
Slicing Java Programs that Throw and Catch Exceptions

Matthew Allen
matthew@cs.wisc.edu

Susan Horwitz
horwitz@cs.wisc.edu

Computer Sciences Department
University of Wisconsin-Madison

1210 W. Dayton St, Madison, WI 53706 USA

ABSTRACT
Exceptions are the preferred method for error handling in
object-oriented languages like Java. Current program-slicing
algorithms do not correctly deal with exception-handling
constructs, because they do not account for the additional
control and data dependences introduced by exceptions. This
paper extends previous work on program slicing using the
system dependence graph (SDG) to support slicing pro-
grams with exceptions.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.5 [Software Engineering]: Testing and De-
bugging

General Terms
Algorithms, Languages

Keywords
Program slicing, Java exceptions, Program dependence graph

1. INTRODUCTION
Program slicing is an operation introduced by Mark

Weiser [18] that is useful for many applications, including
program understanding, debugging, maintenance, and test-
ing. This paper extends previous work on slicing to permit
correct slicing of Java programs that include try/catch/throw
constructs for throwing and handling exceptions.

A number of different definitions of slices have been pro-
posed. For the purposes of this paper, the slice of a program
from a component S (a statement or predicate) is the set of
components that might affect whether and/or how often S
executes, as well as the components that might affect the
values of the variables used at S. Such slices can be com-
puted efficiently using the system-dependence graph (SDG)
representation of a program [7], in which vertices represent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PEPM’03, June 7, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-667-6/03/0006 ...$5.00.

statements and predicates, and edges represent control and
data dependences (more information on SDGs is provided
in Section 2). Basically, a control-dependence edge m → n
means that vertex m may affect whether and/or how of-
ten vertex n executes, while a data-dependence edge m → n
means that vertex m may set the value of some variable used
at vertex n. Therefore, the slice from a component S repre-
sented by a vertex v includes each component represented by
a vertex w such that there is an interprocedurally-valid path
in the SDG from w to v (i.e., w has a direct or transitive
effect on v’s execution).

An important question is which kinds of vertices w are
considered to affect whether and/or how often a vertex v
executes (thus ensuring that w is in the slice from v due
to the control-dependence edge w → v). Initial work on
slicing considered only a very simple, structured language in
which predicates were the only constructs that affected the
flow of control, and thus only predicates were the sources of
control-dependence edges. Later work [1, 3] extended slicing
to handle programs with jumps (goto, break, return, etc).
Since jumps also affect the flow of control, it made sense to
let jumps (as well as predicates) be the sources of control-
dependence edges. (Note that since a jump does not set
the value of any variable, it cannot be the source of a data-
dependence edge, and thus would not be in the slice from
any component other than itself if it were not the source
of a control-dependence edge. This is clearly not desirable
in most contexts in which slicing is used. For example, if
a statement S fails to execute because a procedure returns
prematurely, and the programmer looks at the slice from S
to try to understand why it did not execute, it is vital for
the return statement to be in that slice.)

Now we are considering how to extend slicing to handle
exceptions. Since a throw statement also affects flow of con-
trol, we feel that it is reasonable to let throw statements (like
predicates and jumps) be the sources of control-dependence
edges, and thus for a throw statement to be in the slice from
a component that only executes if that exception is thrown,
or only executes if that exception is not thrown (just as a
jump statement is in the slice both from a component that
only executes if the jump is taken, and from a component
that only fails to execute if the jump is taken).

To illustrate the goals of slicing programs that include
try/catch/throw, consider the two examples shown in Figure
1. In both examples, method f calls method g, which may
throw Ex1, depending on the value of y.

First we examine the issues of control dependence dis-
cussed above. In Figure 1(a), the print statement at line 8

44

only executes if Ex1 is thrown. That exception is thrown
at line 14, in method g. Therefore, the slice from the print
statement at line 8 must include the call to g at line 4, the
throw of Ex1 at line 14, and the if statement at line 13 on
which the throw is predicated. The correct slice is indicated
by plus signs in the margin in Figure 1(a).

The same components must be included in the slice from
a statement that executes only if Ex1 is not thrown; e.g.,
the print statement at line 5 in Figure 1(a). Therefore, the
slice from that print statement must include the call to g as
well as the throw statement and the if statement in g. The
correct slice from the print statement at line 5 is indicated
in Figure 1(a) using stars.

Next we examine how new kinds of data dependences can
be introduced by exceptions. After a method call, a variable
may have different values, depending on whether the method
returned normally or because an exception was thrown. This
must be reflected in a slice that includes a use of any such
variable.

Consider slicing back from the statement on line 8 in Fig-
ure 1(b), which prints the value of x. This statement is only
executed when Ex1 is thrown at line 15; in that case, line 16
(x = 1) is not executed, and so only the definition of x at
line 13 can reach the print statement. Conversely, the slice
from the print of x at line 5 should only include the assign-
ment to x at line 16, not the assignment at line 13. Line 5 is
after the call to g in the try block, and will only execute if
g returns without throwing an exception. Finally, the slice
from the print of x at line 10 should include both assign-
ments to x, since that print statement executes regardless
of whether an exception is thrown or not. The three slices
are indicated in Figure 1(b) using plus signs, stars, and x’s,
respectively.

The remainder of this paper is organized as follows: Sec-
tion 2 gives background on system-dependence graphs and
interprocedural slicing. Section 3 presents our extensions
to interprocedural slicing to handle Java’s try/catch/throw
constructs. Section 4 discusses related work. Section 5 sum-
marizes the contributions of this paper.

2. BACKGROUND
Slicing was originally defined by Weiser [18] for a sim-

ple, structured language as the solution to a dataflow prob-
lem specified using the program’s control-flow graph (CFG).
Ottenstein and Ottenstein [12] provided a more efficient al-
gorithm for intraprocedural slicing (slicing a program that
consists of just one procedure with no calls) that uses the
program-dependence graph (PDG) [6]. Horwitz et al [7]
extended the Ottenstein’s algorithm to an interprocedural
version that uses a collection of program-dependence graphs
called the system-dependence graph (SDG). Although that
algorithm was designed for procedural languages like C,
the ideas apply to a subset of Java that excludes threads
and exceptions. Later work by Ball/Horwitz [1] and
Choi/Ferrante [3] extended the algorithm to handle jumps
(goto, break, return, etc). The steps of the (extended) algo-
rithm for building an SDG are given below. Figure 2 gives
an exception-free version of the code from Figure 1(b), which
is used to illustrate Steps 1–3; Figure 3 is used to illustrate
Steps 4–6.

Step 1 (do static analysis): Do pointer analysis and use
the results to determine the set of locations that may

static int x, y;

static void f() {

g();

print(x);

}

static void g() {

x = 0;

if (y > 10) return;

x = 1;

}

x = 0

if y > 10

return

x = 1

enter f
x = x_in
y = y_in

enter g
x = x_in
y = y_in

x_in = x
y_in = y

call g
x = x_out

print(x)

x_out = x
exit

x_out = x
exit

T
F

T

F

F

T

T

F

Figure 2: Example code and the corresponding
CFGs. Non-executable edges are shown using
dashed arrows.

be used and defined by each statement or predicate in
the program, as well as the set of methods that may be
invoked when a call is made via a pointer. Using that
information, compute may-mod and may-use sets for
each method (the sets of non-local variables that might
be modified and might be used, directly or transitively,
by each method).

Step 2 (build CFGs): Build a CFG for each method in
the program. Each CFG starts with an enter vertex
and ends with an exit vertex. There is one vertex
for each statement and predicate. Each non-predicate
vertex has one (unlabeled) outgoing edge. Each pred-
icate vertex has two outgoing edges labeled true and
false. The enter vertex and the vertices that repre-
sent jumps are treated as pseudo-predicates (predi-
cates whose outgoing false edges are non-executable)
in order to induce the correct control dependences.
The enter vertex has an outgoing true edge to the ver-
tex that represents the first statement in the method,
and an outgoing false edge to the exit vertex. A jump
vertex has an outgoing true edge to the target of the
jump, and an outgoing false edge to the statement that
would execute if the jump were a no-op.

Example: In Figure 2, the CFG for method g includes
a jump (return) vertex. Its outgoing non-executable
edge is shown using a dashed arrow. �

The vertex that represents a call to a method M also
represents transferring to M the actual parameters
plus all of the variables in M ’s may-mod and may-

45

(1) static int y;

++ ** (2) static void f() {

++ ** (3) try {

++ ** (4) g();

** (5) print("no ex");

++ ** (6) }

++ (7) catch (Ex1 e) {

++ (8) print("ex1");

++ (9) }

(10) print("done");

++ ** (11) }

++ ** (12) static void g() throws Ex1 {

++ ** (13) if (y > 10)

++ ** (14) throw new Ex1();

(15) print("end g");

++ ** (16) }

(1) static int x, y;

++ ** xx (2) static void f() {

++ ** xx (3) try {

++ ** xx (4) g();

** (5) print(x);

++ ** xx (6) }

++ (7) catch (Ex1 e) {

++ (8) print(x);

++ (9) }

xx (10) print(x);

++ ** xx (11) }

++ ** xx (12) static void g() throws Ex1 {

++ xx (13) x = 0;

++ ** xx (14) if (y > 10)

++ ** xx (15) throw new Ex1();

** xx (16) x = 1;

++ ** xx (17) }

(a) (b)

Figure 1: Two Java examples. In the left example, the slice from the print statement on line 8 is indicated
with plus signs, and the slice from the print statement on line 5 is indicated with stars. In the right example,
the slice from the print statement on line 8 is indicated with plus signs, the slice from the print statement
on line 5 is indicated with stars, and the slice from the print statement on line 10 is indicated with x’s.

use sets (the non-local variables that may be used or
defined in M), and receiving back all of the variables
in M ’s may-mod set. M ’s enter vertex represents re-
ceiving the values transfered in, and M ’s exit vertex
represents transferring back the possibly modified val-
ues. This process is made explicit in the CFGs shown
in this paper by labeling each call, enter, and exit ver-
tex with a set of assignments:

• For a call vertex, the assignments are of the form
v in = v (one for each value transferred into the
called method), and v = v out (one for each value
transferred back).

• For an enter vertex the assignments are of the
form v = v in (one for each value transferred in).

• For an exit vertex the assignments are of the form
v out = v (one for each value transferred back).

Example: In the code in Figure 2, field y is used
(directly) in method g, and thus is in both f ’s and g’s
may-use sets (since f calls g); field x is used in method
f , and is modified in g and thus is in f ’s may-use set
and is in both f ’s and g’s may-mod sets. Therefore,
f ’s enter vertex includes assignments to receive the
values of x and y; the call to g includes assignments to
transfer the values of x and y, and to receive back the
final value of x; g’s enter vertex includes assignments
to receive the values of x and y; both f ’s and g’s exit
vertices include assignments to transfer back the final
value of x.1 �

1In this example, field x must be modified in g, so there is
actually no point in transferring its value into f or into g.
However, since computing must-modify information is NP-
hard in the presence of aliasing [10], the analysis of Step
1 only computes may-modify information. A variable that

Step 3 (compute dependences): Compute each CFG’s
control and data dependences. Include non-executable
edges when computing control dependences, but not
when computing data dependences.

Vertex n is control dependent on vertex m iff n post-
dominates one but not all of m’s CFG successors.

Example: In the CFG for method f , all of the vertices
except the exit vertex are control dependent on the
enter vertex; in the CFG for method g, the return
vertex is control dependent on the if, and the second
assignment to x (x=1) is control dependent both on
the if and on the return. The first assignment to x and
the if are both control dependent on the enter vertex.
�

Vertex n is data dependent on vertex m iff m (may)
define a variable x, n (may) use x, and there is an
x-definition-free path in the CFG from m to n.

Example: In f , the call vertex is data dependent on
the enter vertex, and both the print vertex and the
exit vertex are data dependent on the call. In g, the if
vertex is data dependent on the enter vertex, and the
exit vertex is data dependent on the two assignments
to x. �

Step 4 (build a PDG for each CFG): The vertices of
the PDG are the same as the vertices of the CFG ex-
cept that the exit vertex is omitted, and the transfer
of parameters and non-local variables from a method
call to the called method and back (represented in the
CFG by the sets of assignments used to label the call,

only may be modified by a method may also be unchanged;
i.e., its final value may be the same as its initial value, and
so the initial value must be transferred in so that it can be
transferred back out.

46

enter f

x = x_out

call g

x_out = xif y > 10x = 0

return x = 1

control
dependence

data
dependence

summary

Edge Key

print(x) x_out = x

enter g

x = x_in y = y_in

x = x_in y = y_in

y_in = yx_in = x

Figure 3: SDG for the code of Figure 2: The PDGs for f and g plus interprocedural and summary edges.

enter, and exit vertices) are represented in the PDG
by four new kinds of vertices:

1. Each method includes one formal-in vertex
v = v in for each formal parameter and each vari-
able in its may-use or may-mod sets.

2. Each method includes one formal-out vertex
v out = v for each variable in its may-mod set.

3. For each method call, there is one actual-in vertex
v in = v for each actual parameter and each vari-
able in the called method’s may-use or may-mod
sets.

4. For each method call, there is one actual-out
vertex v = v out for each variable in the called
method’s may-mod set.

The edges of the PDG represent the data and control
dependences computed in Step 3. All of the formal-in
and formal-out vertices for a method are considered
to be control dependent on the method’s enter vertex,
and for each call, all of the actual-in and actual-out
vertices associated with the call are considered to be
control dependent on the call vertex.

Example: The PDGs for methods f and g are shown
in Figure 3. �

Step 5 (connect the PDGs to form the SDG): For
each call to a method M , add a control-dependence
edge from the call vertex to M ’s enter vertex. Add
a data-dependence edge from each actual-in vertex
associated with the call to the corresponding formal-in
vertex in M , and from each formal-out vertex in M to
the corresponding actual-out vertex associated with
the call.

Example: Figure 3 shows the SDG for the code in
Figure 2. �

Step 6 (add summary edges): For each pair of vertices
(f1, f2) such that f1 is a formal-in vertex and f2

is a formal-out vertex of the same method, use the
algorithm of [14] to determine whether there is an
interprocedurally-valid path in the SDG from f1 to
f2. If yes, for all corresponding actual-in/actual-out
vertex-pairs (a1, a2), add the summary edge a1 → a2.

Example: The SDG in Figure 3 has one summary
edge from y in = y to x = x out ; this is because there
is an interprocedurally-valid path between the corre-
sponding formal-in/out vertices y = y in and x out =
x in method g. The summary edge indicates that the
value of y before the call to g can affect the value of x
after the call. �

Once the SDG has been built, the slice from statement (or
predicate) S can be computed in linear time in two passes
that find all of the vertices from which there is a valid in-
terprocedural path to S in the SDG. Pass 1 starts from the
SDG vertex that represents S and follows edges backward
in the SDG, ignoring interprocedural edges that run from a
called method to the calling method. Pass 2 starts from the
vertices reached in pass 1; it follows edges backward in the
SDG, ignoring interprocedural edges that run from a calling
method to the called method. The components of the slice
are all of the vertices reached in pass 1 or pass 2.

3. EXTENDING INTERPROCEDURAL
SLICING TO HANDLE
TRY/CATCH/THROW

In this section we describe how to extend the
interprocedural-slicing algorithm described above to handle

47

Java’s try/catch/throw constructs. To simplify the presen-
tation, we start by assuming there are no finally clauses and
no unchecked exceptions; those are dealt with in Sections 3.3
and 3.4. Our approach involves defining how to represent
try/catch/throw in the program’s CFG and SDG; once the
SDG is built, a slice can be computed using the two-pass
approach described above.

The following two subsections describe how to extend the
CFG and SDG so that the new control and data dependences
introduced by try/catch/throw are handled correctly. Sec-
tion 3.1 deals with control dependences and Section 3.2 deals
with data dependences.

3.1 Handling control dependences
As discussed in the Introduction, a program component

C may or may not execute depending on whether or not a
throw statement T executes; i.e., T affects whether and/or
how often C executes. This means that C should be (transi-
tively) control dependent on T ; i.e., there should be a path
consisting of control-dependence edges in the SDG from T
to C.

Consider the print statement on line 15 in Figure 1(a).
That statement executes only if Ex1 is not thrown, and
thus it should be control dependent on the throw statement.
This means that throw statements must be represented as
pseudo-predicates in the CFG so that they induce control
dependences.

Now consider the print statement on line 5 and the catch
on line 7. The print executes only if Ex1 is not thrown as
a result of calling g, while the catch executes only if Ex1 is
thrown as a result of the call. Therefore, both the print and
the catch should be control dependent on the call (as well
as being transitively control dependent on the throw). This
means that the call to g must be represented as a predicate
so that it induces control dependences. It also means that
there must be an interprocedural control-dependence path
from the throw statement in g to the print statement and the
catch in f . Note that this requires something quite new: in
the SDGs defined in [7], there can be a control-dependence
path from T to C only if vertices T and C are in the same
method, or if T ’s method (transitively) calls C’s method.
To handle the control-dependence effects of a throw T , we
now require a control-dependence path from T to C in some
situations where C’s method (transitively) calls T ’s method.

Finally, consider the print statement on line 8. That state-
ment executes if the call to g causes Ex1 to be thrown, only
because the print is inside the catch of Ex1, and the call to
g is inside the corresponding try. This means that both try
and catch constructs must also be represented as pseudo-
predicates.

Putting this all together, we define below how to build a
CFG for code that includes try/catch/throw. Note that this
takes into account the issues of control dependence discussed
above but not yet the issues of data dependence.

Modifications to Step 2 of the SDG-Building Algo-
rithm of Section 2 for try/catch/throw:

• For each method that might throw an exception, the
method’s CFG includes one normal-exit vertex and
a set of exceptional-exit vertices, in addition to the
usual exit vertex. There is one exceptional-exit ver-
tex for each type of exception that may be thrown
by the method. The normal-exit vertex follows the

last statement in the method. The method’s (origi-
nal) exit vertex is the successor of both the normal-
and exceptional-exit vertices.

• Each try, catch, and throw is represented by a pseudo-
predicate vertex (recall that a pseudo-predicate has an
executable outgoing true edge, and a non-executable
outgoing false edge). The outgoing true edges of the
try and catch vertices go to the first statements inside
the try/catch block, and their outgoing false edges go
to the first statement that follows the last catch block.
The outgoing true edge of a throw goes to the cor-
responding exceptional-exit vertex, and the outgoing
false edge goes to the statement that would follow the
throw if it were a no-op.

• Each call vertex that represents a call to a method that
might throw an exception is represented as a predicate
with two kinds of outgoing edges (both executable):

1. An edge to a new pseudo-predicate normal-return
vertex. The outgoing true edge of the normal-
return vertex goes to the first statement that ex-
ecutes when the call returns normally, or to the
normal-exit vertex if the call is the last statement
in the method. The outgoing false edge of the
normal-return vertex goes to the first statement
that executes whether the call returns normally
or causes an exception to be thrown, or to the
exit vertex if there is no such statement.

2. For each possible exception type that might be
thrown by the call, an edge to the correspond-
ing catch vertex (if there is one), or to the cor-
responding exceptional-exit vertex at the end of
the current method’s CFG, otherwise.

Example: Figure 4 shows the CFGs for the code in Fig-
ure 1(a). �

The modifications to the design of the CFG listed above
ensure that there will be a control-dependence path in the
PDG from a throw to the corresponding exceptional-exit,
and from a call to a method that might throw an exception
to all vertices that represent program components whose
execution may be affected by whether or not an exception is
thrown (i.e., components in catch clauses, and components
that follow the exception-throwing call). What remains is
to define the appropriate modifications to the SDG:

• We must define new interprocedural SDG edges, so
that there is a control-dependence path in the SDG
from a throw to all of the vertices whose execution it
may affect.

• For calls to exception-throwing methods, we must also
define the appropriate new kinds of summary edges to
take into account the fact that the value of a parameter
or non-local variable before the call may affect whether
the method returns normally or throws an exception.

The new interprocedural edges are as follows; for each call
to a method that may throw an exception:

• The normal-exit vertex in the called method is con-
nected to the normal-return successor of the call ver-
tex.

48

for each exception-throwing method M :
for each formal-in vertex v:

for each normal-exit and exceptional-exit vertex w:
if there is an interprocedurally-valid path in the SDG from v to w (determined using the

algorithm of [14]) then
for each call to M :

add a summary edge from the actual-in vertex that corresponds to v to the normal-return,
catch or exceptional-exit vertex that corresponds to w.

Figure 5: The algorithm for computing the new summary edges that represent the fact that the initial value
of a parameter or non-local variable can affect whether a method returns normally or throws an exception.

throw Ex1

exit

Ex1 exit

print("end g")

norm exit

y = y_in
enter g

if y > 10

try

print("no ex") print("ex1")

print("done")

exit

y = y_in
enter f

call g
y_in = y

catch Ex1norm ret

Figure 4: The CFGs for the code in Figure 1(a).
(Dashed arrows represent non-executable edges.)

• Each exceptional-exit vertex in the called method is
connected to the corresponding catch or exceptional-
exit successor of the call vertex.

The algorithm for computing the new summary edges is
given in Figure 5.
Example: Figure 6 shows the SDG for the code in Fig-
ure 1(a). Note that there are summary edges from the
actual-in vertex y in = y for the call to g to the normal-
return and catch vertices associated with that call. This is
because there are paths in g’s PDG from y = y in to both
normal exit and Ex1 exit . The summary edges indicate that
the value of y before the call determines whether g returns
normally or throws Ex1. �

enter f

call g
norm ret

try print("done")y = y_in

y = y_in

throw Ex1

if y > 10

Ex1 exit

enter g

print("end g") norm exit

y_in = y

print("no ex")

catch Ex1

print("ex1")

Figure 6: The SDG for the code in Figure 1(a). (See
Figure 3 for the edge key.)

3.2 Handling data dependences
As discussed in the Introduction, the slices from each of

the three print statements in the code in Figure 1(b) should
include a different subset of the assignments to x: the slice
from the print at line 5 should include only the assignment
to x at line 16; the slice from the print at line 8 should
include only the assignment to x at line 13, and the slice
from the print at line 10 should include both assignments
to x. However, if we compute those slices using an SDG
that includes only one formal-out vertex for variable x we
would (erroneously) include both assignments to x in all
three slices, because there would be interprocedurally valid
paths in the SDG from both assignments to all three print
statements.

To solve this problem, we include formal- and actual-out
vertices explicitly in the CFG, and we use multiple sets of
formal- and actual-out vertices for methods that can throw
exceptions, and for calls to those methods. In particular,
for each method that might throw an exception, we asso-
ciate a set of formal-out vertices with each of the method’s
exceptional-exit vertices, and with its normal-exit vertex.

49

Similarly, for each call to a method that might throw an ex-
ception, we associate a set of actual-out vertices with each
of the call vertex’s successors.
Example: The CFG for the code in Figure 1(b) is shown
in Figure 7. Note that the normal-exit and exceptional-exit
vertices are now pseudo-predicates, and that the call to g
is no longer considered to be a definition of x—the (new)
actual-out vertices for x now play that role. In this CFG
only the assignment x = 0 at line 13 reaches the formal-out
vertex associated with the exceptional-exit vertex, and only
the assignment to x = 1 at line 16 reaches the formal-out
vertex associated with the normal-exit vertex. �

try

print(x)

exit

x_out = x

print(x)

x = x_out

norm ret

x = x_out

print(x)

catch Ex1

enter f
x = x_in
y = y_in

call g

x_in = x
y_in = y

x = 0

if y > 10

throw Ex1

x = 1

norm exitEx1 exit

x_out = xx_out = x

exit

enter g
x = x_in
y = y_in

Figure 7: CFGs for the code in Figure 1(b).

When constructing the SDG, the formal-out vertices are
connected by interprocedural data-dependence edges to the
actual-out vertices associated with the corresponding excep-
tion type.
Example: The SDG constructed from the CFGs of Figure 7

is shown in Figure 8. Using this SDG, the slices from the
print statements on lines 5 and 8 will each (correctly) include
only one assignment to x, while the slice from the print
statement on line 10 will include both assignments to x. �

3.3 Handling finally clauses
In Java, a finally clause can follow the last catch block

associated with a try. The code in a finally block always
executes, whether or not an exception is thrown. Thus, the
code in a finally block can execute after the last statement
in the try block (if no exception is thrown), or after the
last statement in a catch block (if an exception is thrown
and caught), or after a statement in a try or catch block
that causes an uncaught exception to be thrown. If the try
or catch blocks include non-local transfer of control (e.g.,
a break, continue, or return statement), the code in the
finally block executes before control is transferred. Further-
more, any non-local transfer of control in the finally block
takes precedence over non-local transfer of control in the
try or catch blocks; i.e., if there is a transfer of control in
both places, it is the one in the finally block that is actually
executed. Therefore, the following four cases can arise:

1. There are no non-local transfers of control in the try,
catch, or finally blocks.

2. The try and associated catch blocks do not contain
non-local transfers of control, but the finally block
does.

3. The try and associated catch blocks contain non-local
transfers of control, but the finally block does not.

4. The try and associated catch blocks contain non-local
transfers of control, and so does the finally block.

We discuss how to represent flow of control (in the CFG)
for each of the four cases.

Cases 1 and 2: Cases 1 and 2 can be handled in a straight-
forward manner:

• The finally itself is represented as a pseudo-predicate,
with an outgoing true edge to the vertex that repre-
sents the first statement in the finally block, and an
outgoing false edge to the vertex that represents the
first statement after the finally block.

• There is an edge from the last vertex in each try/catch
block to the vertex that represents the finally.

• The finally vertex is also the target of the non-
executable false edges out of the catch vertices.

Example: The CFG for these two cases is shown schemat-
ically in Figure 9 for a try block that has some statements,
then a call to a method that might throw exceptions Ex1 to
ExN, then some more statements (represented in the figure
by the box below the normal-return vertex). The finally
block itself may include non-local transfer of control (for
case 2); this is shown in the figure as a jump inside the box
that represents the finally block. �

Case 3: Case 3 is illustrated by the example code in Fig-
ure 10 (it is assumed that g may throw exception Ex1, and
that the finally block includes no non-local transfer of con-
trol).

50

enter f

call g

tryy = y_in print(x)x = x_in

enter g

x = x_in y = y_in x = 0 if y > 10

Ex1 exit

x_out = x

x_in = x

x = 1throw Ex1 norm exit

x = x_out print(x)

x_out = x

x_out = x

norm ret

x = x_out print(x)

y_in = y
catch Ex1

Figure 8: SDG for the CFGs of Figure 7. (See Figure 3 for the edge key.)

...catch Ex1 catch ExN

1st stmt after
the try/catch/finally

finally

try

call

norm ret

jump

target of jump

Figure 9: Handling finally clauses: The CFG for
cases 1 and 2.

(1) x = 0;

(2) while (x < 10) {

(3) try {

(4) g(); // may throw Ex1

(5) }

(6) catch (Ex1 e) { break; }

(7) finally { ... }

(8) x++;

(9) }

Figure 10: Handling finally clauses: Code to illus-
trate Case 3.

In this example, if the exception is thrown, control flows
from the end of the finally block to the break in the catch
clause, while if the exception is not thrown, control flows
from the end of the finally block to the increment of x. Thus,
if we construct the CFG using the technique described above
for cases 1 and 2, we would need multiple outgoing edges
from the end of the finally block: one to the break statement
on line 6, and one to the increment of x on line 8. This would
introduce invalid paths into the CFG; for example, there
would be a path from the end of the try block to the break
statement (as if the break could be taken when no exception
is thrown). While this would not lead to incorrect slices, it
could lead to slices that include irrelevant components, and
thus we propose two better ways to define the CFG in this
case.

51

...
...

...

Treating the finally block
as a separate methodUsing Inlining

try

while

call g

catch Ex1

finally

finally

call g

try

while

catch Ex1

call finally

break

call finally

x++

1st stmt after
the loop

enter finally

exit

x++

break

1st stmt after
the loop

norm ret
norm ret

Figure 11: The CFGs for the code in Figure 10 using inlining and treating the finally block as a method.

The first possibility is to inline the finally clause as nec-
essary:

• For each CFG vertex v that is part of a try/catch block
and represents a non-local transfer of control, a copy
of the entire finally clause is inserted between v’s pre-
decessor(s) and v itself.

• For each call in a try/catch block to a method that
might throw an uncaught exception, a copy of the en-
tire finally clause is inserted between the call vertex
and the exceptional-exit vertex.

Although this approach can cause space blow-up, it is un-
likely to do so in practice, since it is unlikely that non-local
transfers of control out of try/catch blocks are frequently
used in combination with finally blocks.

A second possibility is to treat the finally clause as a
method: create a separate CFG for each finally clause, and
insert a call vertex in the try/catch blocks wherever con-
trol would be transferred to the finally block (i.e., before
each non-local transfer of control, between each call-vertex
/ exceptional-exit-vertex pair, and after the last statement
in a try/catch block).

Example: Figure 11 illustrates these two approaches,
showing the CFGs for the code in Figure 10. �

Case 4: Essentially the same two options used for case 3
can also be used to handle case 4 (non-local transfers of
control in the try and/or catch blocks, as well as in the fi-
nally block). However, while the inlining approach can be
used exactly as described above, treating the finally block
as a method requires some special handling. The problem is
that the finally block will be represented by a new method,
but the targets of its non-local transfers of control will be in
the original method. To handle this, each non-local trans-
fer of control in the finally block must be represented by

a new, special kind of exit vertex (e.g., a break would be
represented by a break-exit vertex, and a continue would
be represented by a continue-exit vertex) analogous to the
special exceptional-exit vertices introduced in Section 3.1.
Corresponding special return vertices (e.g., break-return and
continue-return) would be used on the calling side, and the
targets of those return vertices would be the original targets
of the non-local transfers of control.

3.4 Handling unchecked exceptions
Java includes a large set of unchecked exceptions; for

example: ArithmeticException, ClassCastException, Index-
OutOfBoundsException. These exceptions can be thrown
by many common expressions (arithmetic operations, casts,
array or string indexing), and it is not required that such
expressions be enclosed in a try block, or that the enclosing
method list unchecked exceptions in its throws clause.

How unchecked exceptions should be treated in the con-
text of slicing depends on the intended application. This
question is related to the question of whether or not a state-
ment S that follows a loop should be control dependent on
the loop predicate, since S only executes if the loop even-
tually terminates. That issue was explored in [13, 2], and
led to the definition of two kinds of control dependence:
weak and strong. Similar notions may be useful in handling
unchecked exceptions.

The most conservative approach would be to treat every
program component C that might cause an unchecked ex-
ception to be thrown as a conditional throw statement; i.e.,
in the CFG, add an (executable) edge from C to the appro-
priate exceptional-exit vertex. However, this would make all
components that follow C control dependent on it, and so
slices computed using this approach would probably be so
large as to be worthless for most applications.

Completely ignoring unchecked exceptions, is, however,

52

(1) static int y;

++ (2) static void a() {

++ (3) try {

++ (4) b();

++ (5) }

++ ** (6) catch (Ex1 e) {

++ ** (7) print("ex1");

++ ** (8) }

++ (9) }

++ (10) static void b() throws Ex1 {

++ (11) if (y > 10)

++ (12) c();

++ (13) }

++ ** (14) static void c() throws Ex1 {

++ (15) throw new Ex1();

++ ** (16) }

Figure 12: Example code. The correct slice from
line 7 is indicated by plus signs, and the slice com-
puted by the Sinha algorithm is indicated by stars.

not appropriate for code that includes catch clauses for
them. In that case, the slice from code in the catch clause
should include any expression that might cause the excep-
tion to be thrown. Handling these cases requires a (straight-
forward) analysis to determine, for each try block with an
associated catch of an unchecked exception, which expres-
sions in the (dynamic) scope of the try could cause the ex-
ception to be thrown; those expressions should be treated
as conditional throw statements as described above.

4. RELATED WORK
Sinha and Harrold previously addressed how to represent

flow of control for try/catch/finally blocks in [15, 16], and
Sinha, Harrold, and Rothermel addressed slicing programs
with try/catch/throw in [17]. While some aspects of their
approach are similar to ours, there are several omissions and
errors that we have corrected.

Handling finally clauses by inlining and by treating finally
blocks as methods are both proposed in [15, 16]; however,
they did not consider the simpler approach discussed in Sec-
tion 3.3 for cases 1 and 2 (no non-local transfer of control, or
such transfers only in the finally block). Also, they did not
recognize the extra complications that arise in case 4 when
the finally block is treated as a method.

We turn now to a comparison of our slicing algorithm with
that of [17]. One problem with [17] is that try/catch/throw
vertices are not treated as pseudo-predicates in the CFG,
which means that they induce no control dependences, and
thus are never included in slices. A more serious problem
is that interprocedural control dependences are not repre-
sented correctly when the length of the call chain from a try
to a throw is greater than one. These problems are illus-
trated by Figures 12 and 13.

Figure 12 gives example code; the correct slice from the
print statement at line 7 is indicated by plus signs, and the
slice computed by the Sinha algorithm is indicated by stars.
Note that the Sinha slice includes no code from method

enter a

y = y_in

call b
return b

exit a

y_in = y

if y > 10

call c

try

y = y_in

throw Ex1 Ex1 exit

catch Ex1

print("ex1")

enter b

enter c exit c

return c

exit b

(a) The SDG built using Sinha et al’s approach.

norm ret

tryy = y_in

y = y_in if y > 10

y_in = y

catch Ex1

enter a

enter b

call b

print("ex1")

norm exitEx1 exit

throw Ex1

call c

enter c

Ex1 exit norm ret

norm exit

(b) The SDG built using our approach.

Figure 13: The SDGs built for the code of Figure 12

53

b, even though the if and the call to c there clearly con-
trol whether Ex1 is thrown, and therefore whether the print
statement executes. The reason for this problem is that the
SDG defined by the Sinha algorithm (shown in Figure 13(a))
connects the exceptional-exit vertex in method c (where Ex1
is thrown) directly to the catch vertex in method a (where
the exception is caught). Thus, the first pass of slicing
(which ignores interprocedural edges from called methods
to call sites) reaches only vertices in method a, and the
second pass (which ignores interprocedural edges from call
sites to the called method) reaches only vertices in method
c. In contrast, the SDG defined by the algorithm presented
in this paper (shown in Figure 13(b)) “threads” the control
dependences up the call chain, and so the appropriate ver-
tices in methods b and c are reached during the second pass
of slicing.

Another serious problem is that Sinha et al do not consider
data dependences in the presence of exceptions at all. Using
their approach, a slice from a statement in a catch block
that uses a variable v whose value was set outside the catch
block will not include any assignments to v. Furthermore,
they only use one set of actual-out vertices, and thus do not
account for the fact that different data dependences may be
induced depending on whether a method exits normally, or
through an exception.

5. CONCLUSIONS
Slicing is an important operation, and extending slicing

algorithms to handle Java programs is an area of current
interest [9, 8, 5, 4, 17, 11]. In this paper we have described
how to extend the slicing algorithm of [7] (which uses SDGs)
to handle try/catch/throw. In particular, we have defined
how to represent try/catch/throw in the control-flow graphs
from which SDGs are built so that correct control and data
dependences are computed, as well as extending the set of
interprocedural edges in the SDG itself.

6. ACKNOWLEDGMENTS
This work was supported in part by the National Science

Foundation under grants CCR-9970707 and CCR-9987435.

7. REFERENCES
[1] T. Ball and S. Horwitz. Slicing programs with

arbitrary control flow. In Lecture Notes in Computer
Science, volume 749, New York, NY, November 1993.
Springer-Verlag.

[2] G. Bilardi and K. Pingali. A framework for generalized
control dependence. In Proc. of the ACM SIGPLAN
’96 conference on Programming language design and
implementation, pages 291–300. ACM Press, 1996.

[3] J. Choi and J. Ferrante. Static slicing in the presence
of goto statements. ACM Trans. on Programming
Languages and Systems, 16(4):1097–1113, July 1994.

[4] J. Hatcliff et al. A formal study of slicing for
multi-threaded programs with JVM concurrency
primitives. In Static Analysis Symp., 1999.

[5] M. Dwyer et al. Slicing multi-threaded Java programs:
A case study. Technical Report 99-7, Kansas State
University Computing and Information Sciences, 1999.

[6] J. Ferrante, K. Ottenstein, and J. Warren. The
program dependence graph and its use in
optimization. ACM Trans. on Programming
Languages and Systems, 9(3):319–349, July 1987.

[7] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. ACM Trans. on
Programming Languages and Systems, 12(1):26–60,
January 1990.

[8] J. Krinke. Static slicing of threaded programs. In Proc.
ACM SIGPLAN/SIGSOFT Workshop on Program
Analysis for Tools and Software Eng., June 1998.

[9] D. Liang and M. Harrold. Slicing objects using system
dependence graphs. In Proc. of the IEEE Int. Conf.
on Software Maintenance, pages 348–357, November
1998.

[10] E. Myers. A precise interprocedural data flow
algorithm. In Proc. ACM Symp. on Principles of
Programming Languages (POPL), pages 219–230,
1981.

[11] M. Nanda and S. Ramesh. Slicing concurrent
programs. In Proc. Int. Symp. on Software Testing
and Analysis, August 2000.

[12] K. Ottenstein and L. Ottenstein. The program
dependence graph in a software development
environment. In Proc. ACM SIGSOFT/SIGPLAN
Software Engineering Symp. on Practical Software
Development Environments, pages 177–184, 1984.

[13] A. Podgurski and L. Clarke. A formal model of
program dependences and its implications for software
testing, debugging, and maintenance. IEEE Trans. on
Software Engineering, 16(9):965–979, September 1990.

[14] T. Reps, S. Horwitz, and G. Rosay. Speeding up
slicing. In Proc. ACM SIGSOFT Symp. on the
Foundations of Software Eng., pages 11–20, December
1994.

[15] S. Sinha and M. Harrold. Analysis of programs with
exception-handling constructs. In ICSM, pages
348–357, 1998.

[16] S. Sinha and M. Harrold. Analysis and testing of
programs with exception-handling constructs. IEEE
Trans. on Software Engineering, 26(9):849–871, 2000.

[17] S. Sinha, M. Harrold, and G. Rothermel.
System-dependence-graph-based slicing of programs
with arbitrary interprocedural control flow. In Int.
Conf. on Software Eng., pages 432–441, May 1999.

[18] M. Weiser. Program slicing. IEEE Trans. on Software
Engineering, SE-10(4):352–357, July 1984.

54

