
A Generic Approach of Static Analysis

for Detecting Runtime Errors in Java Programs

Xiaoping Jia� Sotiris Skevoulis

Division of Software Engineering

School of Computer Science� Telecommunication�

and Information Systems

DePaul University

Chicago� Illinois� U�S�A�

E�mail� jia�cs�depaul�edu� sskevoul�cs�depaul�edu

Abstract

This paper presents a generic approach to statically
analyze Java programs in order to detect potential er�
rors �bugs�� We discuss a framework that supports our
approach and carries out the static analysis of Java
code automatically� Our approach can automatically
detect potential bugs and report them before the pro�
gram is executed� For a Java class� invariants related
to the category of error under examination are au�
tomatically generated and used to assess the validity
of variable usage in the implementation of this class�
Our approach is distinctive in its emphasis to provide
a practical generic mechanism for error detection that
is capable of addressing error detection for a variety of
error categories via a web of specialized components�
A research prototype has been developed that demon�
strates the feasibility and e�ectiveness of our approach�

�� Introduction

Detecting errors in programs has always been one
of the most active areas of research ��� �� ��� �� in
computer science� Numerous research e�orts have re�
sulted in techniques that allow us to reason about pro�
grams� Concerns about program correctness has led
from the Hoare triples �	�� to Dijkstra
s weakest pre�
condition ��� and currently to complete veri�cation
environments such as Higher Order Logic �HOL ���
and the Prototype Veri�cation System �PVS ����� A
large number of programming notations exists that
use a variety of mechanisms to prevent potential er�
rors from occurring or to notify the user in a safe man�
ner if errors do occur� Examples of such mechanisms
include strong typing� smart compilers� and runtime
checking� Java ��� is an example of such programming

language� which is strongly typed with extensive and
sophisticated runtime checking mechanism�

However� even the most sophisticated compilers
have a limited ability to detect potential errors� This
is due to certain time� resources and performance con�
straints that limit the amount of checking that com�
pilers can perform� More serious problems� that can
cause runtime exceptions� such as attempts to access
null pointers� out of bounds array indeces� etc� can not
be caught by any compiler yet� Most of these kinds of
errors are usually caught at runtime�

We approach the problem of potential error detec�
tion� using formal methods� We provide a partial so�
lution and a generic mechanism capable of detecting
a variety of runtime errors� We apply static analysis
and veri�cation techniques� to automatically analyse
Java programs and detect potential bugs that can not
be detected by compilers and other data �ow�based
analysis techniques� Our approach is based on the use
of the logical concepts of class invariant and weakest
precondition ���� We developed a generic and deter�
ministic detection mechanism capable of addressing
the problem of error detection for a variety of run�
time errors� The detection mechanism comprises a
set of generic and specialized algorirhms to carry out
analysis of Java code automatically� It consists of the
following components�

� Generic analysis It can be used to provide the
framework for any kind of analysis that we need�

� Specialized analysis� It specializes the behavior
of some of the steps de�ned in the generic mech�
anism�

� Prototype� A fully functional prototype imple�
ments the algorithms and provides feedback that



is used to enhance and strengthen our approach

Our approach uses a generic mechanism for carry�
ing out the static analysis of Java programs and pro�
vides a number of specialized components which take
into account the idiosycratic details of each category
of errors that we are trying to detect�

The detection mechanism of our approach has cer�
tain limitations� mainly due to the intractability of
theorem proving process� We can not guarantee abso�
lute success in �nding all bugs even for the restricted
types of analysis discussed earlier� Our goal is not
to �nd all errors rather to �nd the majority of them
in a fully automatic and transparent to the developer
way� The key characteristics and contributions of our
approach could be summarized as follows��

Generic detection mechanism� Our approach is
both speci�c enough to detect errors determinis�
tically and generic enough to provide an e�cient
and e�ective framework for an extensive variety
of error categories�

Complete automation� The entire process of ana�
lyzing the source code and reporting the potential
violations is fully automatic�

No need for formal speci�cations� We do not re�
quire formal speci�cations� Indeed� we recover
the relevant speci�cations from the source code�

Flexibility� Our approach can be easily extended
to incorporate any user provided speci�cations
which will strengthen the capability of the analy�
sis component and will extend its set of potential
errors that can e�ectively check for�

In the following section we discuss the generic
framework and present the algorithms� Section three
presents an overview of the prototype tool and its com�
ponents� Section four discusses the experiments that
have been carried out using the prototype tool� Re�
lated work and comparisons with our approach is pre�
sented in section �ve� We discuss some future work
is section six and conclude in section seven� with a
summary of main �ndings and results�

�� The Analysis Framework

An important concept in our approach is the invari�
ant of a class� A class invariant is a condition that is
satis�ed by all non�transient states of the instances of
the class� A generic algorithm which can determine
an invariant has been developed� It uses a number of

generic and specialized components in order to deter�
mine invariants related to the speci�c analysis that is
performed� The invariant determination process takes
into consideration the di�erent initialization semantics
for static and instance variables i�e� static variables
are instantiated during the �rst active use ��� of the
type �class� The generic algorithms are listed below�

� DetermineInvariant� This algorithm is responsi�
ble for generating and verifying a class invariant�

� BreakDownCandInv� It splits the candidate in�
variant into predicates involving static variables
and predicates involving instance variables�

� IsInvariant� It checks whether a predicate regard�
ing class level variables is an invariant�

� CalculateWP� �CWP Given a statement and a
predicate� it calculates the weakest precondition�

� Prove� It is a call to the thorem prover that at�
tempts to discharge proof obligations�

� CheckViolation� It analyzes the implementation
of the class and based on the class invariant� it
check for potential errors�

Each one of them uses a number of generic and spe�
cialized algorithms� Specialized analysis is achieved
with a number of speci�c algorithms that carry out
analysis for speci�c categories of bugs� Some of these
algorithms are listed below�

� ConstructCandInv� It constructs a potential in�
variant based on the category of error that we
check for

� Mutate� The goal of the mutation algorithm
is to provide an array of weaker predicates and
store them in order of strength starting from the
strongest one �the predicate itself unchanged go�
ing to weaker ones until the predicate can not be
mutated anymore and its weakest mutated form
is the predicate true�

� CreateTargets It creates the veri�cation condi�
tions that will ensure the safe use of variables in
the Java code�

Determining a class invariant involves the construc�
tion of a candidate invariant� its mutation and check�
ing if it satis�es the requirements to be an invariant�



���� The DetermineInvariant Algorithm

We informally de�ne the following concepts�

� Static Invariant is a condition regarding only
static variables of the Java class� that is ensured
by all static initialization blocks and is preserved
by all constructors and public methods�

� Instance Invariant is a condition regarding all
class level variables of the Java class� that is en�
sured by all constructors and is preserved by all
public methods�

PPredicate DETERMINEINVARIANT� in JavaClass Class�

�� �� Initialization ��
PPredicate Invariant �� ��
PPredicate CandInstInv �� ��
PPredicate CandStaticInv �� ��
PPredicate InstanceInv �� ��
PPredicate StaticInv �� �

PPredicate PermutCandStaticInv �� ��
PPredicate PermutCandInstInv �� �

seq Predicate MutCandStaticInv �� hi�
seq Predicate MutCandInstInv �� hi

�� �� Constructing candidate static and instance invariants��
CandInstInv �� CONSTRUCTC

ANDINV�Class�CandStaticInv��
PermCandStaticInv �� BREAKDOWNC

ANDINV�CandStaticInv��
PermCandInstInv �� BREAKDOWNCANDINV�CandInstInv��

�� �� Determine invariant related to static variables ��
for each predst � PermCandStaticInv do

MutCandStaticInv �� MUTATE�predst �
for each mutpred in MutCandStaticInv do

if ISSTATICINVARIANT�mutpred � then

StaticInv ��StaticInv � fmutpredg
break

end if

end for

end for

�� �� Determine invariant of instance variables ��
for each predinst � PermCandInstInv do

MutCandInstInv �� MUTATE�predinst �
for each mutpred in MutCandInstInv do

if ISINVARIANT�mutpred � then

InstanceInv ��InstanceInv � fmutpredg
break

end if

end for

end for

�� �� The invariant found ��
Invariant �� StaticInv � InstanceInv

return Invariant

DetermineInvariant algorithm accepts as input a
Java class and returns a predicate that is satis�ed by
all non transient instances of this class� It reads in
the class level variables both static and non static
and forms a candidate invariant� It breaks down
the formed invariant into two predicates� one that

expresses a condition about static variables and one
about the all variables� Invariant is broken down to
two sets in order to examine seperately the properties
that do not depend on the instantiation of the Java
class from the ones that do� Each predicate is exam�
ined seperately and if it ful�lls the requirements of an
invariant� is added to the invariant of the class� The
output of the algorithm is the invariant for the Java
class under examination�

������ Determining the Invariant

We need to establish a condition �i�e invariant that
is true for the relevant variables every time a class is
instantiated� The algorithm described below is used
to determine invariants related to both static and in�
stance variables�

boolean ISINVARIANT�in PPredicate Precond� in PPredicate

Candidate�

boolean progress �� false

for each ci � InstanceConstructionBlock do

progress ��

PROVE�Precond � CWP�ci �Candidate��

if � progress then

break

end if

end for

if progress then

for each mj �Methods do

progress �� PROVE�Candidate � CWP�mj �Candidate��

if �progress then

break

end if

end for

return progress

Due to the di�erent instantiation semantics be�
tween static and instance variables� we actually run
the algorithm with di�erent inputs and each time we
consider di�erent instantiation blocks� Speci�cally for
the static invariant determination the static blocks
must ensure the potential invariant while for instance
invariant we consider init blocks and constructors�
The precondition that holds before every instantia�
tion of a class is the StaticInvariant � In the case that
the class has no static variables� the precondition is
reduced to the predicate true� We use this as a Pre�
condition input in our algorithm along with the can�
didate invariant� Candidate� An invariant regarding
instance variables has to be ensured by constructors
and preserved by each public method�



���� The Check Violation Algorithms

The algorithms presented in the previous section
determine an invariant with regard to a speci�c prop�
erty that we try to ensure� We can now check the
usage of each relevant variable to detect any possible
violations�

void aMethod����� �

fInvariantg the pre�condition
�� ��� other statements
f�isNull�v�g the assertion we attempt to prove
v�m����� the dereference
�� ��� other statements

�

In order to do that we provide an algorithm that
scans though the implementation of the class� locates
all the relevent variables and forms the appropriate
veri�cation conditions�

PStatementBugs CHECKCLASSV IOLATION� in JavaClass Class�
in PPredicate Invariant�

�� �� Initialization ��
PStatementBugs StatementsWithBugs �� ��

�� �� Check Static Block for potential bugs� Precondition is�
true ��
StatementsWithBugs �� StatementsWithBugs �

CHECKV IOLATION�StaticBlock � true�

�� �� Check Constructors for potential Bugs� Precondition is�
StaticInvariant ��
for each cj � InstanceConstructionBlock do

StatementsWithBugs �� StatementsWithBugs �
CHECKV IOLATION�cj � StaticInvariant�

end for

�� �� Check public Methods for potential Bugs� Precondition
is� Invariant ��
for each mj � Methods do

StatementsWithBugs �� StatementsWithBugs �
CHECKV IOLATION�mj � Invariant�

end for

�� �� Return the pstatement with potential violations ��
return StatementsWithBugs

In order to identify potential errors� we need to
carefully check every statement in the implementation
of the class� locate the points that these variables are
used� form the appropriate predicate that needs to be
true in order for the variables to be safely used by the
program at the point of execution� This is shown in a
general form below�

PStatementBugs CHECKV IOLATION� in JavaBlockCode Block�
in PPredicate Precondition�

�� �� Initialization ��
seq Statement ProcessedStatements �� hi�
boolean condition �� true�
boolean correct �� false�

PPredicate Targets �� ��
PVariable ProblematicVars �� ��

�� �� Check Java block of code for bugs with a given precondi�
tion ��
for each statement si � Block do

ProcessedStatements �� ProcessedStatements a hsi i
Targets �� CREATETARGETS�si�
if Targets �� � then

for each pred � Targets do

correct �� PROVE�Precondition �
CWP�ProcessedStatements� pred��

if � correct then

ProblematicVars �� ProblematicVars � fvarg
end if

end for

StatementsWithBugs �� StatementsWithBugs �
fsi � ProblematicVarsg

end if

end for

�� �� Return potential bugs found in the block of code ��
return StatementsWithBugs�

�� Prototype Development
The main components of the prototype are listed

below�

� Model constructor The modeling activity de�
pends on an extensive set of classes that provide
support for every Java programming construct� i�e
class� method� block of code� statements� types�
etc� An abstract syntax tree is created and con�
trol �ow graph of the program is constructed�
Based on the control �ow graph model all the
paths of execution are identi�ed�

� Invariant generator It uses the generic and cus�
tomizable algorithms to derive an invariant re�
garding the speci�c property that is under inves�
tigation�

� Violation detector Given the invariant from
the invariant generator� it scans through class im�
plementation to form the approprate veri�cation
conditions� and passes them to the prover�

In general� theorem proving that involves unre�
stricted predicates is intractable� Our approach has
focused on the use of such restricted predicates� Ex�
amples of such restricted predicates are the following�

� Checking for illegal dereference of variable of ref�
erence type myvar� We can formulate the predi�
cate �isNull�myvar�

� Checking for array index falling out of bounds
while accessing the ith element of myarray�i�� We
formulate the predicate i � myarray �length�



�� Experiments
We assess the capabilities of our approach by con�

ducting a number of small experiments� The results
are encouranging and show that the prototype can
serve as a vehicle for further research in the area�
Our �rst goal was to demonstrate the feasibility of
the approach� Small scale projects have been con�
ducted and the results have been evaluated� Our re�
search e�ort is experimental in nature� Its success can
be judged through experiments rather than theoreti�
cal proofs and analyses� Experimentation is used as
a feedback mechanism to our theoretical studies and
solutions� The goal is to gain and demonstrate e�ec�
tiveness� through experimentation� The experimental
prototype allows us to gain insight� discover obstacles
and limitations of our techniques� We use the feedback
given by the tool to re�ne and enhance our approach�
We conducted a large number of tests and the proto�
type tool exhibited the following key characteristics�

Complete Java coverage� We were able to cover
the entire Java language� No syntactical or se�
mantical restriction on the original language has
been imposed�

No guarantee of program correctness� Our ap�
proach does not promise absolute correctness or
absence of errors� It rather strives to identify cer�
tain types of potential errors

Application of formal methods Our approach
promotes the use of formal methods in a way
completely transparent to the user� We can
actually apply formal methods with little cost
but concrete gains�

Concerete gains� The prototype tool under devel�
opment provides the means for measuring the ef�
fectiveness and capability of our approach� Early
experiments indicate that�

� Our approach does not introduce any radi�
cal changes in the way practitioners develop
their code�

� It removes the burden of proof from the soft�
ware practitioners

� The analysis is fully automatic

We have developed a classi�cation scheme for the
di�erent causes of errors in both kinds of specialized
analysis discussed in this paper� null pointer and array
bounds� For each kind of anomaly we analyzed and
enumerated the causes and the scenarios under which
a violation will be occur in the program� Some of those

Error Scenario
null pointer class level var not initialized
array bounds array initialized with size� where size � �
null pointer class level var becomes null at arbitrary
array bounds array created and accessed in local scope
null pointer var is dereferenced under two condition blocks
array bounds class level array initialized with int constant�

a� remains constant
b� may change in various constructors

null pointer null var dereferenced in an unexecutable path
array bounds array access guarded by arr�length

null pointer var initialized but randomnly becomes null
null pointer var becomes null before end of loop iteration
null pointer var not initialized but dereferenced is guarded

Figure �� Experimental Scenarios

scenarions are shown in Fig� �� Prior to any testing all
test cases were successfully compiled to ensure syntac�
tic correctness of the code� For each of the classi�ed
cases we performed complete set of permutations un�
der di�erent scenarios to measure the e�ectiveness of
the approach� Our prototype was capable of �nding
over ��� of the errors in each scenario� In summary�
the early experiments are encouranging� The proto�
type is still under development and more extensive
case studies are planned�

�� Related Work
Flow control based techniques have been used suc�

cessfully as part of modern compilers such as Java�
to provide early detection of a various anomalies and
minimize the number of inconsistencies in the pro�
grams� Unfortunately these techniques are not suc�
cessuful in dealing with invariant properties� pre�post
conditions and cannot prevent a number of tedious
bugs from occurring� Such bugs include dereferencing
a null pointer or array index falling out of bounds�
etc� These kinds of problems are beyond the capabil�
ities of compilers and subsequently are transfered to
the runtime environment where some languages o�er
exception handling mechanisms�

More recently� research work at DEC laboratories
has resulted in Extended Static Checking �ESC ��� ���
and checking object invariants ���� They attempt to
use formal methods to identify particular kinds of bugs
in a programming language and provide also some
kind of feedback to the programmer about those po�
tential bugs� ESC translates progrmas into a an ab�
stract form based on Dijkstra
s guarded command�
Their logical framework is untyped �rst order pred�
icate calculus and the lack of type information for
the proofs is covered by the background predicate ���
which includes type axioms� An unsuccessful proof
return information about the reason of its failure�



The work presented in this paper is a generalisa�
tion and extension of the work ���� on the null pointer
detection which carried out by the members of For�
mal Methods group at Software Engineering Division
at DePaul University�

�� Future Work

The work presented in this paper lays out the foun�
dation of a comprehensive analysis of Java classes�
Our work will evolve in three main directions in or�
der to provide�

� Stronger analysis techniques which will cover
more complicated cases within the already de�
�ned categories of potential bugs

� An extensive array of algorithms capable of han�
dling di�erent cases

� Broader coverage of kinds of errors that can be
automatically checked� These include but not
limited to�

� illegal downcasting

� string index out of bounds

�� Conclusion

Usually� checking for errors is not one of the �rst
priorities of a software developer� Sometimes errors
even escape detection during testing and products are
released to customers with a number of bugs hidden
in the code� Our approach provides a solution to this
problem by focusing on the detection of certain kinds
of bugs� The approach and algorithms described in
this paper are dealing with the concept of class in�
variant and based on that� check the implementation
of the class� The implication is that for an instance
created by any public constructor of the class� any
public �thread�safe method can be invoked in any or�
der� In our work� we address some of the obstacles
that prevent formal methods from being widely used
in software industry� We make the use of formal meth�
ods and theorem proving completeley trasnparent to
the software practitioner� By sacri�cing guarantee of
absolute corectness and lack of errors� we provide a
mechanism to detect an arguably signi�cant number
of common errors� that are part of the daily debugging
routine of every software practitioner�

Our approach focused on certain types of anomalies
in the source code that can be detected automatically�
The key feature which makes our approach practical
is its complete automation which entails practicality�

References
��� E� Dijkstra� Guarded commands� nondetermi�

nacy and formal derivation of program� Com�
munications of ACM� ������	���	�� ���	�

��� M� Gordon and T� Melham� An Introduction to
HOL� A theorem proving environment for higher
order logic� �����

��� J� Gosling� B� Joy� and G� Steele� The
JavaTM Language Speci	cation� Addison�Wesley�
�����

��� D� Gries� The science of Programming� Springer�
Verlag� �����

�	� A� Hoare� An axiomatic basis for com�
puter programming� Communications of ACM�
������	���	��� �����

��� B� J� Gosling and G� Steele� Java speci�cation
language� Technical report� ����� available from
http���www�javasoft�com�

��� D� Jackson� A formal Speci	cation Language for
Detecting Bugs� ����� PhD Thesis� Massachusetts
Institute of Technology�

��� D� l� Detlefs� An overview of the extended static
checking� In Proc� The First Workshop on Formal
Methods inSoftware Practice� pages ���� �����
ACM�SIGSOFT�

��� K� R� M� Leino� Ecstatic� An object�oriented pro�
gramming language with axiomatic semantics� In
Proc� FOOL
� ����� Fourth International Work�
shop on Foundations of Object�Oriented Lan�
guages�

���� K� R� M� Leino and R� Stata� Checking object
invariants� Technical report� Digital Equipment
Corporation Research Center� ����� Palo Alto�
CA�

���� N� S� S� Owre� J� Rushby� PVS� A prototype
veri�cation system� Lecture Notes in Arti	cial
Intelligence� ���������	�� �����

���� S� Sawant� Applying static analysis for detecting
null pointers in java programs� Technical report�
Oct� ����� MS Thesis�


