
Object-Oriented Type Inference 

Jens Palsberg and Michael I. Schwartzbach 
pa1sbergQdaimi.aau.d and misQdaimi.aau.dk 

Computer Science Department, Aarhus University 

Ny Munkegade, DK-8000 Arhus C, Denmark 

Abstract 

We present a new approach to inferring types in un- 
typed object-oriented programs with inheritance, 
assignments, and late binding. It guarantees that 
all messages are understood, annotates the pro- 
gram with type information, allows polymorphic 
methods, and can be used as the basis of an op- 
timizing compiler. Types are finite sets of classes 
and subtyping is set inclusion. Using a trace graph, 
our algorithm constructs a set of conditional type 
constraints and computes the least solution by least 
fixed-point derivation. 

1 Introduction 

Untyped object-oriented languages with assign- 

ments and late binding allow rapid prototyping be- 

cause classes inherit implementation and not spec- 

ification. Late binding, however, can cause pro- 

grams to be unreliable, unreadable, and inefficient 

[27]. Type inference may help solve these prob- 

lems, but so far no proposed inference algorithm 

has been capable of checking most common, com- 

pletely untyped programs [9]. 

We present a new type inference algorithm for a 

basic object-oriented language with inheritance, as- 

signments, and late binding. 
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The algorithm guarantees that all messages are un- 

derstood, annotates the program with type infor- 

mation, allows polymorphic methods, and can be 

used as the basis of an optimizing compiler. Types 

are finite sets of classes and subtyping is set in- 

clusion. Given a concrete program, the algorithm 

constructs a finite graph of type constraints. The 

program is typuble if these constraints are solvable. 

The algorithm then computes the least solution in 

worst-case exponential time. The graph contains 

all type information that can be derived from the 

program without keeping track of nil values or flow 

analyzing the contents of instance variables. This 

makes the algorithm capable of checking most com- 

mon programs; in particular, it allows for polymor- 

phic methods. The algorithm is similar to previous 

work on type inference [18,14,27,1,2,19,12,10,9] 

in using type constraints, but it differs in handling 

late binding by conditional constraints and in re- 

solving the constraints by least fixed-point deriva- 

tion rather than unification. 

The example language resembles SMALLTALK [8] 

but avoids metaclasses, blocks, and primitive meth- 

ods. Instead, it provides explicit new and if-then- 

else expressions; classes like Natural can be pro- 

grammed in the language itself. 

In the following section we discuss the impacts of 

late binding on type inference and examine previ- 

ous work. In later sections we briefly outline the 

example language, present the type inference algo- 

rithm, and show some examples of its capabilities. 

OOPSLA’91, pp. 146-161 
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2 Late Binding 

Late binding means that a message send is dynam- 

ically bound to an implementation depending on 

the class of the receiver. This allows a form of poly- 

morphism which is fundamental in object-oriented 

programming. It also, however, involves the danger 

that the class of the receiver does not implement a 

method for the message-the receiver may even be 

nil. Furthermore, late binding can make the control 

flow of a program hard to follow and may cause a 

time-consuming run-time search for an implemen- 

tation. 

It would significantly help an optimizing compiler 

if, for each message send in a program text, it could 

infer the following information. 

l Can the receiver be nil? 

l Can the receiver be an instance of a class which 

does not implement a method for the message? 

l What are the classes of all possible non-nil re- 

ceivers in any execution of the program? 

Note that the available set of classes is induced by 

the particular program. These observations lead us 

to the following terminology. 

Terminology: 

Type: A type is a finite set of classes. 

Induced Type: The induced type of an ex- 

pression in a concrete program is the set 

of classes of all possible non-nil values to 
which it may evaluate in any execution of 

that particular program. 

Sound approximation: A sound approxima- 
tion of the induced type of an expression 

in a concrete program is a superset of the 

induced type. 

Note that a sound approximation tells “the whole 

truth”, but not always “nothing but the truth” 

about an induced type. Since induced types are 

generally uncomputable, a compiler must make do 

with sound approximations. An induced type is 

a subtype of any sound approximation; subtyp- 

ing is set inclusion. Note also that our notion of 

type, which we also investigated in [21], differs from 

those usually used in theoretical studies of types in 

object-oriented programming [3, 71; these theories 

have difficulties with late binding and assignments. 

The goals of type inference can now be phrased as 

follows. 

I Goals of type inference: 

Safety guarantee: A guarantee that any mes- 

sage is sent to either nil or an instance of 

a class which implements a method for the 
message; and, given that, also 

Type information: A sound approximation of 
the induced tvpe of any receiver. 

Note that we ignore checking whether the receiver 

is nil; this is a standard data flow analysis problem 

which can be treated separately. 

If a type inference is successful, then the program 

is typable; the error messageNotUnderstood will not 

occur. A compiler can use this to avoid inserting 

some checks in the code. Furthermore, if the type 

information of a receiver is a singleton set, then 

the compiler can do early binding of the message 

to the only possible method; it can even do in-line 

substitution. Similarly, if the type information is 

an empty set, then the receiver is known to always 

be nil. Finally, type information obtained about 

variables and arguments may be used to annotate 

the program for the benefit of the programmer. 

SMALLTALK and other untyped object-oriented lan- 

guages are traditionally implemented by interpret- 

ers. This is ideal for prototyping and exploratory 

development but often too inefficient and space de- 

manding for real-time applications and embedded 

systems. What is needed is an optimizing compiler 

that can be used near the end of the programming 

phase, to get the required efficiency and a safety 

guarantee. A compiler which produces good code 
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can be tolerated even it is slow because it will be 

used much less often than the usual programming 

environment. Our type inference algorithm can 

be used as the basis of such an optimizing com- 

piler. Note, though, that both the safety guaran- 

tee and the induced types are sensitive to small 

changes in the program. Hence, separate compi- 

lation of classes seems impossible. Typed object- 

oriented languages such as SIMULA [6]/BETA [15], 
C++ [26], and EIFFEL [17] allow separate compila- 

tion but sacrifice flexibility. The relations between 

types and implementation are summarized in fig- 

ure 1. 

When programs are: Their implementation is: 

Untyped Interpretation 

Typable Compilation 

Typed Separate Compilation 

Figure 1: Types and implementation. 

Graver and Johnson [lo, 91, in their type system 

for SMALLTALK, take an intermediate approach be- 

tween “untyped” and ‘(typed” in requiring the pro- 

grammer to specify types for instance variables 

whereas types of arguments are inferred. Suzuki 

[27], in his pioneering work on inferring types in 

SMALLTALK, handles late binding by assuming that 

each message send may invoke all methods for that 

message. It turned out, however, that this yields 

an algorithm which is not capable of checking most 

common programs. 

Both these approaches include a notion of method 

type. Our new type inference algorithm abandons 

this idea and uses instead the concept of conditional 
constraints, derived from a finite graph. Recently, 

Hense [ll] addressed type inference for a language 

O'SMALL which is almost identical to our example 

language. He uses a radically different technique, 

with type schemes and unification based on work of 

Rdmy [24] and Wand [29]. His paper lists four pro- 

grams of which his algorithm can type-check only 

the first three. Our algorithm can type-check all 

four, in particular the fourth which is shown in 

figure 11 in appendix B. Hense uses record types 

which can be extendible and recursive. This seems 

to produce less precise typings than our approach, 

and it is not clear whether the typings would be 
useful in an optimizing compiler. One problem is 

that type schemes always correspond to either sin- 

gletons or infinite sets of monotypes; our finite sets 

can be more precise. Hense’s and ours approaches 

are similar in neither keeping track of nil values 

nor flow analyzing the contents of variables. We 

are currently investigating other possible relations. 

Before going into the details of our type inference 

algorithm we first outline an example language on 

which to apply it. 

3 The Language 

Our example language resembles SMALLTALK, see 

figure 2. 

A progmm is a set of classes followed by an expres- 

sion whose value is the result of executing the pro- 

gram. A class can be defined using inheritance and 

contains instance variables and methods; a method 
is a message selector (ml- . . . m,-) with formal pa- 

rameters and an expression. The language avoids 

metaclasses, blocks, and primitive methods. In- 

stead, it provides explicit new and if-then-else ex- 

pressions (the latter tests if the condition is non- 

nil). The result of a sequence is the result of the 

last expression in that sequence. The expression 

“self class new” yields an instance of the class of 

self. The expression “E instanceof ClassId” yields 

a run-time check for class membership. If the check 

fails, then the expression evaluates to nil. 

The SMALLTALK system is based on some primi- 

tive methods, written in assembly language. This 

dependency on primitives is not necessary, at least 

not in this theoretical study, because classes such 

as True, False, Natural, and List can be programmed 

in the language itself, as shown in appendix A. 
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(Program) P ::I Cr . ..C. E 

(Class) C ::= class ClassId [inherits ClassId] 

varIdl . ..Idk Ml . ..M. 
end ClassId 

(Method) M ::= method ml Idr . ..m. Id, E 

(Expression) E ::o Id:=E]EmrEr...m,E,]E;E)ifEthenEelseE] 
ClassId new I self class new I E instanceof ClassId I 
self I super 1 Id I nil 

Figure 2: Syntax of the example language. 

4 Type Inference 

Our type inference algorithm is based on three fun- 

damental observations. 

Observations: 

Inheritance: Classes inherit implementation 

and not specification. 

Classes: There are finitely many classes in a 

program. 

Message sends: There are finitely many syn- 

tactic message sends in a program. 

The first observation leads to separate type infer- 

ence for a class and its subclasses. Notionally, this 

is achieved by expanding all classes before doing 

type inference. This expansion means removing all 

inheritance by 

l Copying the text of a class to its subclasses Three kinds of type information: 

l Replacing each message send to super by a 
message send to a renamed version of the in- 

herited method 

l Replacing each “self class new” expression by a 

“ClassId new” expression where ClassId is the 

enclosing class in the expanded program. 

program is at most quadratic in the size of the orig- 

inal. 

The second and third observation lead to a finite 

representation of type information about all execu- 

tions of the expanded program; this representation 

is called the trace graph. From this graph a finite 

set of type constraints will be generated. Typa- 

bility of the program is then solvability of these 

constraints. Appendix B contains seven example 

programs which illustrate different aspects of the 

type inference algorithm, see the overview in fig- 

ure 3. The program texts are listed together with 

the corresponding constraints and their least solu- 

tion, if it exists. Hense’s program in figure 11 is the 

one he gives as a typical example of what he cannot 

type-check [ll]. We invite the reader to consult the 

appendix while reading this section. 

A trace graph contains three kinds of type infor- 

mation. 

Local constraints: Generated from method 

bodies; contained in nodes. 

Connecting constraints: Reflect 

sends; attached to edges. 

message 

Conditions: Discriminate receivers; attached 

to edges. 

This idea of expansion is inspired by Graver and 

Johnson [lo, 91; note that the size of the expanded 
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Figure 3: An overview of the example programs. 

4.1 Trace Graph Nodes 

The nodes of the trace graph are obtained from 

the various methods implemented in the program. 

Each method yields a number of different nodes: 

one for each syntactic message send with the cor- 

responding selector. The situation is illustrated 

in figure 4, where we see the nodes for a method 

m that is implemented in each of the classes 

Cl,C2,* * -, n* C Thus, the number of nodes in the 

trace graph will at most be quadratic in the size 

of the program. There is also a single node for 

the main expression of the program, which we may 

think of as a special method without parameters. 

Methods do not have types, but they can be pro- 

vided with type annotations, based on the types 

of their formal parameters and result. A particu- 

lar method implementation may be represented by 

several nodes in the trace graph. This enables it to 

be assigned several different type annotations-one 

for each syntactic call. This allows us effectively to 

obtain method polymorphism through a finite set 

of method “monotypes”. 

4.2 Local Constraints 

Each node contains a collection of local constraints 
that the types of expressions must satisfy. For each 

syntactic occurrence of an expression E in the im- 

plementation of the method, we regard its type as 

an unknown variable [El. Exact type information 

is, of course, uncomputable. In our approach, we 

will ignore the following two aspects of program ex- 

ecutions. 

Approximations: 

Nil values: It does not keep track of nil values. 

Instance variables: It does not flow analyze 

the contents of instance variables. 

The first approximation stems from our discussion 

of the goals of type inference; the second corre- 

sponds to viewing an instance variable as having a 

single possibly large type, thus leading us to iden- 

tify the type variables of different occurrences of 

the same instance variable. In figures 14 and 15 

we present two program fragments that are typical 

for what we cannot type because of these approxi- 

mations. In both cases the constraints demand the 

false inclusion {True} E {Natural}. Suzuki [27] and 

Hense [ll] make the same approximations. 

For an expression E, the local constraints are gener- 

ated from all the phrases in its derivation, accord- 

ing to the rules in figure 5. The idea of generat- 

ing constraints on type variables from the program 

syntax is also exploited in [28, 251. 

The constraints guarantee safety; only in the cases 

4) and 8) do the approximations manifest them- 

selves. Notice that the constraints can all be ex- 
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method implementations 

class Cr class C2 class C, 

sends 

Figure 4: Trace graph nodes. 

pressed as inequalities of one of the three forms: 

“constant C_ variable”, “variable E constant”, or 

“variable s variable”; this will be exploited later. 

Each different node employs unique type variables, 

except that the types of instance variables are com- 

mon to all nodes corresponding to methods imple- 

mented in the same class. A similar idea is used by 

Graver and Johnson [lo, 91. 

4.3 Trace Graph Edges 

The edges of the trace graph will reflect the possible 

connections between a message send and a method 

that may implement it. The situation is illustrated 

in figure 6. 

If a node corresponds to a method which contains a 

message send of the form X m: A, then we have an 

edge from that sender node to any other receiver 

node which corresponds to an implementation of a 

method m. We label this edge with the condition 

that the message send may be executed, namely 

C E 6x1 where C is the class in which the particular 

method m is implemented. With the edge we asso- 

ciate the connecting constraints, which reflect the 

relationship between formal and actual parameters 

and results. This situation generalizes trivially to 

methods with several parameters. Note that the 

number of edges is again quadratic in the size of 

the program. 

4.4 Global Constraints 

To obtain the global constraints for the entire pro- 

gram we combine local and connecting constraints 

in the manner illustrated in figure 7. This pro- 

duces conditional constraints, where the inequali- 

ties need only hold if all the conditions hold. The 

global constraints are simply the union of the con- 

ditional constraints generated by all paths in the 

graph, originating in the node corresponding to the 

main expression of the program. This is a finite set, 

because the graph is finite; as shown later in this 

section, the size of the constraint set may in (ex- 

treme) worst-cases become exponential. 

If the set of global constraints has a solution, then 
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1) 
2) 
3) 
4) 
5) 
6) 
7) 
8) 
Q> 

Expression: 
Id := E 

E ml El . ..m. E, 

El ; E2 
if El then E2 else Es 
C new 

E instanceof C 

self 

Id 

nil 

Constraint: 

[Id] _> [El A [Id := El = [En 

[En c {C I C implements ml.. . m,} 

UEI ; Et1 = [EdI 
[if Er then E2 else Ez] I> [Ez] U [Es] 
[C new] = {C} 
[E instanceof Cl = {C} 

[selfl = {the enclosing class} 
[Id] = [IdI 

[nil] = { } 

Figure 5: The local constraints. 

. 

‘Xm: A 
. . . 

c E uxn method m: F 

c E 

sender 

Connecting constraints: 

receiver 

uAn = uFn 
[E] = [X m: A] 

(“actual equals formal”) 

(“formal result equals actual result”) 

Figure 6: Trace graph edges. 

this provides approximate information about the 

dynamic behavior of the program. 

Consider any execution of the program. While ob- 

serving this, we can trace the pattern of method 

executions in the trace graph. Let E be some ex- 

pression that is evaluated at some point, let VAL(E) 

be its value, and let CLASS(b) be the class of an 

object b. If L is some solution to the global con- 

straints, then the following result holds. 

Soundness Theorem: 

If VAL(E) # nil then CLASS(VAL(E)) E L([En) 

It is quite easy to see that this must be true. We 

sketch a proof by induction in the number of mes- 

sage sends performed during the trace. If this is 

zero, then we rely on the local constraints alone; 

given a dynamic semantics [5,4,23,13] one can eas- 

ily verify that their satisfaction implies the above 

property. If we extend a trace with a message send 

X m: A implemented by a method in a class C, 

then we can inductively assume that C E L([Xn). 

But this implies that the local constraints in the 

node corresponding to the invoked method must 

hold, since all their conditions now hold and L is 

a solution. Since the relationship between actual 

and formal parameters and results is soundly rep- 

resented by the connecting constraints, which also 

must hold, the result follows. 

Note that an expression E occurring in a method 

that appears Ic times in the trace graph has Ic 

type variables [EnI, [Enz, . . ., [[Elk in the global 

constraints. A sound approximation to the induced 
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Ir’l K2 
. L 

Conditional constraint: 

Kl, K2, KS, . . ..K. + LUG’ 

L = local constraints of the final node 

C = connecting constraints of the final edge 

Figure 7: Conditional constraints from a path. 

type of E is obtained as 

U wh) i 
Appendix C gives an efficient algorithm to compute 

the smallest solution of the extracted constraints, 

or to decide that none exists. The algorithm is at 

worst quadratic in the size of the constraint set. 

The complete type inference algorithm is summa- 

rized in figure 8. 

4.5 Type Annotations 

Finally, we will consider how a solution L of the 

type constraints can produce a type annotation of 

the program. Such annotations could be provided 

for the benefit of the programmer. 

An instance variable x has only a single associ- 

ated type variable. The type annotation is sim- 

ply L([xJJ). The programmer then knows an upper 

bound of the set of classes whose instances may 

reside in x. 

A method has finitely many type annotations, each 

of which is obtained from a corresponding node in 

the trace graph. If the method, implemented in the 

class C, is 

Input: A program in the example language. 

Output: Either: a safety guarantee and type 
information about all expressions; or: 
“unable to type the program”. 

1) 

2) 

Expand all classes. 

Construct the trace graph of the ex- 

panded program. 

3) Extract a set of type constraints from 

the trace graph. 

4) Compute the least solution of the set 
of type constraints. If such a solution 
exists, then output it as the wanted 
type information, together with a 

safety guarantee; otherwise, output 

“unable to type the program”. 

Figure 8: Summary of the type inference algorithm. 

method ml: F1 m2: F2 . . .m,: F, 

then each type annotation is of the form 

The programmer then knows the various manners 

in which this method may be used. 
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A constraint solution contains more type informa- 

tion about methods than the method types used 

by Suzuki. Consider for example the polymorphic 

identity function in figure 12. Our technique yields 

both of the method type annotations 

id : {C} x {True} + {True} 

id : {C} x {Natural} + {Natural} 

whereas the method type using Suzuki’s framework 

is 

id : {C} x {True, Natural} --f {True, Natural} 

which would allow neither the succ nor the isTrue 

message send, and, hence, would lead to rejection 

of the program. 

4.6 An Exponential Worst-Case 

The examples in appendix B show several cases 

where the constraint set is quite small, in fact linear 

in the size of the program. While this wilI often be 

the situation, the theoretical worst-case allows the 

constraint set to become exponential in the size 

of the program. The running time of the inference 

algorithm depends primarily on the topology of the 

trace graph. 

In figure 9 is shown a program and a sketch of its 

trace graph. The induced constraint set will be ex- 

ponential since the graph has exponentially many 

different paths. Among the constraints will be a 

family whose conditions are similar to the words of 

the regular language 

(CCC + DCC); 

the size of which is clearly exponential in n. 

Note that this situation is similar to that of type 

inference in ML, which is also worst-case exponen- 

tial but very useful in practice. The above scenario 

is in fact not unlike the one presented in [16] to il- 

lustrate exponential running times in ML. Another 

similarity is that both algorithms generate a po- 

tentially exponential constraint set that is always 

solved in polynomial time. 

class C 
var x 
method ml 

x m2 
method m2 

x m3 

. 

met hod m,-1 

X m73 
method m, 

0 

end C 

class D 

var x 
method ml 

x m2 
method rn2 

x m3 

method mn-l 

X 43 
method m, 

0 

end D 

Figure 9: A worst-case program. 

5 Conclusion 

Our type inference algorithm is sound and can han- 

dle most common programs. It is also conceptually 

simple: a set of uniform type constraints is con- 

structed and solved by fixed-point derivation. It 

can be further improved by an orthogonal effort in 

data flow analysis. 

The underlying type system is simple: types are 

finite sets of classes and subtyping is set inclusion. 

An implementation of the type inference algorithm 

is currently being undertaken. Future work in- 

cludes extending this into an optimizing compiler. 

The inference algorithm should be easy to modify 

to work for full SMALLTALK, because metaclasses 

are simply classes, blocks can be treated as objects 
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with a single method, and primitive methods can 

be handled by stating the constraints that the ma- 

chine code must satisfy. Another challenge is to 

extend the algorithm to produce type annotations 

together with type substitution, see [20, 22,211. 

Appendix A: Basic classes 

class 0 bject 

end Object 

class True 

met hod isTrue 

Object new 
end True 

class False 

method isTrue 

nil 

end False 

Henceforth, we abbreviate “True new” as “true”, 

and “False new” as “false” . 

class Natural 

var rep 

met hod isZero 

if rep then false else true 

method succ 

(Natural new) update: self 

method update: x 

rep := x; self 

met hod pred 

if (self isZero) isTrue then self else rep 

method less: i 

if (i isZero) isTrue 

then false 

else if (self isZero) isTrue then true 

else (self pred) less: (i pred) 

end Natural 

Henceforth, we abbreviate “Natural new” as “O”, 

and, recursively, “n succ” as “n + 1”. 

class List 

var head, tail 

method setHead: h setTail: t 

head := h; tail := t 

method cons: x 

(self class new) setHead: x setTail: self 

method isEmpty 

if head then false else true 

method car 

head 

method cdr 

tail 

method append: aList 

if (self isEmpty) isTrue 

then aList 

else (tail append: alist) cons: head 

method insert: x 

if (self isEmpty) isTrue 

then self cons: x 

else 
if (head less: x) isTrue 

then self cons: x 

else (tail insert: x) cons: head 

met hod sort 

if (self isEmpty) isTrue then self 

else (tail sort) insert: head 

method merge: aList 

if (self isEmpty) isTrue 

then aList 

else 

if (head less: (aList car)) isTrue 

then (tail merge: alist) cons: head 

else (self merge: (aList cdr)) cons: (aList car) 

end List 

class Comparable 

var key 

met hod get Key 

key 
method set Key: k 

key := k 

method less: c 

key less: (c get Key) 

end Comparable 
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Appendix B: Example Programs 

class A 

method f 

7 

end A 

class B 

method f 

true 

end B 

x := A new; (x f) succ 

Constraints: 

[A new] = {A} 

[XII 2 [A new] 
[x := A newa = [A new1 

bll C {A, Bl 
A E [X]I =k [X fl = 871 
A E 1x1 a [7] = {Natural} 

B E 1x1 + [X fl = [true] 

B E 1x1 j [true] = {True} 

[x fj C {Natural} 

Natural E [x fl + [(x f) succ] = {Natural} 

[X := A new; (X f) succ] = [(x f) succ] 

Smallest Solution: 

[xl = [[A new] = [X := A new] = {A} 

; fj = ucx f) succn = 

x := A new; (x f) succj = 1[7] = {Natural} 

[true] = {True} 

Trace graph sketch: 

Figure 10: Conditions at work. 

class A 

method m 

0 

end A 

class B inherits A 

method n 

0 

end B 

a := A new; 
b := B new; 
a := b; 

am 

Constraints: 

[A new] = {A} 

[alI 2 UA new] 
[B new] = {B} 

UbD 2 UB n-D 

bll 1 Ubll 

IMI c_ (0) 
A E [a] =+ [a m] = [On 
B E [a] + [a m] = [On 
[O] = {Natural} 

. . 

Smallest Solution: 

;;; = ;y 

[[a ml = {Natural} 

[A new] = {A} 

[B new] = {B} 

. 

Trace graph sketch: 

0 “B 

Figure 11: Hense’s program. 
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class C 
method id: x 

X 

end C 
((C new) id: 7) succ; 

((C new) id: true) isTrue 

Constraints: 

[C newjl = {C} 
UC new11 G {Cl 
c E UC new]1 * u7j = uxnl 
C E [C newnl + I[& = [(C new) id: 71 

[7] = {Natural} 

I[(C new) id: 70 G {Natural} 

Natural E I[(C new) id: 70 =+ {Natural} = [((C new) id: 7) succ] 

[C new]12 = {C} 
UC new12 C_ W 
C E [C new]12 =s [true] = uxj2 

C E UC newn2 =s [x]2 = [(C new) id: true] 

[true] = {True} 

[(C new) id: true] G (True,False} 

True E [(C new) id: true] =+ {Object} = [((C new) id: true) isTrue] 

False E [(C new) id: true] =S {} = [((C new) id: true) isTrue] 

Smallest Solution: 

UC newnl = [C newn2 = {C} 

u7n = bnl = u(c new) id: 71 = [((C new) id: 7) succ] = {Natural} 

[true] = uxn2 = [(C new) id: true] = {True} 

[((C new) id: true) isTrue] = {Object} 

Trace graph sketch: 

Figure 12: A polymorphic method. 
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class D 

method f: x 
if x then self f: x else nil 

end D 

(D new) f: nil 

Constraints: 

[D new] = {D} 

UD n-1 G {D) 
D E CD new] + [nil] = [xnl 

D E [D new] * [if x then self f: x else niljl = I[(0 new) f: nil] 

D E [D new] 5 [if x then self f: x else niljl 1 [self f: xl1 u [ni& 

D E [D new] + [ni& = {} 

D E UD new] + [selfD1= {D} 

D E I[D new] a ([selfDl C {D} 

D E I[D new], D E [selfll =F [x]11 = [xl2 

D E UD new], D E [selfll =+- [if x then self f: x else nilI = [self f: x]l 

D E [D new], D E [selfll =+ [if x then self f: x else nilI 2 [self f: xl2 U [niln2 

D E [[D new], D E [selfll =+ [nilJ2 = {} 

D E [D new], D E [selflll =+ [selfjs = {D} 

D E [[D new], D E [selfD1 =+ [selfllz C {D} 

D E [D new], D E [selfjl, D E [selfjp =+ [xl2 = [xl2 

D E [D new], D E [selflll, D E [selflz + [if x then self f: x else nilJJ2 = [self f: xl2 

[[nil] = {} 

Smallest Solution: 

[D new] = [selflI = [seh& = {D} 

[nil] = I[& = [ni& = [if x then self f: x else nil]lI = [self f: xl1 = 

[(D new) f: nilI = I[xn2 = I[nilJj2 = [if x then self f: x else nilI = 

[self f: xl2 = [(D new) f: nila = {} 

Trace graph sketch: 

Figure 13: A recursive method. 
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x := 7; 
x succ; 
x := true; 

x isTrue 

Constraints: 

bn 2 u7n 
[7’J = {Natural] 

[x] C {Natural} 

ud 2 Ufr4l 
[true] = {True} 

1x1 C_ {True,False} 
. . . 

Figure 14: A safe’program rejected. 

(if nil then true else 7) succ 

Constraints: 

[if nil then true else 71 c {Natural} 

[if nil then true else 70 2 [true] U 1[7] 

[true] = {True} 

1[7] = {Natural} 
. . . 

Figure 15: Another safe program rejected. 

class Student inherits Comparable 

. . . 

end Student 

class ComparableList inherits List 

method studentcount 

if (self isEmpty) isTrue 

then 0 
else 

if (self car) instanceof Student 

then ((self cdr) studentcount) succ 

else (self cdr) studentcount 

end ComparableList 

Figure 16: An example program. 

Appendix C: Solving Systems of 
Conditional Inequalities 

This appendix shows how to solve a finite system 

of conditional inequalities in quadratic time. 

Definition C.l: A CT-system consists of 

l a finite set A of atoms. 

l a finite set {(Y;} of wariubles. 

l a finite set of conditional inequalities of the 

form 

Cl,CZ, . . ..Ck * Q 

Each C; is a condition of the form a E ‘~j, 

where a E A is an atom, and & is an inequality 
of one of the following forms 

where A s A is a set of atoms. 

A solution L of the system assigns to each variable 

a; a set L(a;) C A such that all the conditional 

inequalities are satisfied. 0 

In our application, A models the set of classes oc- 

curring in a concrete program. 

Lemma C.2: Solutions are closed under intersec- 

tion. Hence, if a CI-system has solutions, then it 

has a unique minimal one. 

Proof: Consider any conditional inequality of the 

form Cl, C2, . . . , Ck + Q, and let { Li} be all so- 

lutions. We shall show that niLi is a solution. If 

a condition a E niLi is true, then so is all of 

a E Li(aj)m Hence, if all the conditions of Q are 

true in n;L;, then they are true in each Li; fur- 

thermore, since they are solutions, & is also true 

in each Lie Since, in general, Al, C_ Bk implies 

nkAk s n&, it follows that niLi is a solution. 

Hence, if there are any solutions, then niLi is the 

unique smallest one. 0 

Definition C.3: Let C be a CI-system with atoms 
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error 

I 

(d,dA,.-4) 

et0 ,.-.A) 

Figure 17: The lattice of assignments, 

A and n distinct variables. An assignment is an el- 

ement of (2A)” U { error} ordered as a lattice, see 

figure 17. If different from error, then it assigns a 

set of atoms to each variable. If V is an assignment, 

then c(V) is a new assignment, defined as follows. 

If V = error, then t?(V) = error. An inequality is 

enabled if all of its conditions are true under V. If 

for any enabled inequality of the form CY~ C_ A we 
do not have V(ayi) G A, then c(V) = error; other- 

wise, c(V) is the smallest pointwise extension of V 
such that 

l for every enabled inequality of the form A E 
cq we have A C c(V)(q). 

l for every enabled inequality of the form cyi C_ 

ayj we have V(ai) c c(V)(cyj). 

Clearly, c’ is monotonic in the above lattice. o 

Lemma C.4: An assignment L # error is a solu- 

tion of a CI-system C i$ L = c(L). If C has no 

solutions, then error is the smallest fixed-point of 

c’. 

Proof: If L is a solution of C, then clearly (? will 

not equal error and cannot extend L; hence, L is 

a fixed-point. Conversely, if L is a fixed-point of 

c, then all the enabled inequalities must hold. If 

there are no solutions, then there can be no fixed- 

point below error. Since error is by definition a 

fixed-point, the result follows. q 

This means that to find the smallest solution, or to 

decide that none exists, we need only compute the 

least fixed-point of c”. 

Lemma C.5: For any CI-system C, the least fixed- 

point of c’ is equal to 

lim C"(0,0,...,0) 
k-ma 

Proof: This is a standard result about monotonic 

functions on complete lattices. 0 

Lemma CA: Let n be the number of di#erent 
conditions in a CI-system C. Then 

lim C”(0,0,. . . 
k-ms 

,0)=c”+y0,0 ,..., 0) 

Proof: When no more conditions are enabled, then 

the fixed-point is obtained by a single application. 

Once a condition is enabled in an assignment, it 

will remain enabled in all larger assignments. It 

follows that after n iterations no new conditions 

can be enabled; hence, the fixed-point is obtained 

in at most n + 1 iterations. U 

Lemma C.7: The smallest solution to any CI- 

system, or the decision that none exists, can be 

obtained in quadratic time. 

Proof: This follows from the previous lemmas. 0 
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