
Estimating the Impact of Heap Liveness Information on
Space Consumption in Java

Ran Shaham
Tel-Aviv University and

IBM Haifa Research
Laboratory

rans@math.tau.ac.il

Elliot K. Kolodner
IBM Haifa Research

Laboratory

kolodner@il.ibm.com

Mooly Sagiv
Tel-Aviv University

sagiv@math.tau.ac.il

ABSTRACT
We study the potential impact of different kinds of liveness
information on the space consumption of a program in a
garbage collected environment, specifically for Java. The
idea is to measure the time difference between the actual
time an object is collected by the garbage collector (GC)
and the potential earliest time an object could be collected
assuming liveness information were available. We focus on
the following kinds of liveness information: (i) stack refer-
ence liveness (local reference variable liveness in Java), (ii)
global reference liveness (static reference variable liveness in
Java), (iii) heap reference liveness (instance reference vari-
able liveness or array reference liveness in Java), and (vi)
any combination of (i)-(iii). We also provide some insights
on the kind of interface between a compiler and GC that
could achieve these potential savings.

The Java Virtual Machine (JVM) was instrumented to
measure (dynamic) liveness information. Experimental re-
sults are given for 10 benchmarks, including 5 of the SPEC-
jvm98 benchmark suite. We show that in general stack ref-
erence liveness may yield small benefits, global reference
liveness combined with stack reference liveness may yield
medium benefits, and heap reference liveness yields the largest
potential benefit. Specifically, for heap reference liveness we
measure an average potential savings of 39% using an in-
terface with complete liveness information, and an average
savings of 15% using a more restricted interface.

Categories and Subject Descriptors
C.4 [Performance Of Systems]: Measurement techniques;
C.4 [Performance Of Systems]: Performance attributes;
D.3.4 [Programming Languages]: Processors—Compil-
ers, Memory management (garbage collection), Optimiza-
tion, Run-time environments; D.4.2 [Operating Systems]:
Storage Management—Garbage collection, Allocation / deal-
location strategies; D.4.8 [Operating Systems]: Perfor-
mance—Measurements

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISMM’02,June 20-21, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-539-4/02/0006 ...$5.00.

General Terms
Experimentation, Languages, Measurement, Performance

Keywords
Compilers, garbage collection, Java, memory management,
program analysis, liveness analysis

1. INTRODUCTION
GC does not (and in general cannot) collect all the garbage

that a program produces. Typically, GC collects objects
that are no longer reachable along a path of references start-
ing from a set of root references. Additionally, it is well
known that liveness information may aid in earlier reclama-
tion of objects, by reducing the set of root references, or by
removing dead references (i.e., references that are not subse-
quently used prior to redefinition) from the heap graph [7].
For example, in [1] liveness information for local reference
variables is used to remove dead local reference variables
from the root set; thus, some objects could be identified as
unreachable and garbage collected earlier.

However, the impact of general liveness on the space col-
lected by GC is as yet unknown. Moreover, the overhead of
having GC consult liveness information may be significant.
In fact, as noted in [3], it is not clear how to represent heap
liveness information in a feasible manner.

In this paper we study the above questions for Java pro-
grams. The information is gathered dynamically for a given
run for different kinds of liveness information. Thus, these
experiments indicate a kind of upper bound on storage sav-
ings that could be achieved assuming static liveness infor-
mation is available.

1.1 Main Results
In this paper we estimate the effect of general liveness in-

formation on space consumption of Java applications. We
measure the impact of following kinds of liveness informa-
tion: (i) stack reference liveness (local reference variable live-
ness in Java), (ii) global reference liveness (static reference
variable liveness in Java), (iii) heap reference liveness (in-
stance reference variable liveness or array reference liveness
in Java), and (vi) any combination of (i)-(iii).

We instrumented Sun’s JDK 1.2 [5] in order to measure
(dynamic) liveness information. Experimental results are
given for 10 benchmarks, including 5 of the SPECjvm98
benchmark suite. The information for our measurements is
gathered dynamically during a program run. Specifically,

we compare the objects reachable from the root set to the
ones that are reachable from the root set when ignoring dead
references. Thus, these experiments indicate a kind of upper
bound on storage savings that could be achieved assuming
static liveness information is available.

We measure the impact of liveness assuming two possi-
ble interfaces for communicating liveness information to the
garbage collector: (a) An idealized interface, where the live-
ness is recorded for individual heap references, assuming per-
fect calling context. (b) A more restricted and more natural
interface, in which dead heap references are assigned null.
This interface simulates the way programmers aid GC to
reclaim more space. As noted in [1, 9] such an interface
may not be practical. However, it provides an estimate for
the potential savings expected for a reasonable interface.
Designing an actual implementation for these or other in-
terfaces is beyond the scope of this paper.

In a first experiment we consider the idealized interface to
GC, which gives an upper bound on any static liveness anal-
ysis algorithm combined with any interface to GC. While in
some cases this upper bound may turn out to be too loose,
we found that for stack reference and global reference live-
ness analysis, this upper bound suggest small to medium
benefits. On average stack reference liveness information
buys 2% savings, and combining it with global reference
liveness information the savings increases to 9%. Thus, al-
though these liveness schemes suggest known practical solu-
tions both with respect to the static analysis algorithm (at
least for stack reference liveness), and with respect to the
GC interface, the importance of having these kinds of live-
ness information is not clear considering their limited impact
on space savings.

For heap reference liveness, the idealized interface yields
an average 39% potential savings. In this case the question
is what part of the potential is achievable considering a “re-
alistic” heap reference liveness analysis and a “reasonable”
interface to GC. Using the more restricted but more realis-
tic assign to null interface we measured a potential savings
of 15% on average. This leads us to believe that a prac-
tical algorithm achieving significant space savings may be
possible.

The results of these experiments with the restricted inter-
face also give insights for the kind of information required by
heap reference liveness analysis. For example, interprocedu-
ral information seems to have major effect on the expected
impact. On average we get 6% potential savings assum-
ing only intraprocedural information, and this increases to
15% when interprocedural information is available. In addi-
tion, combining heap reference liveness and global reference
liveness information using the same restricted GC interface
gives negligible additional benefits (less than 0.5% on aver-
age) to the potential benefits obtained just by heap liveness.
In the future we intend to repeat the latter experiment as-
suming stack reference liveness information and global ref-
erence liveness information is available to better understand
the overall impact of a practical liveness framework.

1.2 Related Work
In [1] static stack reference liveness information is used by

a type-accurate GC to reduce the set of root references, thus
potentially saving some space. In this paper we show a 2%
upper bound for space savings achievable through any static
stack reference liveness algorithm. This upper bound is close

to the actual space savings reported in [1], which lead us
to conclude that: (i) the static analysis algorithm reported
there is precise enough, and (ii) as noted in [1]: “the main
benefit of stack reference liveness analysis is preventing bad
surprises”.

In [3] the impact of stack reference and global reference
liveness information on space consumption is studied for C
programs in a garbage-collected environment. Interestingly,
the trend of our results for stack reference and global refer-
ence liveness information is in line with their results. How-
ever, they do not study heap liveness information. In addi-
tion, the measurements technique reported there leads to an
infeasible amount of information, which requires approxima-
tions. In Section 2 we explain why the measurement tech-
nique reported in this paper maintains a feasible amount of
information, thus no further approximations are required. In
particular, our technique is applicable to large applications.
Finally, in [3] two runs of the program are required for ob-
taining the information. In this paper we show a technique
to directly compute the impact of complete heap liveness
information on space consumption using a single run. This
allows us to handle non-deterministic (e.g., multi-threaded)
applications.

In our previous work [10, 11], we followed Röjemo and
Runciman [8] and measured drag time for objects, which is
the time an object is no longer in use; this is the earliest
time an object could be collected by any GC. As observed
in [8, 11], programmers can use drag information to reduce
the space consumption by changing their code. Here we are
interested in measuring the impact on space consumption
that could be computed by a compiler, in particular, liveness
information. Therefore in contrast to drag measurements,
in this paper measure the earliest time an object could be
collected assuming liveness information were available. This
experiment shifts the focus from the use of an object, to the
use (and definition) of the references to an object. This shift
complicates the task of computing the dynamic information
as it demands more trace information.

The drag time for an object is the time from the last access
to the object until the object becomes unreachable. Since
the earliest time possible to collect an object is after the
last access to it in the run, measuring drag time for objects
gives an upper bound for space savings achievable beyond
reachability-based garbage collectors. Clearly, if an object is
unreachable assuming liveness information is available, then
this object is after its last access in the run, i.e., this object
is in its drag.

However, an object in its drag could still be reachable even
assuming complete liveness information as demonstrated by
the code fragment shown in Figure 1(a). Function foo pro-
cesses a singly linked list. Each list element may reference
a data object containing a field f. We assume the heap at
program point p 1 shown in Figure 1(b). Thus, all data

references emanating from o1 . . . o4 are live, due to their use
at p 2. Moreover, o5, o6, o7 could not be collected at p 1

assuming complete liveness information. However, o5 and
o7 will not be accessed at p 3 due to the condition at p 1

(y.next == null). Thus, assuming no further accesses to
o5, o7, these objects are in their drag at p 1. Fortunatetly,
in Section 4 we show that in practice heap reference liveness
information yields potential space savings close to these as-
suming drag information (on average 39% potential savings
vs. 42%, respectively), which lead us to conclude that con-

function foo(L x) {
L y,t;

y = x;

t = null;

p_1: while (y != null) {
p_2: if (y.data == null && t != null) {

if (t.data != null) {
p_3: process(t.data.f);

}
}
t = y;

y = y.next;

}
}

x, y // ?>=<89:;o1

data

��

next // ?>=<89:;o2

data

��

next // ?>=<89:;o3
next // ?>=<89:;o4

data

��?>=<89:;o5 ?>=<89:;o6 ?>=<89:;o7

(a) (b)

Figure 1: Drag vs. liveness information example.

centrating on heap reference liveness information is good
enough.

1.3 Organization
The remainder of the paper is as follows. Section 2 de-

scribes our algorithm for measuring the impact of liveness
information and its implementation, assuming an idealized
GC interface. Section 3 presents the algorithm and imple-
mentation for measuring the impact of liveness in the pres-
ence of a restricted GC interface. In Section 4 we discuss
the benchmark programs and compare the empirical results
of both experiments. We conclude in Section 5.

2. LIVENESS MEASUREMENTS
In this section we present a method for measuring the im-

pact of general liveness schemes on space consumption in a
garbage collected environment. Our major observation for
approximating the impact of liveness information on space
consumption is that there is no need to directly compute
dynamic liveness information. In a nutshell, we found that
instead it is sufficient to identify the last use of any of the
references reaching an object. In Section 2.1 we show that
this can be done with a single run of the program by keeping
a constant overhead per object (around 60 bytes in our cur-
rent implementation), and by extending the tracing phase
in GC to compute the necessary information1.

In [3], the impact of stack reference liveness and global
reference liveness on space consumption is computed by run-
ning the program once to track uses and definitions of ref-
erences, writing them to a log file. The resulting log file is
analyzed in a backward direction to directly compute dy-
namic liveness information for references, and finally the in-
formation is communicated to a second run of the program.
Our technique presented here has the following advantages
over the above technique. First, it alleviates the problem
of the infeasible amount of dynamic liveness information (as
reported in [3]). As an immediate result our measurements
can handle local variable references, global variable refer-

1For a non-tracing GC, this may require a separate tracing
phase which is specialized to compute just the necessary
information for the liveness measurements.

ences and heap references without further approximations.
Second, the implementation is simpler as there is no need
for a mechanism to match a reference in the first run to its
corresponding reference in the second run for communicat-
ing liveness information. Finally, running the program once
allows us to handle non-deterministic (e.g., multi-threaded)
applications.

2.1 The Algorithm
Our algorithm computes liveness information while the

program (mutator) executes: (i) when the mutator uses the
store, we record local information for objects, (ii) when the
garbage collector traverses the reachable heap it propagates
global information, and (iii) when an unreachable object is
collected we compute liveness information.

Table 1 shows the information gathered during the run of
the program. As usual, time is measured in bytes allocated
so far in the program. All the information is maintained at
the level of an object. Columns property and intended mean-
ing describe the properties we maintain for every allocated
object. We classify references as follows: (i) stack references
correspond to references on the Java stack, (ii) static refer-
ences correspond to references in static variables, (iii) other
references correspond to references on the native stack, and
other special root references, and (iv) heap references cor-
respond to references in instance variables and references
in arrays. For each type of reference there are four kinds
of properties: (i) liveness (the last time the object was ac-
cessed through this reference type), (ii) direct reachability
(the last time the object was directly reachable from a vari-
able of this reference type), (iii) path liveness (the last time
the object was reachable through a path starting at a live
reference of this type), and (iv) reachability (the last time
the object was reachable through a path starting at this
reference type). Table 1 includes only reference properties
needed for computing the liveness impact of stack, static and
heap references. For example, stackL∗(obj) keeps the time
an object is still reachable along a path starting from a live
stack root. Such information is used to determine when obj
could be collected assuming stack reference liveness informa-
tion were available. Interestingly, associating the necessary
information with objects avoids the need to keep track of all

Property Intended Meaning Phase Event Update

heapL(obj)
obj is referenced by a live heap
reference at time heapL(obj)

mutator ûse x.f heapL(env(x.f)) = Current Time

ûse a[i] heapL(env(a[i])) = Current Time

stackL(obj)
obj is referenced by a live stack
root at time stackL(obj)

mutator use y stackL(env(y)) = Current Time

stackL∗(obj)
obj is reachable along a path
starting from a live stack
root at time stackL∗(obj)

collector init liveness stackL∗(obj) = max(stackL(obj), stackL∗(obj))

trace children stackL∗(obj) = max

(
stackL∗(father),
stackL∗(obj)

)
stackR(obj)

obj is referenced by a stack
root at time stackR(obj)

collector trace roots stackR(obj) = Current Time

stackR∗(obj)
obj is reachable along a path
starting from a stack
root at time stackR∗(obj)

collector trace children stackR∗(obj) = Current Time

staticL(obj)
obj is referenced by a live static
root at time staticL(obj)

mutator use g staticL(env(g)) = Current Time

staticL∗(obj)
obj is reachable along a path
starting from a live static
root at time staticL∗(obj)

collector init liveness staticL∗(obj) = max(staticL(obj), staticL∗(obj))

trace children staticL∗(obj) = max

(
staticL∗(father),
staticL∗(obj)

)
staticR(obj)

obj is referenced by a static
root at time staticR(obj)

collector trace roots staticR(obj) = Current Time

staticR∗(obj)
obj is reachable along a path
starting from a static
root at time staticR∗(obj)

collector trace children staticR∗(obj) = Current Time

otherR(obj)
obj is referenced by an other
root at time otherR(obj)

collector trace roots otherR(obj) = Current Time

otherR∗(obj)
obj is reachable along a path
starting from an other
root at time otherR∗(obj)

collector trace children otherR∗(obj) = Current Time

Table 1: Liveness information gathered during the run. env(x) gives the object referenced by x. y is a stack
variable and g is a static variable.

Information Collection Time

none max(stackR∗(obj), staticR∗(obj), otherR∗(obj))
heap liveness max(heapL(obj), stackR(obj), staticR(obj), otherR(obj))
stack liveness max(stackL∗(obj), staticR∗(obj), otherR∗(obj))
static liveness max(staticL∗(obj), stackR∗(obj), otherR∗(obj))
stack + static liveness max(stackL∗(obj), staticL∗(obj), otherR∗(obj))
heap + stack liveness max(heapL(obj), stackL(obj), staticR(obj), otherR(obj))
heap + static liveness max(heapL(obj), staticL(obj), stackR(obj), otherR(obj))
heap + stack + static liveness max(heapL(obj), stackL(obj), staticL(obj), otherR(obj))

Table 2: Computation of the earliest collection time for an object.

the references in a run and is one of the keys to keeping the
amount of information required for the analysis feasible.

The phase column indicates which properties are updated
during GC, and which properties are updated as result of
mutator execution. Specifically, the liveness properties are
updated during mutator execution, and the direct reacha-
bility, reachability and path liveness properties during GC.
A property is updated upon events shown in event column.
The update column shows the new value for the correspond-
ing property when the event occurs. In Section 2.1.1and Sec-
tion 2.1.2we provide further details for property update.

We trigger GC after every 100 KB of allocation in order
to propagate the liveness and reachability information at
regular intervals.

2.1.1 Actions in the Mutator
When an object reference is used, we update the local

information associated with the object. In particular, for
a use r event, where r is either a heap, stack or a static
reference, we set the corresponding liveness property of the
object referenced by r, heapL, stackL, or staticL to be the
current time. We treat a dereference as two consecutive
events. Thus, use x.f is split into use x and ûse x.f, where
ûse is a special operation that only uses the r-value of x.f.

Also, def x.f is split into use x and d̂ef x.f, where d̂ef is a
special operation that only uses the l-value of x.f. Array
reference expressions are handled similarly.

Interestingly, since we associate the liveness properties
with the objects, we only need to update the properties for
the use x and ûse x.f events. These events are sufficient to
determine the last time a reference to the object of a par-
ticular type (stack, static, or heap) was used. Notice, that
after the last use through a particular reference type, the
corresponding property will hold the time of last use and
the property will not be updated further.

2.1.2 Actions in the Collector
When the collector runs, we update the direct reacha-

bility, reachability and path liveness properties of the ob-
jects. Specifically, the collector establishes the invariants
that these properties correctly describe the status of the
heap. For example, when the collection is complete,
stackL∗(obj) is set to the last time that obj is reachable
along a path starting from a live stack root.

Here are the details. We update the path liveness prop-
erties for each kind of root. We begin by setting the path
liveness properties of each object to the maximum of its
current value and the object’s liveness property. Next, we
propagate path liveness information from each root to its
children. In particular, if object A references object B, and
the path liveness property of A is greater than that of B,
then we set B’s value to A’s and continue propagating from
B. To keep the cost of the propagation proportional to the
number of references, we scan stack roots in decreasing or-
der of the path liveness property value of their referenced
object. We do the same for static roots. Note that the
above implies we visit an object at most twice.

We also update the direct reachability and reachability
properties for each kind of root. First we scan the roots and
for the objects referenced by the roots, set the directly reach-
able and reachable properties to the current time according
to the kind of the root. For example, if obj is referenced by
a stack variable, we set stackR∗(obj) to the current time.

other

stack

x
// ?>=<89:;o1

**UUUUUUUU

?>=<89:;o3 // ?>=<89:;o4

y
// ?>=<89:;o2

44iiiiiiii

static

g

99

Figure 2: A heap snapshot.

Then, we propagate reachability information from each root
to its children. For example, if obj is along a path starting
from a stack variable, we set stackR∗(obj) to the current
time. Notice that the propagation of reachability and live-
ness information can be combined; thus, in total we visit an
object at most twice, scanning the roots once.

2.1.3 Computing Impact of Liveness
When an object is collected, we evaluate the earliest time

it could have been collected assuming each of the liveness
schemes. Table 2 shows how to compute these times from
the object properties. For example, assuming stack refer-
ence liveness information were available, an object could be
collected when it is no longer reachable along a path from a
live stack root, and also not reachable from other roots (e.g.,
a static root). Figure 2 shows a snapshot of the heap during
the run in time t before GC is invoked. If stackL∗(o3) < t,
then o3 could be collected since it is not reachable from other
roots. However, o4 could not be collected at time t since it is
still reachable from a static variable (i.e., staticR∗(o4) ≥ t).

An object’s heap liveness property provides information as
to whether there is a live reference to it from another object.
However, to determine whether the object can be collected,
we also need to make sure that it is not directly reachable
from a root. For example o3 could be collected at time t if
heapL(o3) < t. However, o4 could not be collected at time t
since it is still directly reachable from a static variable (i.e.,
staticR(o4) ≥ t).

We compute the average space savings for a particular
liveness scheme using the ratio of two reachability integrals.
The numerator is the integral for the liveness scheme: we
plot the size of the reachable objects assuming the scheme as
a function of time and compute the integral under the curve.
The denominator is the reachability integral assuming no
liveness information.

2.2 Implementation
The instrumented JVM is based on Sun’s JVM 1.2 (aka

classic JVM). We attach a trailer to every object to keep
track of object liveness properties. We do not count the

space taken for this trailer in our data. For debugging pur-
poses our current implementation reports object properties
to a log file upon reclamation of the object or upon program
termination, and a post processor extract the impact of live-
ness schemes. We also record for an object its creation time,
and its length in bytes. The length includes the handle, the
header and the alignment (i.e., the bytes that were skipped
in order to allocate the object on an 8 byte boundary), but
excludes the trailer.

2.2.1 Updating Information
Object information is updated upon the following events:

Object Creation Creation time and length fields are set.

Reference Use The following events constitute a reference
use: (1) getting reference field information (e.g., via
getfield bytecode) updates heapL property of the ref-
erenced object. (2) getting local variable information
(e.g., via aload bytecode) updates stackL property of
the referenced object. (3) getting global variable infor-
mation (e.g., via getstatic bytecode) updates staticL

property of the referenced object.

GC Our implementation follows Section 2.1.2.

2.2.2 Reporting Information and Impact Computa-
tion

To obtain accurate measurements for reachability and live-
ness, we trigger a full GC every 100 KB.

When an object is freed, we log all of the information
collected in its trailer. When the program terminates, we
perform a last GC and then we log information for all objects
that still remain in the heap.

The rules for the collection of Class objects are not the
same as for regular objects. Thus, we exclude them and
the special objects reachable from them (e.g., constant pool
strings and per-class security-model objects) from our re-
ports.

Our analyzer reads the log file, and then follows Table 2
to compute the earliest time an object could be collected as-
suming a particular liveness scheme. Then, the reachability
integral for each of the liveness schemes is computed.

3. A FEASIBLE HEAP LIVENESS GC IN-
TERFACE

In this section we consider a feasible interface to commu-
nicate heap reference liveness information to GC, in which
dead references are assigned null. This interface simulates
the way programmers aid GC to reclaim more space. Also,
it does not require any changes to GC. As noted in [1, 9]
such an interface may not be practical. However, we believe
that it allows us to estimate the potential savings expected
with a reasonable interface.

The algorithm operates in two runs. In the first run we
detect the places in the code where assignments to null

potentially reduce the space, while preserving program se-
mantics, and the program is modified accordingly. Then,
the modified program is executed on the same input, in
order to evaluate the space savings. Unlike the algorithm
in Section 2, this technique is limited to applications with
deterministic behavior, due to the second execution of the
program.

Event Action

p: use x.f
SNULL = SNULL \ P (lval(x.f));
P (lval(x.f)) = p

p: def x.f P (lval(x.f)) = p

p: use a[i]
SNULL = SNULL \ P (lval(a[i]));
P (lval(a[i])) = p

p: def a[i] P (lval(a[i])) = p

Table 3: Detection of null assignable program
points. The set SNULL holds the null assignable
program points. For a heap reference h in the run,
P (h) holds the last program point that used the l-
value of h, i.e. either h itself was used as an r-
value, or h was assigned. When the program starts,
SNULL is initialized with program points manipu-
lating the heap.

3.1 Algorithm
The idea is to run the program once to identify null assignable

reference expressions, i.e., a reference expression e at a pro-
gram point pt, where e could be conservatively assigned null
with respect to the current run every time pt is executed.
In order to simplify the presentation, we assume the code is
normalized so the program point manipulates at most one
heap reference expression. The Java bytecode satisfies this
requirement. In addition, our algorithm guarantees that e
is assigned null after pt is executed, only if e is included
in the statement in pt. Thus, further on we use the term
null assignable program points, since it is clear to which ex-
pression a null value is assigned. Finally, the algorithm
could be refined to assign null to a heap reference expres-
sion occurring in a specific calling context. For example, in
our implementation explained in Section 3.2, program points
are actually sequences of calling contexts.

At the outset our algorithm assumes that all program
points that manipulate the heap are candidates for null as-
signment. As the program runs, it determines the points
where null assignment is impossible, and eliminates them
from consideration. At program termination, the remain-
ing points are the null assignable ones. This algorithm is
summarized in Table 3.

In particular, the algorithm starts by inserting all candi-
date program points in SNULL. Then it runs the program.
Upon a use x.f event at program point p, the algorithm con-
cludes that the previous point that used the location denoted
by x.f cannot be assigned null, since it is currently used.
Therefore, we remove the previous program point from the
set of null assignable program points SNULL. In addition,
the last program point that used the location denoted by
x.f (i.e., P (lval(x.f))) is set to the current program point
p. Upon a def x.f event at program point p, we simply set
P (lval(x.f)) to the current program point p. Usage or a def-
inition of an array reference expression is handled similarly.
When the program terminates, SNULL contains the null
assignable program points with respect to this run. Finally,
the program is modified to assign null to the heap reference
expressions in program points included in SNULL.

The modified program is executed a second time on the
same input and its space consumption is measured. Finally,
we compare the space consumption with that in the first run
to evaluate the savings.

function foo(DL x) {
DL y,t;

y = x;

t = null;

p_1: while (y != null) {
t = y.prev;

// y.prev = null;

if (t != null) {
p_2: process(t.data, y.data);

// t.data = null;

}
p_3: t = y.next;

// y.next = null;

y = t;

}
}

x, y // ?>=<89:;o1

data

��

next // ?>=<89:;o2

data

��

next //
prev

oo ?>=<89:;o3

data

��

next //
prev

oo ?>=<89:;o4

data

��

prev
oo

?>=<89:;o5 ?>=<89:;o6 ?>=<89:;o7 ?>=<89:;o8

(a) (b)

Figure 3: Assign null example.

We demonstrate the algorithm using the code fragment
in Figure 3(a) that processes a doubly linked list elements
in pairs. We assume the heap at program point p 1 shown
in Figure 3(b). The code is annotated with null assignment
for null assignable reference expressions. For example, at
p 3 the expression y.n is null assignable. This is since all
next fields used at p 3 (i.e., those emanating from o1 . . . o4)
have no subsequent use in this code fragment. Assuming no
further uses of this list in the program, y.n is null assignable
at p 3. Similarly, t.data is null assignable at p 2. Lastly,
y.data is not null assignable at p 2 since the data field em-
anating from o1 . . . o4 will be subsequently used in the next
iteration through the t.data expression.

3.2 Implementation
We instrumented Sun’s JVM 1.2 to track uses and def-

initions of heap references. We attach a trailer to every
object to keep track of calling contexts. For every reference
instance variable, the trailer contains an entry for the last
calling context that used the location of this reference. For
feasibility we limit the calling context length to at most k
calls. For longer contexts, we only record the suffix of the k
last calls (we ran our experiments for k = 0, 1, 2, 3.)

Our implementation does not modify the program, but
instead the JVM is modified to record the fact that null
could be assigned at the proper program points/calling con-
texts. Since the label of a program point could change
across runs, we represent a program point p by the method
m containing p, the offset of p in m, and also the opcode
in p. Opcode is also used to represent a program point,
since our underlying JVM uses byte code rewriting (e.g.,
it replaces getfield bytecode with a getfield quick non-
standard bytecode for faster code execution). We also track
information about executed calling contexts, and only these
contexts are candidates for a null assignment. Finally, pro-
gram points that manipulate references subsequently ma-
nipulated by native program points are not candidates for
null assignment, since a static analysis algorithm is usually
not expected to analyze native code.

Object information is updated as described in Table 3
upon the following events:

Heap Reference Use getting reference field information
(e.g., via getfield or aaload bytecode),

Heap Reference Def setting reference field information
(e.g., via putfield or aastore bytecodes)

When the program terminates, we write all null assignable
calling contexts to a file. Also, we output the size of the
reachable integral computed as explained in Section 2.1.3.

For the second run, the modified JVM could execute the
program and assign null whenever it encounters a null assignable
calling context. However, our implementation makes an op-
timization to allow estimating in a single run the impact of
null assignment for several context lengths, and for break-
ing down the space benefits due to assigning null to field
references, and due to assigning null to elements in an ar-
ray of references, as explained in Section 4. Therefore, in
the second run we record for every reference the fact that
null could be assigned in the trailer of the object containing
that reference. Then, every 100KB of allocation we invoke a
mark phase per null assign scheme, i.e., per a combination
of context length and the kind of references being assigned
null (e.g., only elements of an array of references). During
such a mark phase the information recorded in the object
trailer is used to determine whether a reference is considered
as assigned null according to the corresponding null assign
scheme.

When the program ends, we output the size of the reach-
able integral per every null assign scheme. The ratio of these
integrals and the integral from the first run yields the poten-
tial savings. Finally, the output of the original and modified
JVM executions of the program are compared in order to
provide a sanity check for the correctness of the implemen-
tation.

Benchmark Class Stmts Short Description

jess 151 4567 expert system shell
raytrace 25 1479 raytracer of a picture
db 3 512 database simulation
javac 176 12345 java compiler
jack 56 5106 parser generator
mc 15 880 financial simulation
euler 5 726 Euler equations solver
juru 38 2505 web indexing
analyzer 258 35489 mutability analyzer
tvla 218 25264 static analysis framework

Table 4: The benchmark programs.

4. EXPERIMENTAL RESULTS
Our experiments were applied to 10 Java applications

shown in Table 4. The second and third columns show the
total number of application classes and the total number
of application source code statements, respectively. JDK
classes and general SPEC classes shared by all SPECjvm98
benchmarks are not included in Table 4. There are 32 gen-
eral SPEC classes having total of 3173 source code state-
ments.

We employed 5 of the benchmarks from the SPECjvm98
benchmark suite [12]. We did not consider compress or
mpegaudio because they do not use significant amounts of
heap memory. juru and analyzer are internal IBM tools.
euler and mc were taken from Java Grande benchmark suite [4].
The last benchmark, tvla, is a three-valued-logic analysis
engine framework for static analysis [6].

4.1 The Space Savings due to Liveness
We ran the algorithm described in Section 2 on the bench-

marks. Table 5 shows for every benchmark the size of the
reachability integral assuming different kinds of liveness in-
formation (see Section 2.1.3). We show information for
stack, static, heap liveness information and for every com-
bination of these. Column w/out liveness shows the original
reachability integral. Column drag shows the reachability
integral if an object is collected immediately after it is last
accessed in the program.

In a similar manner, Table 6 shows for every benchmark
the maximum size of the reachable heap in the run for dif-
ferent kinds of liveness information. The integrals indicate
an overall view of the space consumption of the program,
whereas the maximum heap size is a kind of a feasibility
criteria.

Figure 4(a) shows the ratio between the integrals and the
original reachability integral, and Figure 4(b) shows the ra-
tio between the maximum heap size and the original max-
imum heap size. In both figures we also show the average
across the benchmarks.

We first discuss the resulting integrals. For stack refer-
ence liveness the average potential savings is 2%, and in the
best case (juru) 12%. In [1] the actual savings obtained
by implementing stack reference liveness analysis for Java
are shown. The trend of our stack reference liveness results
match [1], and also for a simple artificial benchmark (El-
lisGC) we get duplicate results. Together with [2] we have
investigated the differences for other benchmarks, where our
dynamic measurements show less potential than the actual

savings obtained in [1]. We concluded that our results are
not directly comparable due to differences in the experimen-
tal environment (i.e., different versions of JDK/JVM, differ-
ent versions of benchmarks, and different input size used to
run the benchmarks). However, the final outcome of both
experiments is the same: “the main benefit of stack refer-
ence liveness analysis is preventing bad surprises”. Another
difference in our measurements is that our underlying GC is
type-conservative, thus potential savings are shown w.r.t. a
conservative GC, where in [1] the base GC is type-accurate.
According to [3], this latter difference is not expected to
have a major effect on the results.

To the best of our knowledge, the rest of the results are
new for object-oriented programs. Moreover, we provide the
first study of the effect of heap reference liveness. For static
variable liveness, considering the cost of obtaining the in-
formation statically, which requires whole program analysis,
our experimental results (average of 5% savings) indicate
that this optimization may not be profitable. Also for the
combination of static variable liveness and stack reference
liveness for most of the programs, we get medium savings
(average of 9%), while for juru and analyzer the potential is
quite large. This leads us to the same conclusion of “pre-
venting bad surprises”.

The comparison of the maximum heap sizes assuming live-
ness information to the original maximum heap size yield
similar results for the benchmarks excluding juru and ana-
lyzer. In juru and analyzer the profit in maximum heap size
is much larger than the overall benefit expressed by the in-
tegral size. From our previous experience [11], the reason is
that for both benchmarks, stack liveness and/or static vari-
able liveness aid in a few places in the code where a large
object, or a group of objects referenced by a single root are
kept after their last use.

For heap liveness, our results show an average of 39%
potential savings. Moreover, combining heap liveness with
other liveness information has negligible effect. This may
not come as a surprise, since most of the objects in the heap
are referenced solely by heap references. Finally, assuming
drag information (i.e., tracking the last access to an object)
we get 42% potential savings, which is very close to heap
liveness results. Thus, we conclude that heap liveness infor-
mation potentially brings most of the space benefits achiev-
able beyond reachability-based garbage collectors.

The comparison of the maximum heap sizes assuming live-
ness information to the original maximum heap size shows
that for most of the benchmarks the overall benefit (i.e., the
savings in the integral size) is larger (around 7% more sav-
ings) than the benefit at the peak (i.e., maximum heap size
comparison).

It is interesting to note that our results provide non-trivial
upper bounds for potential savings in the integral and the
memory footprint between the current GC and an idealized
one which has complete liveness information. For example,
for analyzer, which is a benchmark that allocates memory
extensively, the maximum heap size results indicates that
in the worst case, the current GC consumes 2.5 times space
than the one obtained by an idealized GC.

Figure 5 shows the reachable heap graph over time for an-
alyzer considering the following liveness schemes: (i) heap
liveness, (ii) stack combined with static variable liveness,
and (iii) no liveness information. We see that assuming com-
plete heap liveness the memory footprint of this program re-

Liveness Information
drag heap + heap + heap + heap stack + static stack w/out

stack + static stack static liveness
benchmark static
jess 108.53 118.64 118.81 119.64 119.80 359.84 365.86 391.05 392.97
raytrace 253.73 258.44 258.51 258.96 259.01 640.03 642.99 656.16 656.89
db 497.63 500.57 500.59 500.85 500.87 795.12 796.43 805.27 805.31
javac 1058.19 1065.08 1065.17 1065.90 1065.98 1623.14 1630.31 1640.73 1644.62
jack 86.33 93.33 93.41 93.95 94.03 187.11 194.97 215.99 216.59
analyzer 276.08 284.98 285.15 287.04 287.21 493.91 615.67 657.54 674.39
juru 55.31 58.64 68.54 59.19 69.09 68.01 78.13 77.97 88.25
euler 1936.73 1942.03 1942.06 1946.41 1946.43 2116.45 2125.61 2139.69 2148.82
mc 11423.94 11429.30 11429.32 11433.51 11433.52 11900.48 11901.69 11921.98 11923.18
tvla 318.14 324.95 325.14 332.40 332.58 525.53 528.78 566.08 569.30

Table 5: Reachability integrals (in MB2) for different liveness kinds.

Liveness Information
drag heap + heap + heap + heap stack + static stack w/out

stack + static stack static liveness
benchmark static
jess 0.61 0.64 0.64 0.65 0.65 1.30 1.33 1.41 1.41
raytrace 2.39 2.42 2.42 2.42 2.42 4.24 4.26 4.34 4.35
db 7.60 7.63 7.63 7.63 7.63 9.50 9.52 9.60 9.60
javac 8.35 8.38 8.38 8.38 8.38 9.16 9.19 9.24 9.25
jack 0.57 0.61 0.61 0.61 0.61 1.28 1.30 1.39 1.39
analyzer 1.38 1.42 1.42 1.43 1.43 2.43 3.40 3.08 3.59
juru 0.46 0.48 0.66 0.49 0.66 0.55 0.82 0.61 0.88
euler 6.72 6.74 6.74 6.75 6.75 7.67 7.70 7.73 7.76
mc 78.93 78.95 78.95 78.96 78.96 82.17 82.20 82.25 82.27
tvla 1.51 1.53 1.53 1.55 1.55 2.27 2.29 2.38 2.40

Table 6: Maximum reachable heap size (in MB) for different liveness kinds.

(a) Reachability Integral Savings - Idealized Interface

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

jess raytrace db javac jack analyzer juru euler mc tvla average

drag
heap+stack+static liveness
heap+static liveness
heap+stack liveness
heap liveness
stack+static liveness
static liveness
stack liveness
w/out liveness

(b) Maximum Reachable Heap Size Savings - Idealized Interface

0%

10%
20%

30%
40%

50%

60%
70%

80%
90%

100%

jess raytrace db javac jack analyzer juru euler mc tvla average

drag
heap+stack+static liveness
heap+static liveness
heap+stack liveness
heap liveness
stack+static liveness
static liveness
stack liveness
w/out liveness

(c) Reachability Integral Savings - Assign Null

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f

jess raytrace db javac jack analyzer juru euler mc tvla average

context=0 context=1 context=2 context=3

(d) Maximum Reachable Heap Size Savings - Assign Null

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f

jess raytrace db javac jack analyzer juru euler mc tvla average

context=0 context=1 context=2 context=3

Figure 4: Potential space saving results.

Analyzer - Idealized Interface

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250 300

allocation time (MB)

si
ze

 (M
B

)

heap liveness
stack+static liveness
w/out liveness

Figure 5: Potential space savings for Analyzer.

mains around 920KB. In contrast, assuming complete stack
and static variable liveness information, heap consumption
increases as the program executes. As expected, the peaks
in memory footprint occur simultaneously for these three
liveness schemes.

4.2 The Space Savings due to Null Assign-
ments

Figure 4(c) shows the ratio between the integrals of the
modified programs assigning null to dynamically dead in-
stance variables and the reachability integral in the original
program. Similarly, Figure 4(d) shows the ratio for the max-
imum heap size. We measure potential savings for calling
contexts of length 0, 1, 2, and 3. Heap references consist
of two kinds, instance fields and elements of an array of
references. Since algorithms for approximating the liveness
of instance fields may be different in nature than the ones
for approximating the liveness of elements in an array of
references, we show for each context a breakdown of heap
liveness according to these reference kinds. The a column
shows potential savings when null is assigned only to an ele-
ment in array of references (i.e., immediately after aaload or
aastore), the f column shows potential savings when null

is assigned only to an instance field (i.e., immediately after
getfield or putfield), and the a+f column shows overall
potential savings when null is assigned to both kinds of heap
references.

The average overall space savings for intraprocedural in-
formation is 6% while for contexts of length 2, we get 15%
potential savings. Breaking down the overall space sav-
ings according to heap reference kind, we see that assigning

null to instance fields assuming intraprocedural information
saves 4.5%, while for contexts of length 2 we get on average
10.5% potential savings. Assigning null to elements in an
array of references yields 2% on average assuming intrapro-
cedural information, and 10% potential savings assuming
contexts of length 2. In all cases, the added value of con-
texts of length 3 is insignificant.

On the negative side, we see that this interface provides
significantly less potential saving than the one by the ideal-
ized interface. For example, in jack we get 25% in contrast
to the idealized GC in which 57% is saved. However, we
believe that the upper bound obtained here is actually more
tight than the one reported for the idealized interface since
it resembles more closely the effects of static analysis. For
example on db we get 2% saving here versus 38% with the
idealized interface. This is due to the fact that this program
accesses a database and thus we believe that the 36% extra
saving are due to unused dynamically dead references in the
database which cannot be assigned null. Since the input
provided in SPECjvm is large enough our algorithm yields
that for every point pt, there exists at least one database
reference h used in pt which is subsequently used and thus
pt is not null assignable.

In another experiment we tried assigning null to static
variables. We do not report the detailed results due to
space limitations. However, on average, assigning null just
to static variables yields less than 1% potential savings, and
assigning null both to heap references and static variables
yields 15.3% potential space savings, which is less than 0.5%
additional benefits comparing to assigning null just to heap
references.

benchmark ref kind context=0 context=1 context=2 context=3
jess a 5.38 5.41 5.44 5.44

f 0.05 0.06 0.06 0.07
a+f 5.43 5.43 5.45 5.45

raytrace a 0 0 0 0
f 0 0 0 0
a+f 0 0 0 0

javac a 0.34 0.35 0.41 0.43
f 0.10 0.13 0.15 0.67
a+f 0.23 0.26 0.25 0.68

tvla a 0 0 0 0
f 0.17 0.23 0.34 0.56
a+f 0.17 0.22 0.34 0.57

Table 7: The difference (in %) in assign null reachable integral results when considering null assignable
program points computed for two runs with different inputs.

4.2.1 Validity of Assign Null Results
Our assign null experiment detects null assignable pro-

gram points with respect to the current run. However, an
optimizer may instrument a program with null assignments,
only if a program point is null assignable on all execution
paths. In order to validate our assign null results, we ran 4
of our benchmarks with another input, and computed null
assignable program points. Then, each of these benchmarks
was run again with the original input, considering only null
assignable program points detected in the run for both in-
puts.

Table 7 shows the percentage difference in reachable in-
tegral potential savings comparing the results of running a
benchmark with the original input considering the original
set of null assignable program points, and then running the
benchmark with the original input considering only the set
of program points that are null assignable for both inputs.
ref kind column denotes the kind of heap reference being
assigned null (see Section 4.2). We see that except for the
case of assigning null to array elements in jess benchmark,
the difference is insignificant for all context lengths, and for
all reference kinds. This fact gives hope that a precise static
analysis algorithm will be able to achieve most of the poten-
tial savings shown here.

5. CONCLUSION AND FUTURE WORK
In this paper, we studied the potential space savings due

to different kinds of liveness information for Java programs.
Our dynamic measurements, which provide an upper bound
for space savings achievable by an optimizing compiler show
that in general stack reference liveness may yield small ben-
efits, global reference liveness combined with stack reference
liveness may yield medium benefits, and heap reference live-
ness yields the largest potential benefit.

One direction we currently pursue is developing a static
analysis algorithm that identifies null assignable program
points. Hopefully, such an algorithm will allow obtaining a
major part of the potential space savings presented here.

Acknowledgements
We would like to thank David Detlefs and Eliot Moss for
their help in validating our empirical results for stack live-
ness.

6. REFERENCES
[1] O. Agesen, D. Detlefs, and E. Moss. Garbage

Collection and Local Variable Type-Precision and
Liveness in Java Virtual Machines. In SIGPLAN
Conf. on Prog. Lang. Design and Impl., pages
269–279, June 1998.

[2] D. Detlefs and E. Moss, Feb. 2002. Private
Communication.

[3] M. Hirzel, A. Diwan, and A. L. Hosking. On the
usefulness of liveness for garbage collection and leak
detection. In ECOOP, pages 181–206, 2001.

[4] Java Grande Benchmark Suite. Available at
http://www.epcc.ed.ac.uk/javagrande.

[5] Sun JDK 1.2. Available at http://java.sun.com/j2se.

[6] T. Lev-Ami and M. Sagiv. TVLA: A framework for
kleene based static analysis. In SAS’00, Static
Analysis Symposium, pages 280–301. Springer, 2000.
Available at ”http://www.math.tau.ac.il/∼ rumster”.

[7] S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[8] N. Röjemo and C. Runciman. Lag, drag, void and
use—heap profiling and space-efficient compilation
revisited. In Proceedings of the 1996 ACM SIGPLAN
Int. Conf. on Func. Prog., pages 34–41, Philadelphia,
Pennsylvania, 24–26 May 1996.

[9] R. Shaham, E. K. Kolodner, and M. Sagiv. Automatic
removal of array memory leaks in java. In Int. Conf.
on Comp. Construct., pages 50–66, Apr. 2000.

[10] R. Shaham, E. K. Kolodner, and M. Sagiv. On the
effectiveness of GC in java. In Int. Symp. on Memory
Management, pages 12–17. ACM, Oct. 2000.

[11] R. Shaham, E. K. Kolodner, and M. Sagiv. Heap
profiling for space-efficient java. In SIGPLAN Conf.
on Prog. Lang. Design and Impl., pages 104–113.
ACM, June 2001.

[12] SPECjvm98. Standard Performance Evaluation
Corporation (SPEC), Fairfax, VA, 1998. Available at
http://www.spec.org/osg/jvm98/.

