For those four subjects,
our results are consistent with theirs. Their study thus of-
fers further evidence to support our belief that exception-
handling constructs are used frequently in Java programs.

VIII. Conclusions

We have discussed the effects of exception-handling con-
structs on analysis techniques such as control flow, data
flow, and control dependence. We have presented tech-
niques to create intraprocedural and interprocedural rep-
resentations for Java programs that contain exception-
handling constructs. These representations are useful for
performing other analyses and constructing other represen-
tations. The representations show explicitly the exception
types that can be raised at throw statements, and excep-
tion types that are propagated across methods. There-
fore, the representations can provide a valuable aid in un-
derstanding the behavior of exception-handling constructs.
We have also presented an algorithm for computing con-
trol dependences in the presence of exception-handling con-
structs.

We have presented the results of three empirical studies
that we performed using JABA, our analysis tool for Java
programs. In the first empirical study, we determined the
frequency with which exception-handling constructs occur
in Java programs. The results from that study indicate
that, in practice, exception-handling constructs can occur
frequently: 8.1% of the 30,400 methods that we examined
contained either a throw statement or a try statement (Ta-
ble I).

In the second empirical study, we evaluated the need for,
and approaches to performing, type inferencing for deter-
mining exception types at throw statements. Based on the
results from these studies, we made several observations:
• Type inferencing to determine exception types at throw
statements may not be required for a majority of the throw
statements. In over 97% of the throw statements in our
subjects, the exception object is instantiated at the throw
statement (Table II).
• A throw statement that does not instantiate the excep-
tion object is more likely to raise an exception that is refer-
enced by a variable than an exception that is returned by a
method call. In our subjects, 80% of the throw statements
that do not mention a new-instance expression mention a
variable (Table II).
• The conservative approximation for determining excep-
tion types worked well for over half of the throw statements
for which it was used, but generated very imprecise results
for a quarter of the throw statements (Table III).
• In cases where a throw statement mentions a variable,
the exception object is rarely instantiated in the method
that contains the statement. Therefore, the intraprocedu-
ral flow-sensitive type-inference analysis failed to provide
any significant improvement in the precision of the type-
inference information (Table III).

These observations provide insight into the usage pat-

terns of exception-handling constructs in Java programs.
They can help guide the development of a practical ap-
proach to analyze exception-handling constructs, and im-
prove the techniques that we have developed.

In the third empirical study, we evaluated the effects of
exception-handling constructs on control-dependence anal-
ysis. The results of that study indicate that the control de-
pendences of a significant number of statements are affected
by the presence of exception-handling constructs (Figure
13). Control dependences computed for such statements by
traditional techniques can omit necessary dependences and
include unnecessary dependences. Incorrect control depen-
dences affect the computation of program slices. Further
experimentation with control-dependence computation and
program slicing will reveal the extent to which the presence
of exception-handling constructs affect these techniques.

We have discussed how our representations and analyses
can be used for other applications such as program slic-
ing and structural testing. We have also evaluated our
approach for analyzing exception-handling constructs in
terms of the safety and the precision of the approach. Our
approach ignores the exceptional control flow caused by
implicit exceptions.

In future work, we will investigate the effects of im-
plicit exceptions on analysis techniques, and ways to per-
form the analysis of implicit exceptions. We will evaluate
empirically the efficiency of our techniques for construct-
ing control-flow representations for exception-handling con-
structs. We will also evaluate empirically the trade-offs
among alternative representations and among different
type-inference approaches. These experiments, along with
others that combine dynamic analysis with static analy-
sis, would help evolve an approach that incorporates the
best trade-offs in practice. Finally, we will conduct fur-
ther empirical studies to evaluate the effects of exception-
handling constructs on control-dependence computation,
program slicing, and structural testing.

Acknowledgments

This work was supported in part by NSF under NYI
Award CCR-9696157 and ESS Award CCR-9707792 to
Ohio State University. Jim Jones led the design and im-
plementation of JABA, which we used for all empirical
studies reported in this paper. He also helped with the
empirical studies and made many useful suggestions that
improved the presentation of the work. Chaitanya Kode-
boyina contributed to the development of the intraproce-
dural control-flow analysis technique and representation.
Alessandro Orso, Gerald Baumgartner, Donglin Liang, and
Gregg Rothermel made many helpful comments on previ-
ous versions of the paper. The anonymous reviewers pro-
vided useful feedback that improved the presentation of the
work.

References

[1] P. Frankl and E. J. Weyuker, “An applicable family of data flow
testing criteria,” IEEE Trans. on Softw. Eng., vol. 14, no. 10,
pp. 1483–1498, Oct. 1988.

[2] M. J. Harrold and M. L. Soffa, “Selecting data for integration
testing,” IEEE Softw., pp. 58–65, Mar. 1991.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 23

[3] B. Korel, “Automated software test data generation,” IEEE
Trans. on Softw. Eng., vol. 16, no. 8, pp. 870–879, Aug. 1990.

[4] G. Rothermel and M. J. Harrold, “A safe, efficient regression test
selection technique,” ACM Trans. on Softw. Eng.and Meth., vol.
6, no. 2, pp. 173–210, Apr. 1997.

[5] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” ACM Trans. on
Prog. Lang. and Sys., vol. 9, no. 3, pp. 319–349, July 1987.

[6] W. Landi and B. G. Ryder, “A safe approximate algorithm
for interprocedural pointer aliasing,” in Proc. of SIGPLAN ’92
Conf. on Prog. Lang. Design and Implem., June 1992, pp. 235–
248.

[7] H. Agrawal, “On slicing programs with jump statements,” in
Proc. of the ACM SIGPLAN ’94 Conf. on Prog. Lang. Design
and Impl., June 1994, pp. 302–12.

[8] M. J. Harrold, G. Rothermel, and S. Sinha, “Computation of
interprocedural control dependence,” in Proc. of the ACM Int’l.
Symp. on Softw. Testing and Analysis, Mar. 1998, pp. 11–20.

[9] J. Gosling, B. Joy, and G. Steele, The Java Language Specifica-
tion, Addison-Wesley, Reading, MA, 1996.

[10] S. Sinha and M. J. Harrold, “Analysis of programs that contain
exception-handling constructs,” in Proc. of Int’l Conf. on Softw.
Maint., Nov. 1998, pp. 348–357.

[11] B. G. Ryder, D. Smith, U. Kremer, M. Gordon, and N. Shah,
“A static study of Java exceptions using JSEP,” Tech. Rep.
DCS-TR-403, Rutgers University, Nov. 1999.

[12] J.-D. Choi, D. Grove, M. Hind, and V. Sarkar, “Efficient and
precise modeling of exceptions for analysis of Java programs,” in
Proceedings of PASTE ’99 ACM SIGPLAN–SIGSOFT Work-
shop on Program Analysis for Software Tools and Engineering,
September 1999, pp. 21–31.

[13] R. K. Chatterjee, B. G. Ryder, and W. A. Landi, “Complexity
of concrete type-inference in the presence of exceptions,” Lecture
Notes in Computer Science, vol. 1381, pp. 57–74, Apr. 1998.

[14] R Chatterjee and B. G. Ryder, “Data-flow-based testing of
object-oriented libraries,” Tech. Rep. DCS-TR-382, Rutgers
University, Mar. 1999.

[15] M. P. Robillard and G. C. Murphy, “Analyzing exception flow
in Java programs,” in Proc. of ESEC/FSE ’99 Seventh Euro-
pean Softw. Eng. Conf. and Seventh ACM SIGSOFT Symp. on
the Found. of Softw. Eng. September 1999, vol. 1687 of Lecture
Notes in Computer Science, pp. 322–337, Springer-Verlag.

[16] C. F. Schaefer and G. N. Bundy, “Static analysis of exception
handling in Ada,” Software—Practice and Experience, vol. 23,
no. 10, pp. 1157–1174, Oct. 1993.

[17] L. Larsen and M. J. Harrold, “Slicing object-oriented software,”
in Proc. of 18th Int’l Conf. on Softw. Eng., Mar. 1996, pp. 495–
505.

[18] D. Liang and M. J. Harrold, “Slicing objects using system de-
pendence graphs,” in Proc. of Int’l Conf. on Softw. Maint., Nov.
1998, pp. 358–367.

[19] M. J. Harrold and G. Rothermel, “Aristotle: A system for
research on and development of program-analysis-based tools,”
Tech. Rep. OSU-CISRC-3/97-TR17, The Ohio State University,
Mar. 1997.

[20] S. Sinha, M. J. Harrold, and G. Rothermel, “System-
dependence-graph-based slicing of programs with arbitrary in-
terprocedural control flow,” in Proc. of the 21st Int’l Conf. on
Softw. Eng., May 1999, pp. 432–441.

[21] T. Ball and S. Horwitz, “Slicing programs with arbitrary con-
trol flow,” in Proc. of 1st Int’l Workshop on Automated and
Algorithmic Debugging. Nov. 1993, vol. 749 of Lec. Notes in
Computer Science, pp. 206–222, Springer-Verlag.

[22] J-D. Choi and J. Ferrante, “Static slicing in the presence of goto
statements,” ACM Trans. on Prog. Lang. and Sys., vol. 16, no.
4, pp. 1097–1113, July 1994.

[23] D. Kung, N. Suchak, J. Gao, P. Hsia, Y. Toyoshima, and
C. Chen, “On object state testing,” in Proc. of COMPSAC
’94, 1994.

[24] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers, Prin.,
Techn., and Tools, Addison-Wesley Publishing Company, Read-
ing, MA, 1986.

[25] M. J. Harrold and Ning Ci, “Reuse-driven interprocedural slic-
ing,” in Proceedings of the International Conference on Software
Engineering, April 1998.

[26] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing
using dependence graphs,” ACM Trans. on Prog. Lang. and
Sys., vol. 12, no. 1, pp. 26–60, Jan. 1990.

[27] M. Weiser, “Program slicing,” IEEE Trans. on Softw. Eng., vol.
10, no. 4, pp. 352–357, July 1984.

[28] J. W. Laski and B. Korel, “A data flow oriented program testing
strategy,” IEEE Trans. on Softw. Eng., , no. 3, pp. 347–354,
May 1983.

[29] R. Cytron, J. Ferrante, and V. Sarkar, “Compact representa-
tions for control dependence,” in Proceedings of the ACM SIG-
PLAN ’90 Conference on Programming Language Design and
Implementation, June 1990, pp. 337–351.

[30] G. Bilardi and K. Pingali, “A framework for generalized control
dependence,” in Proc. of SIGPLAN’96 Conf. on Prog. Lang.
Design and Implem., May 1996, pp. 291–300.

[31] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K.
Zadeck, “Efficiently computing static single assignment form
and the control dependence graph,” ACM Trans. on Prog. Lang.
and Sys., vol. 13, no. 4, pp. 450–90, Oct. 1991.

[32] J. P. Loyall and S. A. Mathisen, “Using dependence analysis
to support the software maintenance process,” in Proc. of the
Conf. on Softw. Maint., Sept. 1993, pp. 282–91.

[33] S. Sinha and M. J. Harrold, “Control-flow analysis of programs
with exception-handling constructs,” Tech. Rep. OSU-CISRC-
7/98-TR25, The Ohio State University, 1998.

[34] J. Palsberg and M. Schwartzbach, “Object-oriented type infer-
ence,” in Proc. of Object-Oriented Prog. Sys., Lang. and Appl.,
Oct. 1991, pp. 146–161.

[35] J. Plevyak and A. Chien, “Precise concrete type inference for
object-oriented languages,” in Proc. of Object-Oriented Prog.
Sys., Lang. and Appl., Oct. 1994, pp. 324–340.

[36] A. Diwan, J. E. B. Moss, and K. S. McKinley, “Simple and ef-
fective analysis of statically-typed object-oriented programs,” in
Proceedings of the 11th Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications, Oct. 1996,
pp. 292–305.

[37] D. F. Bacon and P. F. Sweeney, “Fast static analysis of C++
virtual function calls,” in Proceedings of the 11th Annual Con-
ference on Object-Oriented Programming Systems, Languages,
and Applications, Oct. 1996, pp. 324–341.

[38] S. Sinha and M. J. Harrold, “Analysis and testing of programs
with exception-handling constructs,” Tech. Rep. GIT-CC-00-
04, College of Computing, Georgia Institute of Technology, Feb.
2000.

[39] K. Pingali and G. Bilardi, “APT: A data structure for optimal
control dependence computation,” in Proc. of the Conf. on Prog.
Lang. Design and Implem., June 1995, pp. 32–46.

[40] S. Ntafos, “A comparison of some structural testing strategies,”
IEEE Transaction on Software Engineering, vol. 14, no. 6, pp.
868–874, June 1988.

[41] J. C. Huang, “An approach to program testing,” ACM Com-
puting Surveys, vol. 7, no. 3, pp. 114–128, Sep. 1975.

[42] W. E. Howden, “Methodology for the generation of program
test data,” IEEE Trans. on Computers, vol. C-24, no. 5, pp.
554–559, May 1975.

[43] T. J. McCabe, “A complexity measure,” IEEE Transaction on
Software Engineering, vol. SE-2, no. 4, pp. 308–320, Dec. 1976.

[44] M. J. Harrold and M. L. Soffa, “Interprocedural data flow test-
ing,” in Proc. of the Third Symp. on Softw. Testing, Analysis,
and Verification, Dec. 1989, pp. 158–167.

[45] S. Ntafos, “On required elements testing,” IEEE Trans. on
Softw. Eng., vol. SE-10, no. 6, pp. 795–803, Nov. 1984.

[46] S. Rapps and E. J. Weyuker, “Selecting software test data using
data flow information,” IEEE Trans. on Softw. Eng., , no. 4,
pp. 367–375, Apr. 1985.

[47] P. G. Frankl and S. N. Weiss, “An experimental comparison of
the effectiveness of branch testing and data flow testing,” IEEE
Transactions on Software Engineering, vol. 19, no. 8, pp. 774–
787, August 1993.

[48] P. G. Frankl and E. J. Weyuker, “Provable improvements on
branch testing,” IEEE Transactions on Software Engineering,
vol. 19, no. 10, pp. 962–975, October 1993.

[49] S. Sinha and M. J. Harrold, “Criteria for testing exception-
handling constructs in Java programs,” in Proc. of the Int’l
Conf. on Softw. Maint., September 1999, pp. 265–274.

[50] G. C. Murphy and D. Notkin, “Lightweight lexical source model
extraction,” ACM Trans. on Prog. Lang. and Sys., vol. 5, no.
3, pp. 262–292, July 1996.

[51] D. Melski and T. Reps, “Interprocedural path profiling,” in
Proceedings of the 8th International Conference on Compiler

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 9, SEPTEMBER 200 24

Construction. March 1999, vol. 1575 of Lecture Notes in Com-
puter Science, pp. 47–62, Springer-Verlag.

Saurabh Sinha received the BA degree in
computer science from Queens College of the
City University of New York, and the MS de-
gree in computer and information science from
the Ohio State University. He is currently a
PhD student in the College of Computing at
Georgia Institute of Technology. His research
interests include program analysis and testing.
To date his research has investigated the effects
of language features that cause early termi-
nation of procedures on program analysis and

testing techniques. He is a member of the ACM and the ACM SIG-
SOFT.

Mary Jean Harrold received the BS and MA
degrees in mathematics from Marshall Univer-
sity and the MS and PhD degrees in computer
science from the University of Pittsburgh. She
is currently an associate professor in the Col-
lege of Computing at Georgia Institute of Tech-
nology. Her research interests include the de-
velopment of efficient techniques and tools that
will automate, or partially automate, develop-
ment, testing, and maintenance tasks. Her re-
search to date has involved program-analysis-

based software engineering, with an emphasis on regression testing,
analysis and testing of imperative and object-oriented software, and
development of software tools. Her recent research has focused on the
investigation of the scalability issues of these techniques, through al-
gorithm development and empirical evaluation. She is a recipient
of the National Science Foundation’s National Young Investigator
Award. Dr. Harrold serves on the editorial board of IEEE Trans-
actions on Software engineering. She is serving as the program chair
for the ACM International Symposium on Software Testing and Anal-
ysis (August 2000) and the program co-chair of the 23rd International
Conference on Software Engineering (May 2001). She is a member of
the Computing Research Association’s Committee on the Status of
Women in Computing, and she directs the committee’s Distributed
Mentor Project. She is a member of the IEEE Computer Society and
the ACM.

