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ABSTRACT
The goal of points-to analysis for Java is to determine the set
of objects pointed to by a reference variable or a reference
object field. This information has a wide variety of client ap-
plications in optimizing compilers and software engineering
tools. In this paper we present a points-to analysis for Java
based on Andersen’s points-to analysis for C [5]. We im-
plement the analysis by using a constraint-based approach
which employs annotated inclusion constraints. Constraint
annotations allow us to model precisely and efficiently the
semantics of virtual calls and the flow of values through ob-
ject fields. By solving systems of annotated inclusion con-
straints, we have been able to perform practical and precise
points-to analysis for Java.

We evaluate the performance of the analysis on a large
set of Java programs. Our experiments show that the anal-
ysis runs in practical time and space. We also show that
the points-to solution has significant impact on clients such
as object read-write information, call graph construction,
virtual call resolution, synchronization removal, and stack-
based object allocation. Our results demonstrate that the
analysis is a realistic candidate for a relatively precise, prac-
tical, general-purpose points-to analysis for Java.

1. INTRODUCTION
Performance improvement through the use of compiler

technology is important for making Java a viable choice
for production-strength software. In addition, the develop-
ment of large Java software systems requires strong support
from software engineering tools for program understanding,
maintenance, and testing. Both optimizing compilers and
software engineering tools employ various static analyses to
determine properties of run-time program behavior. One
fundamental static analysis is points-to analysis. For Java,
points-to analysis determines the set of objects whose ad-
dresses may be stored in a given reference variable or refer-
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ence object field. By computing such points-to sets for vari-
ables and fields, the analysis constructs an abstraction of
the run-time memory states of the analyzed program. This
abstraction is typically represented by one or more points-
to graphs. (An example of a points-to graph is shown in
Figure 1, which is discussed later.)

Points-to analysis enables a variety of other analyses—for
example, side-effect analysis, which determines the memory
locations that may be modified by the execution of a state-
ment, and def-use analysis, which identifies pairs of state-
ments that set the value of a memory location and subse-
quently use that value. Such analyses are needed by compil-
ers to perform well-known optimizations such as code mo-
tion and partial redundancy elimination. These analyses are
also important in the context of software engineering tools:
for example, def-use analysis is needed for program slicing
and data-flow-based testing. Points-to analysis is a crucial
prerequisite for employing these analyses and optimizations.

In addition to enabling other analyses, points-to anal-
ysis can be used directly in optimizing Java compilers to
perform a variety of popular optimizations such as virtual
call resolution, removal of unnecessary synchronization, and
stack-based object allocation. Typically, each of these op-
timizations is based on a specialized analysis designed for
the purpose of this specific optimization. Thus, compil-
ers that employ multiple optimizations need to implement
many different analyses. In contrast, using a single general-
purpose points-to analysis can enable several different op-
timizations. Furthermore, the cost of the analysis can be
amortized across many client optimizations, and the devel-
opment effort to implement the optimizations can be signif-
icantly reduced.

Because of the many applications of points-to analysis, it
is important to investigate approaches for precise and effi-
cient computation of points-to information. In this paper
we define and evaluate a points-to analysis for Java which
is based on Andersen’s points-to analysis for C [5], with all
extensions necessary to handle object-oriented features.

Andersen’s analysis is a relatively precise flow- and con-
text-insensitive analysis1 with cubic worst-case complexity.
Despite this complexity, previous work has shown that cer-
tain constraint-based techniques allow efficient implementa-
tions of this analysis [14, 31]. We have developed a constraint-

1A flow-insensitive analysis ignores the flow of control be-
tween program points. A context-insensitive analysis does
not distinguish between different invocations of a procedure.



based approach that extends the previous work with features
necessary for points-to analysis for Java. We introduce con-
straint annotations, and show how to implement the analysis
using annotated inclusion constraints of the form L ⊆a R,
where a is a constraint annotation, and L and R are ex-
pressions representing points-to sets. The annotations play
two roles in our analysis. Method annotations are used to
model precisely and efficiently the semantics of virtual calls,
by representing the relationships between a virtual call, its
receiver objects, and its target methods. Field annotations
allow separate tracking of the flow of values through the dif-
ferent fields of an object. By using techniques for efficient
representation and resolution of systems of annotated inclu-
sion constraints, we have been able to perform practical and
precise points-to analysis for Java.

One disadvantage of Andersen’s analysis is the implicit
assumption that all code in the program is executable. Java
programs contain large portions of unused library code; in-
cluding such dead code can have negative effects on analysis
cost and precision. In our analysis, we keep track of all
methods potentially reachable from the entry points of the
program, and we only analyze such reachable methods.

We have implemented our analysis and evaluated its per-
formance on a large set of Java programs. On 16 out of the
23 data programs, analysis time is less than a minute. Even
on large programs, the analysis runs in a few minutes and
uses less than 180Mb of memory. Our results show that the
analysis runs in practical time and space, which makes it
a realistic candidate for a relatively precise general-purpose
points-to analysis for Java.

We have evaluated the impact of the analysis on several
of its possible client applications. Our results show very
good analysis precision in determining which objects may
be read or written by program statements; this object read-
write information is a prerequisite for clients such as side-
effect analysis, def-use analysis and dependence analysis. In
addition, our measurements show significant improvement in
the precision of the program call graph. Through profiling
experiments, we observe that in many cases our analysis
allows resolution of the majority of run-time virtual calls.
Our experiments also show that the points-to solution can
be used to detect a large number of objects that do not need
synchronization or can be stack-allocated instead of heap-
allocated.

Contributions. The contributions of our work are the
following:

• We define a general-purpose points-to analysis for Java
based on Andersen’s points-to analysis for C. We show
how to implement the analysis using a constraint-based
approach that employs annotated inclusion constraints.
The implementation models virtual calls and object
fields precisely and efficiently, and only analyzes reach-
able methods.

• We evaluate the analysis on a large set of Java pro-
grams. Our results show that the analysis runs in
practical time and space, and has significant impact
on object read-write information, call graph construc-
tion, virtual call resolution, synchronization removal,
and stack-based object allocation.

class Y {..}
class X {

Y f;

void set (Y r)

{ this.f = r; }
static void main() {

X p = new X();s1:
Y q = new Y();s2:
p.set(q);

}
}
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Figure 1: Sample program and its points-to graph.

Outline. The rest of the paper is organized as follows.
Section 2 defines the semantics of our points-to analysis.
Section 3 discusses the applications of points-to analysis for
Java. Section 4 describes the general structure of our an-
notated inclusion constraints, and Section 5 contains the
details of our constraint-based points-to analysis. The ex-
perimental results are presented in Section 6. Section 7 dis-
cusses related work, and Section 8 presents conclusions and
future work.

2. SEMANTICS OF POINTS-TO ANALYSIS
FOR JAVA

In this section we define the semantics of our points-to
analysis for Java; Section 5 describes the implementation
of the analysis with annotated inclusion constraints. The
analysis is defined in terms of three sets. Set R contains all
reference variables in the analyzed program (including static
variables). Set O contains names for all objects created at
object allocation sites; for each allocation site si, we use a
separate object name oi ∈ O. Set F contains all instance
fields in program classes. Analysis semantics is expressed as
manipulations of points-to graphs containing two kinds of
edges. Edge (r, oi) ∈ R × O shows that reference variable
r points to object oi. Edge (〈oi, f〉, oj) ∈ (O × F ) × O
shows that field f of object oi points to object oj . A sample
program and its points-to graph are shown in Figure 1.

To simplify the presentation, we only discuss the kinds
of statements listed below; our actual implementation (de-
scribed in Section 5) handles the entire language.

• Direct assignment: l = r

• Instance field write: l.f = r

• Instance field read: l = r.f

• Object creation: l = new C

• Virtual invocation: l = r0.m(r1,...,rk)

At a virtual call, name m uniquely identifies a method in
the program. This method is the compile-time target of
the call, and is determined based on the declared type of
r0 [18, Section 15.11.3]. At run time, the invoked method
is determined by examining the class of the receiver object
and all of its superclasses, and finding the first method that
matches the signature and the return type of m [18, Section
15.11.4].



f(G, l = new C) = G ∪ {(l, oi)}
f(G, l = r) = G ∪ {(l, oi) | oi∈Pt(G, r)}
f(G, l.f = r) =

G ∪ {(〈oi, f〉, oj) | oi∈Pt(G, l) ∧ oj ∈Pt(G, r)}
f(G, l = r.f) =

G ∪ {(l, oi) | oj ∈Pt(G, r) ∧ oi∈Pt(G, 〈oj , f〉)}
f(G, l = r0.m(r1, . . . , rn)) =

G ∪ {resolve(G, m, oi, r1, . . . , rn, l) | oi∈Pt(G, r0)}
resolve(G, m, oi, r1, . . . , rn, l) =

let mj(p0, p1, . . . , pn, ret j) = dispatch(oi, m) in
{(p0, oi)} ∪ f(G, p1 = r1) ∪ . . . ∪ f(G, l = retj)

Figure 2: Points-to effects of program statements.

Analysis semantics is defined in terms of rules for adding
new edges to points-to graphs. Each rule represents the
semantics of a program statement. Figure 2 shows the rules
as functions of the form f : PtGraph × Stmt → PtGraph .
The points-to set (i.e., the set of all successors) of x in graph
G is denoted by Pt(G,x). The solution computed by the
analysis is a points-to graph that is the closure of the empty
graph under the edge-addition rules.

For most statements, the effects on the points-to graph are
straightforward; for example, statement l = r creates new
points-to edges from l to all objects pointed to by r. For
virtual call sites, resolution is performed for every receiver
object pointed to by r0. Function dispatch uses the class of
the object and the compile-time target of the call to deter-
mine the actual method mj invoked at run time. Variables
p0, . . . , pn are the formal parameters of the method; variable
p0 corresponds to the implicit parameter this. Variable retj

contains the return value of mj .

3. APPLICATIONS OF POINTS-TO
ANALYSIS FOR JAVA

Using points-to analysis in optimizing compilers and soft-
ware engineering tools has several advantages. A single
points-to analysis can enable a wide variety of client ap-
plications. The cost of the analysis can be amortized across
many clients. Once implemented, the analysis can be reused
by various clients at no additional development cost; such
reusability is an important practical advantage. In this sec-
tion we briefly discuss several specific applications of points-
to analysis for Java. In our experiments, we have evaluated
the impact of our analysis on some of these applications; the
results from these experiments are presented in Section 6.

3.1 Object Read-Write Information
Points-to analysis can be used to determine which objects

are read and/or written by every program statement. This
information is a necessary prerequisite for a variety of other
analyses. For example, for the purposes of side-effect anal-
ysis, points-to information can be used to answer questions
like “Can statement p.f =x modify the f field of any object
pointed to by q?”. Points-to information is also needed to
answer questions like “Can statement z=q.f read any mem-

ory locations that were written by statement p.f =x?”, which
are necessary for def-use analysis and dependence analysis.

Analyses that require read-write information are used in
compilers to perform various optimizations such as code mo-
tion and partial redundancy elimination. In addition, such
analyses play an important role in a variety of software engi-
neering tools (e.g., in the context of program slicing or data-
flow-based testing). Practical and precise points-to analysis
is crucial for enabling the use of these analyses and opti-
mizations.

3.2 Call Graph Construction and Virtual Call
Resolution

The points-to solution can be used to determine the tar-
get methods of a virtual call by examining the classes of
all possible receiver objects. The set of target methods is
needed to construct the call graph for the analyzed program;
this graph is a prerequisite for all interprocedural analyses
and optimizations used in Java compilers and tools. If the
call has only one target method, it can be resolved by re-
placing the virtual call with a direct call; this optimization
eliminates the run-time overhead of virtual dispatch. In ad-
dition, virtual call resolution allows subsequent inlining of
the target method, potentially enabling additional optimiza-
tions within the caller.

3.3 Synchronization Removal
Synchronization in Java allows safe access to shared ob-

jects in multi-threaded programs. Each object has an asso-
ciated lock which is used to ensure mutual exclusion. Syn-
chronization operations on locks can have considerable run-
time overhead; this overhead occurs even in single-threaded
programs, because the standard Java libraries are written in
thread-safe manner.

Static analysis can be used to detect properties that al-
low the removal of unnecessary synchronization. For ex-
ample, no synchronization is necessary for an object that
cannot “escape” its creating thread and therefore cannot be
accessed by any other thread (i.e., a thread-local object).2

Some escape analyses [10, 7, 8, 36] have been used to iden-
tify thread-local objects and to remove the synchronization
constructs associated with such objects.

Points-to analysis can be used as an alternative to escape
analysis in detecting thread-local objects. Consider an ob-
ject oi and suppose that in the points-to graph computed by
the analysis, oi is not reachable from (i) static (i.e., global)
reference variables, or (ii) objects of classes that implement
interface java.lang.Runnable3 . It can be proven that in
this case oi is not accessible outside the thread that created
it. We can identify such thread-local objects by perform-
ing a reachability computation on the points-to graph; this
approach is similar to the multithreaded object analysis pro-
posed by Aldrich et al. [4].

2If synchronization operations are removed for objects re-
ceiving wait, notify, or notifyAll messages, the modi-
fied program may throw IllegalMonitorStateException.
This problem can be avoided by maintaining the informa-
tion needed by the notification methods without performing
actual synchronization [28].
3The run methods of such objects are the starting points of
new threads.



3.4 Stack Allocation
In some cases, an object can be allocated on a method’s

stack frame rather than on the heap. This transformation
reduces garbage collection overhead and enables additional
optimizations such as object reduction [17]. Similarly to
synchronization removal, static analysis can be used to de-
tect properties that allow stack-based allocation. For exam-
ple, stack allocation is possible for an object that may never
“escape” the lifetime of its creating method and therefore
can only be accessed during that lifetime (i.e., a method-
local object). Some escape analyses [10, 7, 36] can detect
method-local objects; clearly, such objects can be allocated
on the stack frames of their creating methods.

Points-to analysis can be used as an alternative to escape
analysis in identifying method-local objects. Suppose that
object oi has been classified as thread-local according to the
points-to solution (i.e., oi is not reachable from static vari-
ables or from objects implementing Runnable). Also, sup-
pose that in the computed points-to graph, oi is not reach-
able from the formal parameters or the return variable of
the method that created oi. In this case, it can be proven
that oi is method-local; we can identify such method-local
objects by traversing the points-to graph.

4. SYSTEMS OF ANNOTATED INCLUSION
CONSTRAINTS

This section describes the general structure of the anno-
tated inclusion constraints used in our points-to analysis for
Java. The details about the specific kinds of constraints and
annotations are discussed in Section 5.

Previous constraint-based implementations of Andersen’s
analysis for C [14, 31] employ non-annotated inclusion con-
straints. We have developed a constraint-based approach
that extends this previous work by introducing constraint
annotations. In our analysis, the annotations are used to
model the flow of values between a virtual call site and the
run-time target methods of the call. In addition, the an-
notations allow separate tracking of different object fields,
which is not possible with the constraints from [14, 31].

4.1 Constraint Language
We consider annotated set-inclusion constraints of the form

L ⊆a R, where a is chosen from a given set of annotations.
We assume that one element of this set is designated as the
empty annotation ε, and we use L ⊆ R to denote constraints
labeled with it. L and R are expressions representing sets,
defined by the following grammar:

L, R → v | c(v1, . . . , vn) | proj (c, i, v) | 0 | 1

Here v and vi are set variables, c(. . . ) are constructed terms
and proj (. . . ) are projection terms. Each constructed term
is built from an n-ary constructor c. A constructor is either
covariant or contravariant in each of its arguments; the role
of this variance in constraint resolution will be explained
shortly. Constructed terms may appear on both sides of
inclusion relations. 0 and 1 represent the empty set and
the universal set; they are treated as nullary constructors.
Projections of the form proj (c, i, v) are terms used to select
the i-th argument of any constructed term c(.., vi,..), as de-
scribed shortly. Projection terms may appear only on the

c(v1, ..., vn) ⊆a c(v′
1, ..., v

′
n) ⇒

{
vi ⊆a v′

i if c is covariant in i for i = 1 . . . n
v′

i ⊆a vi if c is contravariant in i for i = 1 . . . n

c(v1, ..., vn) ⊆a proj(c, i, v) ⇒{
vi ⊆a v if c is covariant in i
v ⊆a vi if c is contravariant in i

Figure 3: Resolution rules for non-atomic con-
straints.

right-hand side of an inclusion.

4.2 Annotated Constraint Graphs
Systems of constraints from the above language can be

represented as directed multi-graphs. Constraint L ⊆a R is
represented by an edge from the node for L to the node for
R; the edge is labeled with the annotation a. There could
be multiple edges between the same pair of nodes, each with
a different annotation.

The nodes in the graph can be classified as variables,
sources, and sinks. Sources are constructed terms that oc-
cur on the left-hand side of inclusions. Sinks are constructed
terms or projections that occur on the right-hand side of
inclusions. The graph only contains edges that represent
atomic constraints of the following forms: Source ⊆a Var,
Var ⊆a Var, or Var ⊆a Sink. If the constraint system con-
tains a non-atomic constraint, the resolution rules from Fig-
ure 3 are used to generate new atomic constraints, as de-
scribed in Section 4.3.

We use annotated constraint graphs based on the induc-
tive form representation [3]. Inductive form is an efficient
sparse representation that does not explicitly represent the
transitive closure of the constraint graph. The graphs are
represented with adjacency lists pred(n) and succ(n) stored
at each node n. Edge (n1, n2, a), where a is an annota-
tion, is represented either as a predecessor edge by hav-
ing 〈n1, a〉 ∈ pred(n2), or as a successor edge by having
〈n2, a〉 ∈ succ(n1), but not both. Source ⊆a Var is always
a predecessor edge and Var ⊆a Sink is always a successor
edge. Var ⊆a Var is either a predecessor or a successor edge,
based on a fixed total order τ : Vars → N . Edge (v1, v2, a)
is a predecessor edge if and only if τ (v1) < τ (v2). The order
function is typically based on the order in which variables
are created as part of building the constraint system [31].

4.3 Solving Systems of Annotated Constraints
Every system of annotated inclusion constraints can be

represented by an annotated constraint graph in inductive
form. The system is solved by computing the closure of the
graph under the following transitive closure rule:

〈L, a〉 ∈ pred(v)
〈R, b〉 ∈ succ(v)
Match(a, b)


 ⇒ L ⊆a◦b R (Trans)

The closure rule can be applied locally, by examining
pred(v) and succ(v). The new transitive constraint is cre-
ated only if the annotations of the two existing constraints



“match”—that is, only if Match(a, b) holds, where Match
is a binary predicate on the set of annotations. Intuitively,
the Trans rule uses the annotations to filter out some flow
of values in the constraint system. The Match predicate is
defined as follows:

Match(a, b) =




true if a or b is the empty annotation ε
true if a = b
false otherwise

The annotation of the new constraint is

a ◦ b =




a if b = ε
b if a = ε
ε otherwise

Intuitively, an annotation is propagated until it is matched
with another instance of itself, after which the two instances
cancel out.

If the new constraint generated by the Trans rule is
atomic, a new edge is added to the graph. Otherwise, the
resolution rules from Figure 3 are used to transform the
constraint into several atomic constraints and their corre-
sponding edges are added to the graph.

The closure of a constraint graph under the Trans rule
is the solved inductive form of the corresponding constraint
system. The least solution of the system is not explicit in
the solved inductive form [3], but is easy to compute by
examining all predecessors of each variable. For constraint
graphs without annotations, the least solution LS(v) for a
variable v is

LS(v) = {c(. . . ) | c(. . . ) ∈ pred(v)} ∪
⋃

u∈pred(v)

LS(u)

In this case, LS(v) can be computed by transitive acyclic
traversal of all predecessor edges [14]. For an annotated
constraint graph, the traversal is done similarly, but the
annotations are used as in rule Trans:

LS(v) = {〈c(. . . ), a〉 | 〈c(. . . ), a〉 ∈ pred(v)} ∪
{〈c(. . . ), x ◦ y〉 | 〈u, x〉 ∈ pred(v) ∧ 〈c(. . . ), y〉 ∈ LS(u)

∧ Match(x, y)}

5. POINTS-TO ANALYSIS FOR JAVA
USING ANNOTATED CONSTRAINTS

In this section we show how to implement the points-
to analysis from Section 2 using annotated inclusion con-
straints. Recall that the analysis is defined in terms of the
set R of all reference variables and the set O of names for
all objects created at object allocation sites. Every element
of R ∪ O is essentially an abstract memory location repre-
senting a set of run-time memory locations.

To implement our analysis with annotated inclusion con-
straints, we generalize an approach for modeling Andersen’s
analysis for C with non-annotated constraints [14, 31]. For
each abstract location x, a set variable vx represents the set
of abstract locations pointed to by x. The representation of
each location is through a ternary constructor ref which is
used to build constructed terms of the form ref (x, vx, vx).
The last two arguments are the same variable, but with dif-
ferent variance—the overline notation is used to denote a
contravariant argument. Intuitively, the second argument is

〈l = new oi〉 ⇒ {ref (oi, voi , voi) ⊆ vl}

〈l = r〉 ⇒ {vr ⊆ vl}

〈l.f = r〉 ⇒ {vl ⊆ proj (ref , 3, u), vr ⊆f u}, u fresh

〈l = r.f〉 ⇒ {vr ⊆ proj (ref , 2, u), u ⊆f vl}, u fresh

Figure 4: Constraints for assignment statements.

p = new X();s1:

q = new Y();s2:

p.f = q;

r = p.f;

-
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Figure 5: Accessing object fields.

used to read the values of locations pointed to by x, while
the last argument is used to update the values of locations
pointed to by x. Given a reference variable r ∈ R and an
object variable o∈O, constraint

ref (o, vo, vo) ⊆ vr

shows that r points to o.
We use field annotations to model the flow of values through

fields of objects. Field annotations are unique identifiers for
all instance fields defined in program classes. For any two
object variables o1 and o2, constraint

ref (o2, vo2 , vo2) ⊆f vo1

shows that field f in object o1 points to object o2.

5.1 Constraints for Assignment Statements
For every program statement, our analysis generates an-

notated inclusion constraints representing the semantics of
the statement. Figure 4 shows the constraints generated for
assignment statements. The first two generation rules are
straightforward. The rule for l.f = r uses the first constraint
to access the points-to set of l, and the second constraint to
update the values of field f in all objects pointed to by l.
Similarly, the last rule uses two constraints to read the val-
ues of field f in all objects pointed to by r.

5.1.1 Example
Consider the statements in Figure 5 and their correspond-

ing points-to graph. After processing the statements, our
analysis creates the following constraints:

ref (o1, vo1 , vo1) ⊆ vp ref (o2, vo2 , vo2) ⊆ vq

vp ⊆ proj (ref , 3, u) vq ⊆f u
vp ⊆ proj (ref , 2, w) w ⊆f vr

where u and w are fresh variables. For the purpose of this
example we assume that the variable order τ (defined in
Section 4.2) is τ (vp) < τ (vq) < τ (vr) < τ (vo1) < τ (vo2) <



τ (u) < τ (w). Consider the indirect write in p.f = q. Since
we have

ref (o1, vo1 , vo1) ⊆ vp ⊆ proj (ref , 3, u)

we can use the Trans rule and the resolution rules from
Figure 3 to generate a new constraint u ⊆ vo1 . Thus,

vq ⊆f u ⊆ vo1

and using rule Trans we generate vq ⊆f vo1 . Intuitively,
this new constraint shows that some of the values of field f
in object o1 come from variable q. Now we have

ref (o2, vo2 , vo2) ⊆ vq ⊆f vo1

Since both constraint edges are predecessor edges, we can-
not apply rule Trans. Still, in the least solution of the
constraint system (as defined in Section 4.3), we have the
constraint ref (o2, vo2 , vo2) ⊆f vo1 , which shows that field f
of o1 points to o2.

To model indirect reads, we use the second argument of
the ref constructor. For example, for the constraints above
we have

ref (o1, vo1 , vo1) ⊆ vp ⊆ proj (ref , 2, w)

and therefore vo1 ⊆ w ⊆f vr, which through Trans gener-
ates vo1 ⊆f vr. This new constraint shows that the value of
r comes from field f of object o1. Now we have

vq ⊆f vo1 ⊆f vr

Since the annotations of the two constraints match—that
is, they represent accesses to the same field—we generate
vq ⊆ vr to represent the flow of values from q to r. Thus, in
the least solution of the system we have

ref (o2, vo2 , vo2) ⊆ vr

which shows that reference variable r points to o2. This
example illustrates how field annotations allow us to model
the flow of values through object fields.

5.2 Handling of Virtual Calls
For every virtual call in the program, our analysis gener-

ates a constraint according to the following rule:

〈l = r0.m(r1, . . . , rk)〉 ⇒
{vr0 ⊆m lam(0, vr1 , . . . , vrk , vl)}

The rule is based on a lam (lambda) constructor. The con-
structor is used to build a term that encapsulates the actual
arguments and the left-hand-side variable of the call. The
annotation on the constraint is a unique identifier of the
compile-time target method of the call. This annotation
is used during the analysis to find all appropriate run-time
target methods.

To model the semantics of virtual calls as defined in Sec-
tion 2, we separately perform virtual dispatch for every re-
ceiver object pointed to by r0. In order to do this efficiently,
we use a precomputed lookup table. For a given receiver
object at a virtual call site, the lookup table is used to de-
termine the corresponding run-time target method, based
on the class of the receiver object.4 Such a table is straight-
forward to precompute by analyzing the class hierarchy; the
4Every object is tagged with its class; this tag is used when
performing lookups.

table is essentially a representation of the dispatch function
from Section 2.

Given the class of the receiver object and the unique iden-
tifier for the compile-time target of the virtual call, the
lookup table returns a lambda term of the form

lam(vp0 , vp1 , . . . , vpk , vret )

Here pi are the formal parameters of the run-time target
method; p0 corresponds to the implicit parameter this. We
assume that each method has a unique variable ret that
is assigned the value returned by the method (this can be
achieved by inserting auxiliary assignments in the program
representation). At the beginning of the analysis, lambda
terms of the above form are created for all non-abstract
methods in the program and are stored in the lookup table.

To model the effects of virtual calls, we define an addi-
tional closure rule Virtual. This rule encodes the semantics
of virtual calls described in Section 2 and is used together
with the Trans rule to obtain the solved form of the con-
straint system. Virtual is applied whenever we have two
constraints of the form

ref (o, vo, vo) ⊆ v v ⊆m lam(0, vr1 , . . . , vrk , vl)

As described in Section 4.2, the edge from the ref term is a
predecessor edge, and the edge to the lam term is a successor
edge. Thus, the Virtual closure rule can be applied locally,
by examining sets pred(v) and succ(v). Whenever two such
constraints are detected, the lookup table is used to find
the lambda term for the run-time method corresponding to
object o and compile-time target method m. The result of
applying Virtual are two new constraints:

ref (o, vo, vo) ⊆ vp0

lam(vp0 , vp1 , . . . , vpk , vret ) ⊆ lam(0, vr1 , . . . , vrk , vl)

The first constraint creates the association between param-
eter this of the invoked method and the receiver object.
The second constraint immediately resolves to vri ⊆ vpi

(for i ≥ 1) and vret ⊆ vl, plus the trivial constraint 0 ⊆ vp0 .
These new atomic constraints model the flow of values from
actuals to formals, as well as the flow of return values to the
left-hand side variable l used at the call site.

5.2.1 Example
Consider the set of statements in Figure 6. For the pur-

pose of this example, assume that τ (va) < τ (vb) < τ (vc).
Since the declared type of b is B, at call site c1 the compile-
time target method is B.n; thus, we have

vb ⊆B.n lam(0, vx)

When rule Virtual is applied as shown in (1), the lookup
for receiver object o2 and compile-time target B.n produces
run-time target B.n. The resolution with the lam term for
B.n creates the two new constraints shown in (1).

The declared type of c is A, and for call site c2 we have
vc ⊆A.n lam(0, vy). Thus,

ref (o2, vo2 , vo2) ⊆ vb vb ⊆A.n lam(0, vy)

where the second constraint is obtained through the Trans



class A { X n() { ... return rA; } }
class B extends A

{ X n() { ... return rB; } }
A a = new A();s1:
B b = new B();s2:
A c = b;

X x = b.n();c1:
X y = c.n();c2:
if (...) a = b;

X z = a.n();c3:

(1) ref (o2, vo2 , vo2) ⊆ vb ⊆B.n lam(0, vx) ⇒
{ref (o2, vo2 , vo2) ⊆ vB.n.this , vrB ⊆ vx}

(2) ref (o2, vo2 , vo2) ⊆ vb ⊆A.n lam(0, vy) ⇒
{ref (o2, vo2 , vo2) ⊆ vB.n.this , vrB ⊆ vy}

(3) ref (o1, vo1 , vo1) ⊆ va ⊆A.n lam(0, vz) ⇒
{ref (o1, vo1 , vo1) ⊆ vA.n.this , vrA ⊆ vz}

(4) ref (o2, vo2 , vo2) ⊆ va ⊆A.n lam(0, vz) ⇒
{ref (o2, vo2 , vo2) ⊆ vB.n.this , vrB ⊆ vz}

Figure 6: Example of virtual call resolution.

rule.5 When applying rule Virtual as shown in (2), the
lookup for receiver object o2 and compile-time target A.n

leads to run-time target B.n. The two new constraints which
result from the resolution are shown in (2). For call site c3,
the receiver object can be either o1 or o2. As shown in
(3) and (4), separate lookup and resolution is performed for
each receiver.

5.3 Correctness
For every program statement, our analysis generates con-

straints representing the semantics of the statement. This
initial constraint system is solved by closing the correspond-
ing constraint graph under closure rules Trans and Vir-
tual. Let A∗ be the solved inductive form of the constraint
system. Recall that the least solution of the system is not ex-
plicit in A∗ and can be obtained through additional traversal
of predecessor edges, as described in Section 4.3.

Let G∗ be the points-to graph computed by the algorithm
in Section 2. Consider a reference variable r and an object
variable o such that (r, o) ∈ G∗. It can be proven that the
least solution constructed from A∗ contains the constraint
ref (o, vo, vo) ⊆ vr. Similarly, consider two object variables
oi and oj such that (〈oi, f〉, oj) ∈ G∗; it can be proven that
the least solution contains ref (oj , voj , voj ) ⊆f voi .

The proof of the these claims depends on the following
restriction on the variable order τ : all variables vr, where
r∈R, should have lower order than the rest of the constraint
variables. We enforce this restriction as part of building the
constraint system. Given this restriction, it can be proven

5Note that if τ (vc) < τ (vb), instead of propagating the lam
term to vb we would propagate the ref term to vc.

that the least solution of the constraint system represents
all points-to pairs from G∗ [26].

5.4 Cycle Elimination and Projection Merging
Cycle elimination [14] and projection merging [31] are two

techniques that can be used to reduce the cost of Andersen’s
analysis for C. We have adapted these techniques to allow
us to reduce the cost of our points-to analysis for Java.

The idea behind cycle elimination is to detect a set of
variables that form a cycle in the constraint graph:

v1 ⊆ v2 ⊆ . . . ⊆ vk ⊆ v1

Clearly, all such variables have equal solutions and can be
replaced with a single variable. Whenever a cycle is detected
during the resolution process, one variable from the cycle is
chosen as a witness variable, and the rest of the variables are
redirected to the witness. This transformation has no effect
on the computed solution, but can significantly reduce the
cost of the analysis.

Cycle detection is performed every time a new edge is
added between two variables vi and vj . The detection algo-
rithm essentially performs depth-first traversal of the con-
straint graph and tries to determine whether vi is reach-
able from vj . Cycle detection is partial and does not detect
all cycles. Nevertheless, for Andersen’s analysis for C this
technique has significant impact on the running time of the
analysis [14].

Cycle elimination cannot be used directly for the anno-
tated constraint systems presented in this paper. If we per-
formed the standard cycle detection, we would discover cy-
cles in which some edges have field annotations; however,
the variables in such cycles do not have the same solution,
and cannot be replaced by a single witness variable. To
guarantee the correctness of our analysis for Java, we use
a restricted form of cycle elimination. The cycle detection
algorithm is invoked only when a new edge is added be-
tween two reference variables—that is, when the new edge
is (vri , vrj ), where ri, rj ∈ R. It can be proven that in
this case, the detected cycle contains only reference vari-
ables, and all edges in the cycle have empty annotations.
This guarantees that all variables on the cycle have identi-
cal points-to sets, and therefore replacing the cycle with a
single variable preserves the points-to solution.

Projection merging is a technique for reducing redundant
edge additions in constraint systems [31]. It combines mul-
tiple projection constraints for the same variable into a sin-
gle projection constraint. For example, constraints v ⊆
proj (c, i, u1) and v ⊆ proj (c, i, u2) are replaced by

v ⊆ proj (c, i, w) w ⊆ u1 w ⊆ u2

where w is a special projection variable. For points-to anal-
ysis for C, constraints of the form w ⊆ ui are represented
only as successor edges; this restriction guarantees a bound
on the number of projection variables w. The analysis en-
sures the restriction by assigning to w a high index in the
variable order τ [31]. In this case, projection merging is
beneficial because it is coupled with cycle elimination.

In our annotated constraint systems, projection merging
does not interact with cycle elimination. In our case, the
high indices from [31] (which necessitate the interaction) are
not required. The high indices become unnecessary because



the bound on the number of special projection variables is
ensured by the variable ordering restriction from Section 5.3.
Thus, the special projection variables can be treated simi-
larly to the rest of the variables in the constraint system.
This decoupled form of projection merging has significant
impact on the running time of the analysis for Java.

5.5 Tracking Reachable Methods
Andersen’s analysis implicitly assumes that all code in

the program is executable. Since Java programs heavily use
libraries that contain many unused methods, we have aug-
mented our analysis to keep track of reachable methods, in
order to avoid analyzing dead code. Thus, we take into ac-
count the effects of statements in a method body only if the
method has been shown to be reachable from one of the entry
methods of the program. The set of entry methods contains
(i) the main method of the starting class, (ii) the methods in-
voked at JVM startup (e.g., initializeSystemClass), and
(iii) the class initialization methods <clinit> containing the
initializers for static fields [22, Section 3.9].

During the analysis, we maintain a list of reachable meth-
ods; whenever a method becomes reachable, all statements
in its body are processed and the appropriate constraints are
introduced in the constraint system. Any call to a construc-
tor also generates a corresponding call to the appropriate
finalize method. For multi-threaded programs, a call to
Thread.start is treated as a call to the corresponding run

method.

5.6 Analysis Implementation
We use the Soot framework (www.sable.mcgill.ca), ver-

sion 1.0.0, to process Java bytecode and to build a typed
intermediate representation [35]. The constraint-based anal-
ysis uses Bane (Berkeley ANalysis Engine) [2]. Bane is a
toolkit for constructing constraint-based program analyses.
The public distribution of Bane (bane.cs.berkeley.edu)
contains a constraint-solving engine for non-annotated con-
straints that employs inductive form, cycle elimination, and
projection merging. We modified the constraint engine to
represent and solve systems of annotated constraints. The
analysis works on top of the constraint engine, by processing
newly discovered reachable methods and generating the ap-
propriate constraints. The points-to effects of JVM startup
code and native methods (for JDK 1.1.8) are encoded in
stubs included in the analysis input. Dynamic class load-
ing (e.g., through Class.forName) and reflection (e.g., calls
to Class.newInstance) are resolved manually; similar ap-
proaches are typical for static whole-program compilers and
tools [20, 16, 33, 34].

6. EMPIRICAL RESULTS
All experiments were performed on a 360MHz Sun Ultra-

60 machine with 512Mb physical memory. The reported
times are the median values out of three runs. We used
23 publicly available data programs, ranging in size from
56Kb to about 1Mb of bytecode. We used programs from
the SPEC JVM98 suite, other benchmarks used in previous
work on analysis for Java, as well as programs from an In-
ternet archive (www.jars.com) of popular publicly available
Java applications.

Table 1 shows some characteristics of the data programs.

Program User Size Whole-program
Class (Kb) Class Method Stmt

proxy 18 56.6 565 3283 58837
compress 22 76.7 568 3316 60010
db 14 70.7 565 3339 60747
jb-6.1 21 55.6 574 3393 60898
echo 17 66.7 577 3544 62646
raytrace 35 115.9 582 3451 62755
mtrt 35 115.9 582 3451 62760
jtar-1.21 64 185.2 618 3583 65112
jlex-1.2.5 25 95.1 578 3381 65437
javacup-0.10 33 127.3 581 3564 66463
rabbit-2 52 157.4 615 3770 68277
jack 67 191.5 613 3573 69249
jflex-1.2.2 54 198.2 608 3692 71198
jess 160 454.2 715 3973 71207
mpegaudio 62 176.8 608 3531 71712
jjtree-1.0 72 272.0 620 4078 79587
sablecc-2.9 312 532.4 864 5151 82418
javac 182 614.7 730 4470 82947
creature 65 259.7 626 3881 83454
mindterm1.1.5 120 461.1 686 4420 90451
soot-1.beta.4 677 1070.4 1214 5669 92521
muffin-0.9.2 245 655.2 824 5253 94030
javacc-1.0 63 502.6 615 4198 102986

Table 1: Characteristics of the data programs. First
two columns show the number and bytecode size
of user classes. Last three columns include library
classes.

The first two columns show the number of user (i.e., non-
library) classes and their bytecode size. The next three
columns show the size of the program, including library
classes, after using class hierarchy analysis (CHA) [11] to
filter out irrelevant classes and methods.6 The number of
methods is essentially the number of nodes in the call graph
computed by CHA. The last column shows the number of
statements in Soot’s intermediate representation.

6.1 Analysis Cost
Our first set of experiments measured the cost of the anal-

ysis, as shown in Table 2. The first two columns show the
running time of the analysis and the amount of memory
used. For 16 out of the 23 programs, the analysis runs in
less than a minute. For all programs, the running time is
less than six minutes and the memory usage is less than
180Mb. These results show that our analysis is practical in
terms of running time and memory usage, as evidenced on a
large set of Java programs. This practicality means that the
analysis can be used as a relatively precise general-purpose
points-to analysis for advanced static compilers and software
engineering tools for Java.

Analysis cost can be reduced further if the library code is
analyzed in advance. This would allow certain partial analy-
sis information about the Java libraries to be computed once
and subsequently used multiple times for different client pro-
grams. We intend to investigate this approach in our future
work.

We also investigated a version of our analysis in which no

6CHA is an inexpensive analysis that determines the possi-
ble targets of a virtual call by examining the class hierarchy
of the program.



Program Time Memory Time-nf Memory-nf
(sec) (Mb) (sec) (Mb)

proxy 6.5 38.9 29.8 45.1
compress 22.2 45.3 68.4 77.2
db 23.2 46.8 63.2 80.7
jb 13.3 40.7 28.1 45.6
echo 41.5 61.8 231.6 184.3
raytrace 26.1 51.2 99.6 100.4
mtrt 26.1 49.0 89.7 100.2
jtar 44.7 58.8 125.8 113.3
jlex 17.7 45.7 137.7 83.6
javacup 32.0 54.1 80.5 83.8
rabbit 27.9 53.3 74.3 82.7
jack 48.7 63.1 5871.4 134.8
jflex 56.1 73.1 208.6 191.8
jess 41.8 64.9 202.7 207.7
mpegaudio 28.1 51.8 227.1 226.3
jjtree 24.6 52.5 57.4 76.0
sablecc 287.2 151.9 815.4 280.9
javac 350.0 151.5 396.8 334.1
creature 176.4 101.0 821.4 319.7
mindterm 94.6 95.4 407.7 341.0
soot 239.5 176.4 401.8 308.5
muffin 243.7 163.8 – –
javacc 190.5 125.5 167.8 167.7

Table 2: Running time and memory usage of the
analysis (with and without field annotations).

field annotations are used, and therefore individual object
fields are not distinguished. The last two columns in Table 2
show the cost of this no-fields version. The running time is
between 88% and 12056% (average 892%, median 384%) of
the running time of the original analysis; the memory usage
is between 112% and 437% (215% on average). Typically,
the no-fields version is significantly more expensive; for one
of the larger programs, it even ran out of memory. These re-
sults show the importance of distinguishing object fields: the
improved precision produces smaller points-to sets, which in
turn reduces analysis cost. By using field annotations, we
have been able to distinguish object fields in a simple and
efficient manner.

6.2 Object Read-Write Information
We performed measurements to estimate the potential im-

pact of our analysis on clients of object read-write infor-
mation (e.g., side-effect analysis and def-use analysis). In
particular, we considered all expressions of the form p.f oc-
curing in statements in reachable methods. For each such
indirect access expression, the points-to set of p contains all
objects that may be read or written by the corresponding
statement. More precise points-to analyses produce smaller
numbers of accessed objects; this improves the precision and
reduces the cost of the clients of the read-write information.
Thus, to estimate the potential impact of our analysis, we
measured the number of accessed objects for each indirect
access expression; similar metrics have been traditionally
used for points-to analysis for C.

Table 3 shows the distribution of the number of accessed
objects; each column corresponds to a specific range of num-
bers. For example, the first column corresponds to expres-
sions that may only access a single object, while the last
column corresponds to expressions that may access 10 or

Program 1 2 3 4–5 6–9 ≥10
proxy 53% 18% 8% 7% 8% 6%
compress 57% 12% 12% 6% 5% 8%
db 56% 12% 14% 7% 6% 5%
jb 59% 20% 7% 4% 5% 5%
echo 54% 15% 9% 8% 4% 10%
raytrace 51% 13% 12% 6% 10% 8%
mtrt 51% 13% 12% 6% 10% 8%
jtart 47% 13% 8% 10% 9% 13%
jlex 89% 4% 2% 2% 2% 1%
javacup 68% 11% 5% 3% 7% 6%
rabbit 48% 24% 11% 5% 6% 6%
jack 58% 10% 8% 5% 4% 15%
jflex 61% 12% 10% 4% 2% 11%
jess 48% 14% 14% 13% 5% 6%
mpegaudio 56% 15% 14% 6% 4% 5%
jjtree 54% 20% 8% 3% 10% 5%
sablecc 69% 13% 3% 3% 2% 10%
javac 49% 13% 9% 9% 4% 16%
creature 36% 50% 1% 1% 2% 10%
mindterm 69% 6% 8% 7% 2% 8%
soot 69% 12% 2% 10% 3% 4%
muffin 60% 16% 5% 5% 4% 10%
javacc 73% 9% 4% 3% 7% 4%

Table 3: Number of accessed objects for indirect ac-
cess expressions. Each column shows the percentage
of indirect accesses with a given number of objects.

more objects. Each column shows what percentage of all in-
direct access expressions corresponds to the particular range
of numbers of accessed objects.

The measurements in Table 3 indicate that our analysis
produces precise read-write information. Typically, more
than half of the indirect accesses are resolved to a single
object (which is the lower bound for this metric), and on
average 81% of the accesses are resolved to at most three
objects. These results show that the analysis is a promis-
ing candidate for producing useful read-write information
for clients such as (i) aggressive optimizing compilers, in
which optimizations require precise read-write information,
and (ii) software engineering tools, in which analysis pre-
cision is important for reducing the human effort spent on
program understanding, restructuring, and testing.

6.3 Call Graph Construction and Virtual Call
Resolution

To measure the precision with respect to call graph con-
struction and virtual call resolution, we compared our points-
to analysis with Rapid Type Analysis (RTA) [6]. RTA is an
inexpensive and widely used analysis for call graph construc-
tion. It performs a reachability computation on the call
graph generated by CHA; by keeping track of the classes
that have been instantiated, RTA computes a more precise
call graph than CHA.

Both our analysis and RTA improve the call graph com-
puted by CHA by identifying sets of methods reachable
from the entry points of the program; this reachability com-
putation reduces the number of nodes in the call graph.
For brevity, we summarize this reduction without explicitly
showing the number of nodes for each program. The aver-
age reduction in the number of nodes is 54% for our analysis
and 47% for RTA. On average, the call graph computed by



Program (a) Removed Targets (b) Resolved Call Sites
Points-to RTA Points-to RTA

proxy 8.7 5.8 50% 9%
compress 6.4 2.4 58% 18%
db 6.0 2.2 61% 18%
jb 8.5 5.8 56% 13%
echo 3.4 1.4 45% 19%
raytrace 6.0 2.3 58% 21%
mtrt 6.0 2.3 58% 21%
jtar 5.3 3.2 39% 17%
jlex 9.3 6.2 63% 12%
javacup 6.3 3.9 63% 14%
rabbit 8.6 4.1 54% 14%
jack 3.0 0.9 83% 12%
jflex 6.5 3.5 45% 12%
jess 5.7 2.0 57% 15%
mpegaudio 7.1 2.2 53% 17%
jjtree 8.4 5.9 54% 14%
sablecc 7.1 1.5 32% 7%
javac 2.8 1.1 32% 15%
creature 3.8 2.3 50% 25%
mindterm 2.5 1.3 43% 24%
soot 4.5 1.0 41% 1%
muffin 5.7 2.0 48% 17%
javacc 5.0 2.8 79% 10%

Average 5.9 2.9 53% 15%

Table 4: Improvements for CHA-unresolved virtual
call sites. (a) Average reduction in the number
of target methods per call site. (b) Percentage of
uniquely resolved call sites.

our analysis has 14% less nodes than the call graph com-
puted by RTA. This reduction allows subsequent analyses
and optimizations to safely ignore portions of the program.

To determine the improvement for call graph edges, we
considered call sites that could not be resolved to a sin-
gle target method by CHA. Let V be the set of all CHA-
unresolved call sites that occur in methods identified by our
analysis as reachable. For our data programs, the size of V
is between 7% and 44% (22% on average) of all virtual call
sites in reachable methods. For each site from V , we com-
puted the difference between the number of target methods
according to CHA and the number of target methods ac-
cording to RTA and our analysis. The average differences
are shown in the first section of Table 4. On average, our
analysis removes more than twice as many targets as RTA;
this improved precision is beneficial for reducing the cost
and improving the precision of subsequent interprocedural
analyses.

The second section of Table 4 shows the percentage of call
sites from V that were resolved to a single target method.
Our points-to analysis performs significantly better than
RTA—on average, 53% versus 15% of the virtual call sites
are resolved. The increased precision allows better removal
of run-time virtual dispatch and additional method inlining.

We performed additional experiments to estimate the po-
tential performance impact of analysis precision on virtual
call resolution. These experiments used a subset of our data
programs for which we had representative input data. For
each program, we instrumented the user classes (i.e., non-
library classes) and measured the number of times each call
site was executed during a profile run of the program. Col-

Program (a) Num (b) Resolved (c) Run-time
Calls RTA Points-to Monomorphic

compress 0 — — —
db 10550782 0% 100% 100%
mtrt 2833913 0% 0% 0%
jlex 1336 11.0% 99.9% 100%
jack 2663305 5.9% 98.6% 98.6%
jess 1511933 0.03% 0.3% 50.2%
mpegaudio 6528736 0% 0% 0.5%
sablecc 1005390 0.1% 36.5% 46.7%
javac 20198864 0% 19.2% 71.0%
javacc 44322 0.02% 85.8% 85.9%

Table 5: Execution counts for virtual call sites. (a)
Total count for CHA-unresolved call sites. (b) Per-
centage due to resolved sites. (c) Percentage due to
sites with a single run-time target.

umn (a) in Table 5 shows the total number of invocations
of CHA-unresolved call sites. This number is an indicator
of the run-time overhead of virtual dispatch, as well as the
missed opportunities for performance improvement through
inlining. We also measured what percentage of this total
number was contributed by call sites that are uniquely re-
solved by RTA and by our analysis. These percentages are
shown in column (b) in Table 5; higher percentages indicate
higher potential for performance improvement.

The results from this profiling experiment indicate that
RTA has little potential for improving the run-time perfor-
mance over CHA. Our analysis shows significantly higher
potential, and for several programs it allows the resolution
of the majority of run-time virtual calls. In addition, we
used the profile to determine what CHA-unresolved call sites
had only one run-time target. Column (c) shows the con-
tribution of such sites to the total count from column (a).
This number is an upper bound on the number of invoca-
tions that could be resolved by a static analysis. By com-
paring columns (b) and (c), it is clear that in many cases
our analysis achieves performance close to the best possible
performance.

6.4 Synchronization Removal and Stack
Allocation

Points-to analysis has a wide variety of client applications,
including optimizations for removal of unnecessary synchro-
nization and for stack-based object allocation. To investi-
gate the impact of our analysis on synchronization removal
and stack allocation, we identified all object allocation sites
that correspond to thread-local and method-local objects, as
described in Section 3. Figure 7(a) shows what percentage
of all allocation sites in reachable methods were identified
as thread-local or method-local.

Across all programs, the analysis detects a significant num-
ber of allocation sites for thread-local objects—on average,
about 48% of all allocation sites. These results indicate
that the points-to information can be useful in detecting and
eliminating unnecessary synchronization in Java programs.
The analysis also discovers a significant number of sites for
method-local objects—on average, about 29% of all sites.
These results suggest that there are many opportunities for
stack-based object allocation that can be detected with our
analysis.
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(b) Run-time objects

Program Objects Thread-local Method-local
compress 456 99.3% 39.0%
db 154325 0.03% 0.01%
mtrt 6457298 99.9% 85.0%
jlex 7350 50.9% 31.6%
jack 1340919 86.7% 77.0%
jess 7902221 17.9% 17.9%
mpegaudio 2025 12.4% 12.4%
sablecc 420494 24.9% 13.7%
javac 3738777 27.6% 21.2%
javacc 43265 65.7% 45.8%

Figure 7: (a) Thread-local and method-local allocation sites. (b) Number of objects created at run time:
total number, percentage of thread-local objects, and percentage of method-local objects.

As with virtual call resolution, we performed additional
profiling experiments to obtain better estimates of the po-
tential impact on run-time performance. Using the same set
of programs with instrumented user classes and the same
data input sets, we measured the number of run-time ob-
jects created at each object allocation site. The total num-
ber of created objects is shown in the first column of Fig-
ure 7(b); the other two columns show what percentage of
these objects were identified by our analysis as thread-local
or method-local.

The results from this experiment indicate that our anal-
ysis has good potential for improving the run-time perfor-
mance through synchronization removal and stack-based ob-
ject allocation. The results in Figure 7(b) are similar to the
results obtained through more expensive flow- and context-
sensitive escape analyses [10, 36]. Even though direct com-
parison with this previous work is not possible (due to dif-
ferences in the infrastructure and the data programs), the
results suggest that our analysis may be a viable alternative
to these more expensive analyses.

7. RELATED WORK
Points-to analysis for object references in Java is clearly

related to pointer analysis for imperative languages such as
C. There are various pointer analyses for C with different
tradeoffs between cost and precision. The closest related
work from this category are the constraint-based implemen-
tations of Andersen’s analysis from [14, 31], in which non-
annotated constraints are used together with inductive form,
cycle elimination, and projection merging. We extend this
work by introducing constraint annotations and by changing
the constraint representation and the resolution procedure
to allow points-to analysis for Java. Field annotations are
used to track object fields separately; this is not possible
with the constraints from [14, 31]. Method annotations al-
low us to model the semantics of virtual calls. In addition,
we avoid analyzing dead library code by including a reach-
ability computation in the analysis.

Constraint indices and constraint polarities [15] have been
used to introduce context-sensitivity in unification-based flow

analysis. This work has similar flavor to our use of an-
notations for tracking flow of values through object fields.
Conceptually, in both cases the goal is to restrict the flow
of values in constraint systems—either for unification-based
constraints in [15], or for inclusion constraints in our case.

Recent work [30], which postdates our initial report [27],
describes a points-to analysis for Java based on Andersen’s
analysis for C. Analysis cost is higher than ours, which is
most likely due to the different kind of constraints employed
by this approach. Another recent points-to analysis for Java
based on Andersen’s analysis is presented in [21], together
with several analysis variations. Direct comparison with this
work is not possible because it handles the library code in a
different manner; based on the size of the analyzed code, our
analysis appears to be faster. Another example of points-
to analysis for object-oriented languages is due to Chatter-
jee et al. [9]. This flow- and context-sensitive analysis is
more precise and more expensive than ours. Points-to anal-
yses with different degrees of precision have been proposed
in the context of a framework for call graph construction
in object-oriented languages [19]. The closest to our work
is the 1-1-CFA algorithm, which incorporates a flow- and
context- sensitive points-to analysis. The scalability of the
analyses from [19, 9] remains unclear; our approach may
be a practical alternative to these more expensive analyses.
Other related analyses, based on unification techniques, are
a context-sensitive alias analysis for synchronization removal
due to Ruf [28], and points-to analyses for Java [25, 30, 21]
derived from Steensgaard’s points-to analysis for C [29].

Class analysis for object-oriented languages computes a
set of classes for each program variable; this set approxi-
mates the classes of all run-time values for this variable. The
traditional client applications of class analysis are call graph
construction and virtual call resolution. DeFouw et al. [12]
present a family of practical interprocedural class analyses,
ranging from linear to cubic complexity; the closest to our
analysis are the classic 0-CFA and the linear-edge 0-CFA al-
gorithms. Other work in this area considers more expensive
analyses with some degree of context- or flow-sensitivity [23,
1, 24, 13, 19], as well as less precise but inexpensive analyses
such as RTA [6, 34, 32]. Comparison with the results from



this work is difficult due to differences in language, infras-
tructure, and analysis parameters (e.g., handling of libraries,
dynamic class loading, etc.).

There is a large body of work on synchronization removal
and stack-based object allocation [4, 10, 7, 8, 36, 17, 28].
Gay and Steensgaard [17] present a unification-based analy-
sis for stack allocation. Ruf [28] describes an unification-
based algorithm for synchronization removal. Aldrich et
al. [4] propose several approaches for synchronization re-
moval. Our approach for identifying thread-local objects is
similar to the multithreaded object analysis from [4] (which
is based on 1-1-CFA). Previous work on escape analysis for
Java [10, 7, 8, 36] also investigates synchronization removal
and stack allocation; the scalability of these approaches re-
mains unclear. In contrast to these specialized analyses, we
propose a points-to analysis that can also be used for a va-
riety of other client applications.

8. CONCLUSIONS AND FUTURE WORK
Designing precise and practical points-to analyses is im-

portant for enabling a wide variety of popular analyses and
optimizations. We define a points-to analysis for Java based
on Andersen’s points-to analysis for C. We implement the
analysis by using a constraint-based approach which em-
ploys constraint annotations. Method annotations are used
to model precisely and efficiently the semantics of virtual
calls. Field annotations allow us to distinguish between dif-
ferent fields of an object. On a large set of Java programs,
our experiments show that the cost of the analysis is practi-
cal. We also show that the points-to solution has significant
impact on object read-write information, call graph con-
struction, virtual call resolution, synchronization removal,
and stack-based object allocation. Our results demonstrate
that the analysis is a realistic candidate for a relatively
precise, practical, general-purpose points-to analysis for ad-
vanced optimizing compilers and software engineering tools
for Java.

One direction of future work is to investigate techniques
for further reduction of analysis cost. For example, the cost
can be reduced if the library code is analyzed in advance.
This would allow partial analysis information about the Java
libraries to be computed once and subsequently used for
different client programs.

Another direction of future work is to investigate the im-
pact of the analysis solution on traditional client analyses
such as def-use analysis, side-effect analysis, and dependence
analysis, which in turn are necessary for various optimiza-
tions. Such analyses and optimizations have been exten-
sively investigated in other languages, and will play an in-
creasingly important role in aggressive optimizing compilers
for Java.

Finally, it would be interesting to investigate applications
of points-to analysis in the context of software engineer-
ing tools for program checking, understanding, maintenance,
and testing. The functionality provided by such tools will be
necessary for the development of production-strength Java
software systems.
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