
Analyzing Java Software by Combining Metrics and Program Visualization

Tarja Systä
Software Systems Laboratory

Tampere University of Technology
P.O. Box 553, FIN-33101 Tampere, Finland

tsysta@cs.tut.fi

Ping Yu
Department of Computer Science

University of Victoria
P.O. Box 3055, Victoria, BC, V8W 3P6, Canada

pingyu@csr.uvic.ca

Hausi Müller
Department of Computer Science

University of Victoria
P.O. Box 3055, Victoria, BC, V8W 3P6, Canada

hausi@csr.uvic.ca

Abstract

Shimba, a prototype reverse engineering environment,
has been built to support the understanding of Java soft-
ware. Shimba uses Rigi and SCED to analyze, visualize,
and explore the static and dynamic aspects, respectively, of
the subject system. The static software artifacts and their
dependencies are extracted from Java byte code and viewed
as directed graphs using the Rigi reverse engineering envi-
ronment. The static dependency graphs of a subject system
can be annotated with attributes, such as software quality
measures, and then be analyzed and visualized using scripts
through the end-user programmable interface.

Shimba has recently been extended with the Chidamber
and Kemerer suite of object-oriented metrics. The metrics
measure properties of the classes, the inheritance hierar-
chy, and the interaction among classes of a subject system.
Since Shimba is primarily intended for the analysis and ex-
ploration of Java software, the metrics have been tailored to
measure properties of software components written in Java.
We show how these metrics can be applied in the context of
understandingsoftware systems using a reverse engineering
environment. The static dependency graphs of the system
under investigation are decorated with measures obtained
by applying the object-oriented metrics to selected software
components. Shimba provides tools to examine these mea-
sures, to find software artifacts that have values that are in
a given range, and to detect correlations among different
measures. The object-oriented analysis of the subject Java
system can be investigated further by exporting the mea-
sures to a spreadsheet.

1. Introduction

Software maintenance, re-engineering, and reuse involv-
ing large software systems is complex, costly, and risky
mainly because of the difficult and time-consuming task of
program comprehension. Many reverse engineering tools
have been built over the last fifteen years to help the com-
prehension of large software systems. These tools aid the
extraction of software artifacts and their dependencies and
the synthesis of high-level concepts. Moreover, these tools
provide support for analyzing software systems and auto-
mate some of the mundane and repetitive understanding op-
erations.

With the advent of object-oriented programming lan-
guages, such as Smalltalk, C++, and Java, object-oriented
design and development methods have been widely adopted
in the software industry. While popular, object-oriented
programming is not a panacea. The need for assessing
the quality of software systems has not changed. Just as
object-oriented programming requires a different approach,
compared to imperative programming, software metrics for
object-oriented programs must differ from traditional soft-
ware metrics. There are many object-oriented metrics, but
the key metrics aim to measure design and code quality
by investigating the coupling among classes, the cohesion
within classes, complexity of classes, and complexity of the
inheritance hierarchy.

These metrics can play a significant role when reverse
engineering an existing software system. One approach to
use object-oriented complexity metrics to identify high- and
low-complexity parts of the subject system. The most expe-
rienced maintainers or reengineers can then be assigned to
the most complex subsystems [22]. Another strategy is to



identify complex or tightly coupled parts in the subject soft-
ware system. Such parts are difficult to modify and reuse
and might be candidates for restructuring, refactoring, or
significant redesign [6]. Metrics can also be used to identify
highly cohesive and loosely coupled parts of the software
that potentially represent subsystems [13]. Hierarchies of
subsystems form the organizational axes for software ex-
ploration and, in turn, program comprehension.

In this paper we consider the Chidamber and Kemerer
suite of object-oriented metrics to aid the reverse engineer-
ing and understanding of Java software [1, 2]. The metrics
measure properties of the classes, the inheritance hierarchy,
and the interaction among subsystems. The metrics were
implemented in Shimba, a prototype reverse engineering
environment, to analyze Java software [21].

Shimba supports the exploration, visualization, and anal-
ysis of bothstaticanddynamic reverse engineering. Static
reverse engineering aims to model the structure of a sub-
ject software system while dynamic reverse engineering in-
tends to model its run-time behavior. Shimba integrates the
reverse engineering environment Rigi, the dynamic analy-
sis engine SCED, and an extensible suite of object-oriented
metrics. In this paper, we only consider static reverse en-
gineering. The static information is extracted from the byte
code of the subject system and analyzed with Rigi [14]. Rigi
uses a graph model to represent information about software
entities, relationships, attributes, and the abstractions over
them.

The collection of object-oriented metrics operates di-
rectly on Java byte code. The metrics suite can be applied to
an entire Java program or subsets, such as individual pack-
ages and classes. The resulting measures can be attached to
the Rigi graphs of the subject system or simply be stored in
files.

Rigi is end-user programmable [23] through its built-in
Rigi Command Language (RCL) [25] which is based
on Tcl/Tk [15]. Queries and analyses can be encoded
in RCL scripts to operate on the subject system’s static
dependency graph and the annotated object-oriented
complexity measures. Thus, the scripts are a flexible and
versatile tool to explore and investigate the measures. For
example, the script depicted in Figure 1 allows the reverse
engineer to identify those parts of a subject software system
that have a given metric in a desired value range. The
script takes four argumentstype, metric, lowerbound, and
upperbound. The argumenttypedefines a node type in a
Rigi graph. Accepted types correspond to the extracted
Java artifacts (i.e., class, interface, method, constructor, and
static initialization block). The argumentmetric defines
the object-oriented metric to be examined. Arguments
lowerbound and upperbound represent the minimum
and maximum values, respectively. A threshold value
representing a limit value is given by the last argument

threshold. The script selects all nodes of typetypein a Rigi
graph that have higher value thanthresholdof metric. An
example call of the script could bejava selectmetric Class
CC 3.5 10.3. Because Tcl is an interpretable scripting
language, the script library of Rigi can easily be extended;
new scripts can be added on the fly. This allows the reverse
engineer to write and use scripts that have specific tasks,
such as scripts that support the analysis of the metric values.

Figure 1. A script that identifies parts of the
target software for which a given metric is in
a desired value range.

2. The object-oriented metrics suite

The Chidamber and Kemerer metrics suite contains six
object-oriented metrics, which have been discussed exten-
sively in the object-oriented metrics literature. We distin-
guish three metrics categories:inheritance metrics, com-
munication metrics, and complexity metrics. Inheritance
metrics are used to examine the inheritance hierarchy of
object-oriented programs; the communication metrics es-
timate theinternalandexternalcommunication of software
components; and the complexity metrics measure the logi-
cal structure complexity of selected components.

2.1. Inheritance metrics

In Java the inheritance hierarchy is a single tree and,
hence, all classes inherit from a single root or object class
called java.lang.Object. For the purpose of this discussion
we distinguish betweenfoundationandapplicationclasses
to separate the inheritance tree into two parts. The founda-
tion classes encompass all those classes that are part of the
Java Development Kit (JDK), the Java foundation classes,
and the classes from any other Java library. The application
classes include all other application-oriented or subject-
system classes.

Since our goal is to measure design and code qualities
of the subject system, we do not take the foundation

2



classes into account when computing measures for the
inheritance metrics. If we were to include the foundation
classes it would skew our results towards the quality of the
foundation classes. Applying the metrics to the foundation
classes, however, provides a solid base line against which
we can compare the measures derived from the application
classes.

We employ two metrics to evaluate the quality of an in-
heritance hierarchy:

1. the Depth of Inheritance Tree (DIT) and

2. the Number of Children (NOC).

These metrics were first introduced by Chidamber and Ke-
merer [2].

In a language with single inheritance, such as Java, the
depth of a class or interface or the Depth of an Inheritance
Tree (DIT) is simply the number of its ancestor classes or
interfaces, that is, the number of classes or interfaces along
the path to the single root class or interface. TheDIT value
of a class indicates how many ancestor classes potentially
affect it. This metric measures the size or design complex-
ity of a class or an interface. The size of a class (i.e., the
number of methods and instance variables of a class) and,
hence, the complexity of a class, increases with the depth of
the inheritance tree. Since classes and interfaces belonging
to foundations classes are ignored, the root class/interface
is considered to be the one that does not extend/implement
any other class/interface belonging to the subject system.

The Number of Children (NOC) of a class is the number
of classes that extend this class. For an interface,NOC is
the sum of the number of interfaces that extend it and the
number of classes that implement it. TheNOCvalue of a
class is the number of classes in its subtree or how many
classes are potentially affected by it. TheNOC value of a
class or an interface is a good indicator of how the design
of the system is affected it is changed. Classes or interfaces
with a highNOC value should be maintained by the most
experienced software engineers.

TheDIT andNOCnumbers of a class are good indicators
for the design complexity of a class. Thus, the inheritance
metrics can be used to predict reusability and design com-
plexity.

2.2. Communication metrics

We employ three metrics to measure coupling and cohe-
sion among classes and objects:

1. Response For a Class (RFC);

2. Coupling Between Objects (CBO); and

3. Lack of Cohesion in Methods (LCOM�).

As the inheritance metrics these metrics were also intro-
duced by Chidamber and Kemerer in their seminal 1991
OOPSLA paper [2].

RFC is a measure for the size or the complexity of a
class and the interaction or communication of the class with
the rest of the system.RFC is the sum of the number of
methods in a class and the number of external methods that
are potentially called by this class. To compute the number
of methods of a class, we count theregular methods,the
constructors,and thestatic initialization blocksthat belong
to it. It ignores the calls to members of the same class. Thus
for a classC, letMi be the set of all member functions in
C. LetMo be the set of all member functions, belonging to
other classes, that are called by the members ofMi. Then
RFC(C) is the size of the setMi [Mo.

By this definition theRFC metric treats all calls to ex-
ternal methods the same. However, calling a method of a
super class does not add as much to the complexity as call-
ing a method of another class. For example, in Java the
default constructor of the super class is called automatically
from the constructors of its subclasses. Furthermore, over-
loading a method in a subclass typically contains a call to
the overloaded method of the super class.

The goal of theCBO metric is to distinguish between
these cases. It measures the coupling of a class with those
classes with which it is not related through inheritance. To
compute theCBOmeasure, both constructors and methods
are taken into account. Following the dependencies be-
tween two classes that are not in a super class-subclass re-
lationship constitutes coupling including method calls, con-
structor calls, instance variable assignments, or other kind
of instance variable accesses.

In the literature, several formulas have been introduced
to compute the Lack of Cohesion metricLCOM [1, 2, 7,
8, 10]. We adopted a definition introduced by Henderson-
Sellers to analyze Java programs [8]. It measures the lack
of cohesion or dissimilarity among all the methods of a
class except the inherited methods but including overloaded
methods. TheLCOM� value denotes the number of pairs of
methods without shared instance variables, minus the num-
ber of pairs which do share instance variables.

Consider a classC, its set M of m methods
M1;M2; : : :Mm, and its setA of a data members
A1; A2; : : :Aa accessed byM . Let �(Ak) be the number
of methods thataccess data attributeAk where1 � k � a.
ThenLCOM�(C(M;A)) is defined as follows:

LCOM�(C(M;A)) =

�
1

a

aP
j=1

�(Aj)

�
�m

1�m
(1)

The methods of a class should be logically related. If a
class exhibits low method cohesion it indicates that the de-

3



sign of the class has probably been partitioned incorrectly.
In that case the design could be improved if the class was
split into more classes with individually higher cohesion.
TheLCOM� metric helps to identify such flaws in the de-
sign.

2.3. Complexity metrics

Most object-oriented metric suites include traditional
code complexity metrics. We employ theCyclomatic Com-
plexity (CC)and theWeighted Methods per Class (WMC)
metrics to measure the complexity of control flow. Mc-
Cabe’s Cyclomatic Complexity [12] is used to assess the
logical structure or the complexity of a sequential algo-
rithm, such as a method, a function, or a procedure. It
counts the number of test cases that are needed to test the
method comprehensively. TheCCmetric is used by several
other metrics. We use the following formula, adopted from
Henderson-Sellers [8], to computeCC:

CC(G) = e � n + 2p; (2)

whereG is a complexity graph,n ande are the number of
nodes and edges inG; respectively, andp is the number of
disconnected components inG: The complexity graphG
for a single method is a control flow graph.

Finally, WMC is defined as the sum of the complexities
of all the methods of a class except the inherited methods
but including overloaded methods. The Henderson-Seller
Cyclomatic ComplexityCC is used to compute the com-
plexity of a method.

WMC=
nX
i=1

CCi (3)

Thus,WMC is proportional to the number of methods in
a class and to the complexity of the logical structure of all
methods. The higher a class’WMC measure is, the more
difficult it is to understand and maintain it.

3. Collecting and visualizing information

The software artifacts and their dependencies are directly
extracted from Java class files [24]. The extracted informa-
tion includes the following components: classes, interfaces,
methods, constructors, variables, and static initialization
blocks. The extracted dependencies among these artifacts
include extension relationships (i.e., a class extends another
class), implementation relationships between classes and
their interfaces, containment relationships (i.e., a class con-
tains a method), call relationships (i.e., a method calls an-
other method),access relationships (i.e., a method accesses

a variable), and assignment relationships (i.e., a method as-
signs a value for a variable). Theextractor,written in Java,
uses some of the public classes of thesun.tools.javapack-
age ofJDK 1.2. Other Java byte code extractors are dis-
cussed, for instance, in [17, 16].

Rigi is used to visualize the constructed static depen-
dency graphs. In Rigi, the software artifacts are depicted
as nodes and relationships as directed edges between nodes.
Different types of nodes or edges are represented by differ-
ent colors.

Using the Shimba reverse engineering environment, the
user can interactively select any subset of the metric suite
to be applied. Measures are computed for those software
components that are in the current context, that is, those
artifacts for which the static information has been extracted
from the byte code.

The measures are then added as attribute values to Rigi
nodes. By default, the attribute values of nodes are not
visible in Rigi but they can be used for analyzing the
graph. They can, however, be examined using the graph
editor by selecting a node and opening a pop-up dialog
for it. This is shown in a screen snapshot of a Rigi ses-
sion in Figure 2. In this case, the user has selected node
de.unipaderborn.dis.DisRowand opened an attribute vi-
sualization widget that lists all the attribute values of the
node. Using measures as node attributes, Rigi provides flex-
ible and powerful mechanisms to analyze the values and the
static dependencies.

Figure 2. Attribute values of a selected node
can be examined in Rigi by opening a popup
window.

4



4. Threshold values

The object-oriented metrics literature discusses
language-dependent heuristics for threshold values
which correspond to high and low-quality software compo-
nents. They are usually based on experiences over several
software projects and hence should be treated as heuristics
and recommendations. Lorenz and Kidd propose threshold
values for several object-oriented metrics for C++ and
Smalltalk based on their experience with selected C++
and Smalltalk projects [11]. Few papers report on the
experiences with Java projects. As a result there are few
heuristics for threshold values for assessing Java programs.
The threshold values for Smalltalk are probably a better
starting point for Java than those for C++, since C++ is not
a pure object-oriented language.

In this paper we do not present fixed ranges or thresh-
old values for Java components, but we recommend that
the engineers, who assess Java software, experiment with
value ranges using the end-user programmable scripts pro-
vided through the Shimba reverse engineering environment.
However, the reverse engineer has the option of running
a script calledjava selectattributesthreshto define initial
threshold values. The script takes three argumentstype,
metric, andthreshold. As in scriptjava selectmetricin Fig-
ure 1, the argumenttypedefines a node type in a Rigi graph
and the argumentmetricsdefines the object-oriented met-
rics to be examined. A threshold value representing a limit
value is given by the last argumentthreshold. The script
selects all nodes of a given type in a Rigi graph that have
higher value than typetypein a Rigi graph that have higher
value thanthresholdof metric. By running this script the
user can quickly find software artifacts that have critical or
extreme measures (i.e., classes that are most complex).

5. Applying the metrics to the FUJABA system

To gain experience with the object-oriented metrics for
program understanding purposes, we analyzed the FUJABA
system using Shimba. FUJABA was developed at the Uni-
versity of Paderborn, Germany and is freely available and
downloadable from the Web [18].

The primary objective of the FUJABA project and en-
vironment is it Round Trip Engineering using the Uni-
fied Modeling Language (UML), Story Driven Modeling
(SDM), Design Patterns, and Java.

We investigated FUJABA Version 0.6.3-0. Extracting
static information and applying the metrics suite resulted
a dependency graph of almost 26,000 software artifacts, an-
notated with the computed measures.

5.1. Extreme measures

To locate extreme measures, we ran RCL scripts.
Figure 3 shows how the methods with highestCC
values and their call dependecies are displayed in
Shimba. The nodes can be easily found by running the
java selectattributesthreshscript (see Section 4). By run-
ning the script again five most complex methods were
found. Those nodes are selected and their names are
shown in the figure. The rest of the graph has been fil-
tered out. Note that the subgraph of seven nodes on
the bottom of the figure forms a complex structure in
which methods with highCC values call each other. The
java selectattributesthresh script was also used to con-
struct a Rigi graph in Figure 2 to search classes that have
DIT values higher than four. The graph also includes the
whole inheritance hierarchy of those classes. That can be
easily achieved by running scripts of the standard RCL li-
brary of Rigi.

Figure 3. FUJABA methods with highest
CC values

We then investigated the communication metricsRFC,
CBO, and LCOM� for FUJABA. By running the
java selectattributesthresh script for the communica-
tion metrics, it was readily apparent that most cou-
pled classes with respect to theRFC metric belong to
de.unipaderborn.fujaba.umlpackage. From the top 25
classes with the highestRFC values over 20 classes be-
long to this package. Similar ratios were obtained for
the CBO and LCOM� metrics: 13/39 and 11/119, re-
spectively. One conclusion we might derive is that
de.unipaderborn.fujaba.umlis one of the largest packages
in FUJABA which is indeed correct.

The high coupling measures encouraged us to take a

5



closer look at the measures generated for this package. The
classes with highestRFC andCBOvalues are listed in Ta-
ble 1 in decreasing order of their original metric values. Ta-
ble 2, in turn, shows the highestLCOM� measures for this
package. Some of the classes listed in Table 2 are inner
classes. The fully qualified name of an inner class consists
of the name of the owner class separated with a “$” charac-
ter from the name of the inner class itself.

RFC CBO
UMLClass (629) TestProject (23)
UMLProject (587) UMLClass (16)
TestProject (500) UMLActivity (10)
UMLFile (465) UMLActivityDiagram (10)
UMLClassDiagram (391) UMLMethod (9)
UMLTypeList (377) UMLObject (9)
UMLStoryPattern (371) UMLStoryActivity (9)

Table 1. Classes in the
de.uni paderborn.fujaba.uml package with
the highest RFC and CBO measures. The
classes are listed in decreasing order of their
measures. The values are shown in braces.

LCOM�

UMLFile$ UMLPackageComparator (2.0)
UMLStoryPattern$ collabStatLessThan (2.0)
UMLLink (0.987)
UMLTransitionGuard (0.980)
UMLIncrement (0.980)
UMLLinkSet (0.975)
UMLClass (0.963)

Table 2. Classes in the
de.uni paderborn.fujaba.uml package with
the highest LCOM� measures. Classes are
listed in decreasing order of their measures.
The values are shown in braces.

To examine the dependencies of the classUMLClass
(with the highestRFCvalue), we executed some queries on
the static dependency graph using RCL scripts. A standard
RCL scriptselectneigborswas used to identify the classes
that are coupled with the classUMLClass. The script was
used in three phases. It was first used to find methods, con-
structors, and static initialization blocks of the classUML-
Class. Then the same script was used to find all the other
methods, constructors, and static initialization blocks that
have a call dependency with those member functions. The
script was used once more to select the owner classes of all
the member functions found. Many of the methods found
do no belong to FUJABA but have a call dependency with

the member functions of the classUMLClass. For example,
several methods of classjava.lang.Stringare called. Using
couple of RCL scripts, such methods were collapsed into a
high-level Rigi node that represents the package they belong
to. Finally, the rest of the graph was filtered out. Figure 4
exhibits the resulting graph. The inheritance relationships
shown in the figure indicate that calls of superclass meth-
ods form a large part of coupling. In many cases, such calls
cannot be considered harmful.

Figure 4. Classes and packages the class
UMLClassis coupled with.

5.2. Correlation of the metrics

We can investigate the measures further by export-
ing the data to a spreadsheet. We again use the end-
user programmable Rigi interface to write measures into
a file readable by the Microsoft Excel spreadsheet. Now
we can take advantage of all the functions, program-
ming capability, and diagraming techniques Excel pro-
vides. Figure 5 depicts a line diagram, produced using Ex-
cel, of the original communication measures for package
de.unipaderborn.fujaba.uml. From the diagram, it is diffi-
cult to conclude whether the values of different metrics cor-
relate, because the metrics have different value ranges. By
running another RCL script on the static dependency graph,
we normalized complexity and communication measures in
order to compare and analyze the generated measures more
effectively. Each measure is normalized by subtracting the
mean from it and dividing the result by the standard devia-
tion. The resulting values are depicted in Figure 6 and have
zero mean and unit deviation. The correlation between the
metrics is easier to recognize from diagram in Figure 6 than
from diagram in Figure 5.

To complete the investigation of the communica-
tion metrics, we now study theLCOM� metric for the

6



Figure 5. The original values of RFC,
CBO, and LCOM� metrics for classes in
de.uni paderborn.fujaba.uml package.

de.unipaderborn.fujaba.umlpackage. TheLCOM� metric
not only measures communication but also logical complex-
ity. Thus, it is useful to compare theLCOM� measures with
the CC andWMC measures. Figure 7 exhibits a line dia-
gram, produced with Excel, of the normalized complexity
measures for all classes in thede.unipaderborn.fujaba.uml
package.

If we compare the graphs in Figures 6 and 7, we observe
that the shapes of the lines in both figures are similar, that is,
most of the classes that have high communication measures
also have high complexity metric values. The most obvi-
ous exception is the classTestProject, for which RFC and
CBOvalues are very high, but theCC, WMC, andLCOM�

measures are low. Such classes typically consists of meth-
ods that mostly call and/or are called by other classes and,
hence, do not implement complicated algorithms. This is
the case also with classTestProject.

Figures 6 and 7 illustrate the fact that classUML-
Classhas high measures for both the communication and
complexity metrics. When examining the size of the
UMLClass.classandUMLClass.javafiles, we observe that
the UMLClass class is clearly the largest class in the
de.unipaderborn.fujaba.umlpackage (i.e., the size of the
UMLClass.javafile is more than double the size ofUMLIn-
crement, the second largest class.

To study the correlation of metrics in more detail, we
used an Excel macroCORREL to generate a correlation
matrix from the normalized measures. Table 3 exhibits the
pairwise correlation values. If the coefficient is greater than
0,4, we consider two metrics to be correlated. The larger
the coefficient is (the maximum being 1), the more corre-
lated two metrics are. Note that dependecies between met-
rics cause high correlation coefficients in some cases. For
instance, the coefficient forWMCandCC is 0,98, which is

Figure 6. The normalized measures by apply-
ing the RFC, CBO, and LCOM� metrics to the
classes of the de.unipaderborn.fujaba.umlpack-
age.

explained by the fact thatCC is used to calculateWMC.

CC WMC LCOM RFC CBO NOC DIT
CC 1,00 0,98 0,38 0,69 0,53 0,15 0,04
WCM 0,98 1,00 0,37 0,69 0,54 0,14 0,06
LCOM 0,38 0,37 1,00 0,41 0,18 -0,01 0,31
RFC 0,69 0,69 0,41 1,00 0,72 -0,02 0,45
CBO 0,53 0,54 0,18 0,72 1,00 -0,13 0,12
NOC 0,15 0,14 -0,01 -0,02 -0,13 1,00 -0,10
DIT 0,04 0,06 0,31 0,45 0,12 -0,10 1,00

Table 3. A correlation matrix of normalized
measures.

6. Related research

Software metrics, including object-oriented metrics,
are used in many enchanced reverse engineering and re-
engineering environments to help the user analyze con-
structed views of the software being investigated. Such en-
vironments and tool sets include McCabe Reengineer from
McCabe & Associates Inc. provides views of the system
architecture and views of the interaction among modules
based on the analysis of the source code. Metrics are used
to measure the complexity and structuredness of software
components. The results are illustrated by coloring the
views (e.g., to recognize exceptional metrics values). In
our approach, we run scripts which execute queries on the
dependency graphs. While Shimba is a prototype environ-
ment that supports dynamic and static reverse engineering
of Java software, McCabe Reengineer supports several lan-
guages and provides a large set of tools that can be used for
testing the subject software and to assist the re-engineering
process in various ways.

7



Figure 7. The normalized measures obtained
by applying the CC, WMC, and LCOM� metrics
to the classes of the de.unipaderborn.fujaba.uml
package.

CodeCrawler is a platform built to support program
understanding by combining metrics and program visual-
ization [5]. CodeCrawler provides views that show se-
lected structural aspects of the software as a simple two-
dimensional graph. As in Rigi, nodes in a dependency
graph represent software artifacts (e.g., a C++ class). Code-
Grawler is able to visualize up to five metric values simul-
taneously on a single node: the size of a node can be used
to render two measurements (i.e., the width and the height);
the position of the node can also render two measurements
(i.e., theX andY coordinates); and the color of the node,
a gradient color between white and black, can be used to
visualize one measurement. Unlike the approach presented
in this paper, the visualization technique of CodeCrawler
is not able to show all the static dependencies within the
software at the same time. Furthermore, the graph is not
editable and does not support querying techniques.

Logiscope from CS Verilog supports both static and dy-
namic analysis of a software system. It is able to produce
static call and control graphs of the subject system. In
Shimba, the control graph information is used to calculate
CCandWMCvalues but the graphs are not presented graph-
ically. In addition to call dependencies, the constructed de-
pendency graph in Shimba contains information about in-
heritance, implementation, variable accesses, and variable
assignments. In Logiscope, quantitative information based
on software metrics and graphs can be generated to help
the user to diagnose defects. The large set of metrics sup-
ported by Logiscope includes inheritance, communication,
and complexity metrics. The Kiviat metric graphs are used
to identify components that have exceptional measures. In
Shimba, the exceptional measures are identified by making
queries on the annotated static dependency graph.

Sneed and Dombovari [20] introduce an approach to
model the requirement specification and the system im-
plementation of a large, distribute C/C++ system. The
approach combines forward and reverse engineering tech-
niques and supports software maintenance. Shimba does
not corrently support forward engineering but it can be ex-
tended for that purpose. For example, the dynamic re-
verse engineering process results UML type of sequence di-
agrams and state diagrams that are visualized with SCED.
Those diagrams can then be used in the analysis and de-
sign phases of object-oriented software construction. Sev-
eral size metrics and code characteristic measurements are
used in [20]. The values are presented in a metric report.
Tool called CppSpec is used to model the entities and re-
lationships extracted from the code. CppSpec can generate
various kinds tree diagrams and cross reference diagrams on
demand. Unlike in our approach, the metrics are not directly
mapped with the program visualization. As in Shimba, add
hoc queries are supported in CppSpec. The usage of queries
in CppSpec is limited to a fixed set of questions that can be
asked. In Shimba, the amount or type of queries is not lim-
ited. The queries can be used to construct different views to
the target software. This is not supported in [20].

The Hindsight reverse engineering tool from IntegriSoft
Inc. can produce different kinds of reports, charts, and di-
agrams that help program understanding. Hindsight uses
software metrics for analyzing the complexity of the subject
system. Metrics are presented in cross reference reports, ex-
ception reports, Kiviat diagrams, and metric charts. Metrics
can also overlaid on a call graph. In Shimba, metrics can be
annotated to the static dependency graph or saved in a file
readable, for example, by the Microsoft Excel spreadsheet.
Hindsight gives automated support for analyzing the impact
of code changes and supports testing. These facilities are
not supported in Shimba.

7. Discussion

This paper presented an approach on how to apply
object-oriented metrics using a reverse engineering environ-
ment for program understanding purposes. Combining met-
rics information with a graphical reverse engineering tool
helps both the reverse engineering process and the analysis
of the measures.

In reverse engineering, one of the most challenging tasks
is building abstract views from the parsed static dependen-
cies. This can be accomplished by synthesizing high level
components or concepts that represent software artifacts
which are highly cohesive and loosely coupled with other
components. Metrics can be used to find such parts and,
hence, support this task effectively. A reverse engineering
tool can also be used to find software artifacts that have ex-
treme or exceptional measures. Such values need to be rec-

8



ognized in order to propose restructuring or refactoring of
the offending components.

We used the Shimba reverse engineering tool to imple-
ment our ideas about combining metrics and program un-
derstanding technology. Shimba contains Rigi, SCED, and
the object-oriented metrics suite. Rigi is used to visual-
ize the static dependencies of the subject system as nested
graphs, which is extracted from its Java byte code. The
graphs are then annotated with the measures obtained from
applying the metrics suite to the subject system. Rigi pro-
vides an extensible script library that can be used for exe-
cuting queries on the graph to explore, inspect, and modify
it.

We contributed several new scripts to the RCL scripting
library to identify extreme measures and to find measures
that fall within a given range. Having identified interesting
or highly cohesive parts within the subject system, the re-
verse engineer can investigate the static dependency graph
further to figure out how the complex parts have been built,
how they are related to the rest of the system, and what the
measures of those related components are. Different views
to the subject software can be quickly generated using the
scripts. The views help the reverse engineer to find answers
to such questions. Furthermore, the measures can be nor-
malized by running another script. The normalization is
needed to correlate different metrics.

The measures are computed by running a metrics pro-
gram integrated with the Shimba reverse engineering en-
vironment. Some of the metrics could also be calculated
using Rigi scripts. If the information needed is included in
the static dependency graph, a new script that calculates the
values and adds that information to graph could be written
and added to the script library of Rigi (even dynamically, if
desired). However, this is not possible for all the metrics.
For example, theCC metric is computed using the control
flow information that is not usually included in Rigi graphs
but can be generated by the byte code extractor. The Java
compiler translates conditional statements to specific binary
instructions [24]. The control flow can be determined by ex-
amining the usage of such instructions.

Shimba also supports dynamic reverse engineering. Dur-
ing the run-time analysis, weight values for method calls,
constructor invocations, and thrown exceptions can be
added to the static Rigi graphs. Again, the weight values are
added as node attributes the same way as measures from the
metrics suite. This provides sufficent information for com-
puting selected dynamic metrics. For example, the user can
calculate the actual communication between objects, based
on the actual usage of components.

When we investigated the measures for the FUJABA
software, we did not discover big flaws in the design.
By examining the communication metricsRFC, CBO,
and LCOM�, design flaws in the class structure and in

information hiding strategy were exhibited. If theLCOM�

measure of a class is high, but theRFC and CBO values
are low, then it can be suspected that the class might have
unused variables or the variables have not been properly
selected for the class. By examining the complexity metrics
CC andWMC, complex data structures can be recognized.
The inheritance metricsNOCandDIT can be used to study
the inheritance hierarchy and, hence, help in estimating the
reusability and extensibility of the subject system.

Acknowledgements

We wish to thank Michael Przybilski and the anonymous
reviews for their helpful comments.

References

[1] S. Chidamber and C. Kemerer. A metrics suite for object-
oriented design.IEEE Trans. Softw. Eng., 20(6):476–493,
1994.

[2] S. R. Chidamber and C. F. Kemerer. Towards a metrics
suite for object-oriented design. InConference on Object-
Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA’91), pages 197–211, 1991.

[3] R. S. Corporation. The unified modeling language notation
guide v1.3. [http://www.rational.com], 1999.

[4] T. DeMarco.Controlling Software Projects. Yourdon Press,
1982.

[5] S. Demeyer, S. Ducasse, and M. Lanza. A hybrid reverse
engineering approach combining metrics and program visu-
alization. Inthe 6th Working Conference on Reverse Engi-
neering (WCRE99), pages 175–186, 1999.

[6] M. Fowler. Refactoring. Addison-Wesley, 1999.
[7] I. Graham. Migrating to Object Technology. Addison-

Wesley, 1995.
[8] B. Henderson-Sellers.Object-Oriented Metrics, Measures

of Complexity. Prentice Hall, 1995.
[9] M. Hinz and B. Montazeri. Measuring coupling and cohe-

sion in object-oriented systems. InInternational Symposium
on Applied Corporate Computing (ISAA’95), 1995.

[10] W. Li and S. Henry. Object-oriented metrics that predict
maintainability.J. Sys. Softw., 23:111–122, 1993.

[11] M. Lorenz and J. Kidd.Object-Oriented Software Metrics,
A Practical Guide. Prentice Hall, 1994.

[12] T. McCabe. A complexity measure.IEEE Trans. Softw.
Eng., 2(4):308–320, 1976.

[13] H. Müller, M. Orgun, S. Tilley, and J. Uhl. A reverse-
engineering approach to subsystem structure identification.
Software Maintenance: Research and Practice, 5:181–204,
1993.

[14] H. Müller, K. Wong, and S. Tilley. Understanding soft-
ware systems using reverse engineering technology. InThe
62nd Congressof L’Association Canadienne Francaise pour
l’Avancement des Sciences Proceedings (ACFAS), 1994.

[15] J. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley,
1994.

9



[16] S. Porat, B. Mendelson, and I. Shapira. Sharpening global
static analysis to cope with java. InCASCON98, 1998.

[17] D. Rayside and K. Kontogiannis. Extracting java library
subsets for deploymenton embedded systems. Inthe 3rd Eu-
ropean Conference on Software Maintenance and Reengi-
neering (CSMR99), 1999.

[18] I. Rockel and F. Heimes. Fujaba - homepage.
[http://www.uni paderborn.de/fachbereich/AG/schaefer/
ag dt/PG/Fujaba/fujaba.html], February 1998.

[19] J. Rumbaugh, I. Jacobson, and G. Booch.The Unified Mod-
eling Language Reference Manual. Addison-Wesley, 1999.

[20] H. Sneed and T. Dombovari. Comprehending a complex,
distributed, object-oriented software system - a report from
the field. In the 7th International Workshop on Program
Comprehension (IWPC99), 1999.

[21] T. Systä. On the relationships between static and dynamic
models in reverse engineering java software. Inthe 6th
Working Conference on Reverse Engineering (WCRE99),
pages 304–313, 1999.

[22] S. Tilley and H. Müller. Using virtual subsystems in project
management. InIEEE Sixth International Conference on
Computer-Aided Software Engineering(CASE), pages 144–
153. IEEE Computer Society Press, 1993.

[23] S. Tilley and H. Müller. Using virtual subsystems in project
management.International Journal of Software Engineer-
ing and Knowledge Engineering, 4(4):501–520, 1994.

[24] B. Venners.Inside the Java Virtual Machine. McGraw-Hill,
1998.

[25] K. Wong. Rigi user’s manual version 5.4.1.
[http://www.rigi.csc.uvic.ca/rigi/manual/user.html],
September 1997.

10


