Formalising the Safety of Java, the Java Virtual Machine and Java Card *

Pieter H. Hartel

Luc Moreau *

March 25, 2001

Abstract

We review the existing literature on Java safety, empha-
sizing formal approaches, and the impact of Java safety
on small footprint devices such as smart cards. The con-
clusion is that while a lot of good work has been done,
a more concerted effort is needed to build a coherent set
of machine readable formal models of the whole of Java
and its implementation. This is a formidable task but we
believe it is essential to building trust in Java safety, and
thence to achieve ITSEC level 6 or Common Criteria level
7 certification for Java programs.

Keywords : D.2.4 Software/Program Verification, D.3.1
Formal Definitions and Theory. C.3 Special-purpose and
application-based systems (Smart cards)

1 Introduction

To illustrate what we mean by safety and security consider
gaining access to a building. The first concern would be
our safety. For example, one of the hinges of the door
might be broken, so that a person entering the building
could get hurt opening the door. By safety, therefore we
mean that nothing bad will happen. Our second con-
cern would be the security of the building. This means
that even if the hinges are in good condition, to make the
building secure, a lock on the door is required to control
access to the building. By security therefore, we mean
that there is access control to resources. Supposing that
access to the building is safe and secure, the third concern
would be that we can enter the building whenever we wish
to. By liveness we mean that eventually something good
will happen. Finally how can we trust that those enter-
ing the building are indeed entitled to do so? This can
be achieved for example by putting a surveillance camera
near the door. Therefore, to trust our other arrangements
we require the ability to audit safety and security. One
might ask at this stage: What does all this have to do

*This work was funded in part by Technology Group 10 of the
MOD Corporate Research Programme

TDept. of Computer Science, Univ.
pieterQcs.utwente.nl

fDept. of Electronics and Computer Science,
Southampton, Email: L.Moreau@ecs.soton.ac.uk

of Twente, Email:

Univ. of

with Java?

Java is designed to support, distributed and in par-
ticular Internet applications. Java programs may travel
the Internet, and may be executed on unsuspecting user’s
computers. Users would like to be sure that valuable re-
sources are adequately managed and protected. Users
may expect better safety from Java programs than from
any other kind of mobile programs, because Java is a type-
safe and memory-safe programming language.

Memory safety means that Java programs cannot forge
pointers, or overrun arrays. Java offers references to ob-
jects which cannot be manufactured by the user but only
by the system. A reference is either nil or it points at a
valid object. Dangling pointers as in C cannot occur in
Java. Users are not responsible for de-allocating objects,
because Java supports automatic garbage collection.

Type safety means that the Java compiler is able to
ensure that methods and operators will only be applied
to operands of the correct type. Java is a strongly typed
language, like Pascal and Ada, and unlike C and C++.

Java is unique in that both the compiler and the run-
time environment enforce the same safety conditions.
This means that tampering with compiled code will be de-
tected if endangering type and memory safety. This prop-
erty makes Java a good language for writing distributed
code, for Web browsers but also for smart cards. The
question then remains: to what extent can we trust the
safety of Java? The answer is in auditing the safety ar-
rangements, by studying the formal semantics of Java.

While type safety and memory safety are necessary,
they are not sufficient to make Java programs secure [71,
44]. For a Java program to be secure we make two main
requirements [37]. The first is that Java programs can be
restricted to accessing only certain resources, as defined
by an appropriate security policy [75]. While some re-
sources are easy to control, like use of the runtime stack,
or access to certain GUI events, other resources are harder
to control, like execution time [49]. The second require-
ment is that secure systems can be audited. No system
can be trusted to be secure unless it is possible to audit
the behaviour of the system. While current Java systems
have made good progress towards satisfying our first re-
quirement, we do not know of any work done on auditing
security. A more detailed introduction to the relevant ter-

minology and concepts of safety and security in program-
ming languages may be found in Volpano and Smith [180].
We should also like to point out that the boundary be-
tween safety and security is sometimes a little vague [174].
In this paper we only mention security briefly, the main
focus is on Java safety.

By itself, Java offers limited safety. For example,
programming a credit card application in Java would
not guarantee that the credit limit could never be ex-
ceeded. Program verification techniques are needed to
reason about such high-level safety properties. Therefore
we survey the application of such techniques to Java.

In the remaining sections of the paper we survey all as-
pects of formalising the safety of Java, its implementation
based on the Java Virtual Machine (JVM), and its use in
the verification of programs.

Throughout the paper we have tried to focus is on the
novel aspects components of Java and its implementation.
We have made an effort not to lose sight of the fact that
those novel components must interact harmoniously with
the other, tried and tested components.

In Section 2 we present an overview of the architecture
of Java. Section 3 reviews a number of methods commonly
followed to reason formally about the safety of programs
and programming languages. The formalisation efforts of
Java and its implementation are surveyed in Sections 4
(on Java), 5 (on the JVM) and 6 (on the compiler).

Section 7 investigates the application of formal methods
tools and techniques to the verification of Java programs.
Section 8 presents a detailed case study of the application
of Java to smart cards. The last section concludes the
paper.

The paper contains three tables which provide an index
into the relevant literature. These are Table 1 (on Java),
Table 2 (on the JVM), and Table 3 (on the compiler).

2 The Java Architecture

According to Sun’s Reference implementation, the Java
programming language is compiled by the Java compiler
into byte codes that can be interpreted by the Java Virtual
Machine (JVM). Byte codes are stored in class files. The
JVM is able to load class files and to execute byte codes
by a process of interpretation. Byte codes are architecture
neutral and can be run by a JVM on any architecture to
which a JVM has been ported. Recent JVM implementa-
tions support Just-In-Time (JIT) compilers able to com-
pile loaded byte codes into native assembly code, directly
executable by processors.

In the rest of this section, we review the various lan-
guage features found in the core of Java, and then we
summarise some novel aspects of the Java architecture
such as byte code verification, dynamic class loading and
stack inspection.

2.1 Language Features

The Java and JVM languages have a number of interest-
ing features. Some apply only to Java, some to the JVM
and some to both. The most important aspects are the
following. An imperative core consists of basic data, ex-
pressions and statements. The object-oriented nature of
Java is based on objects, classes, interfaces and arrays.
Java is a strongly typed language and uses a type system
both at the Java language and JVM levels. Additionally,
Java supports exceptions and multi-threading. Finally,
Java is a garbage collected language.

Most researchers in the field model parts of Java’s im-
perative core, and many also deal with object orientation.
We will say little more about this core, as it is rather well
understood. Instead, we will concentrate on the novel as-
pects of Java in what follows.

We have not been able to find any work on modelling
garbage collection in the context of studying either Java
or the JVM. This is a problem because garbage collection
is not transparent since deallocating an object triggers its
finalizer method.

2.2 Dynamic Class Loader

As opposed to other programming languages such as C or
C++, byte code files are not linked into an executable.
Instead, the JVM interpreter relies on a loader able to
load classes dynamically. Loading refers to the process of
finding the binary form of a class or interface type with
a particular name, perhaps by computing it on the fly,
but more typically by retrieving a binary representation
previously computed from source code by a compiler, and
constructing from that binary form a Class object to rep-
resent the class or interface [79, Ch 12.2].

Once some byte code has been loaded, the class loader
makes sure that code is properly linked with the rest of
the runtime. Linking is the process of taking a binary
form of a class or interface type and combining it into the
runtime state of the JVM, so that it can be executed [79,
Ch 12.3].

Java is not the only language to support dynamic load-
ing: Common Lisp also has such a facility, and most mod-
ern operating systems also support dynamic loading of 1i-
braries. In the presence of dynamically loaded code, a
number of checks must be performed to ensure that the
right code with the right signatures has been loaded. Such
checks are performed by the byte code verifier, which we
describe in Section 2.3. Java differs from other program-
ming languages because it performs such checks at link-
time as opposed to execution time; such an optimisation
guarantees that checks are performed only once. Addi-
tionally, the JVM loads code in a lazy manner, when code
is required in memory for execution to be able proceed.
Consequently, at runtime, we can observe the interleaving

of different activities such as code execution, code load-
ing and linking; code linking is itself composed of three
distinct activities: byte code verification, preparation and
resolution of symbolic references [79, Ch 12.3].

The role of the class loader in Java is complex: besides
loading new classes, it also controls name spaces so that
newly loaded applets [71] or applications [113] may only
see the resources they have the right to see.

Finally, dynamic loaders can be programmed and cus-
tomised according to the applications’ needs. For in-
stance, byte code may be loaded from various locations
or following different strategies, explicitly programmable
by the user.

2.3 Byte Code Verification

The task of the byte code verifier is to check JVM code
for type consistency and some other properties. The main
checks performed by the JVM byte code verifier are that:

e Stack frames do not under- or overflow. (Stacks may
still overflow because of lack of space for the next
frame).

e Every byte code is valid.

e Jumps lead to legal instructions (and not into the
middle of instructions).

e Method signatures (i.e. name and type of a method
and its arguments) contain valid information.

e Operands to all instructions are of the correct type.

e Access control is obeyed (e.g., a private method is
called only from within the class where the method
is defined).

e Objects are initialised before use.

e Subroutines used to implement exceptions and
synchronized statements are used in FIFO order.

2.4 Security Manager

The security manager is a runtime component that helps
to implement Java security policies; for instance, access
to the file system may be prohibited, connections can be
made only to certain network addresses, or an applet or
application can process only certain windowing events.
By default, Java relies on an access controller to deter-
mine whether a request for an operation should be granted
or not. We explain here the notion of access controller,
permissions and stack inspection used in this process. For
the sake of illustration, let us consider operations on files;
a permission for such an operation consists of a file name
and the operation description (read, write or execute).

Before reading a file, Java will request its security man-
ager to determine whether the permission of reading the
file is granted in the current context; by default, the access
controller performs a stack inspection that determines the
answer to the question.

Any stack frame results from the activation of a
method, itself defined in a class, identified by its codebase
(the urls that a class loader used to load the class) and its
certificate. The codebase and certificate associated with
a class are called its code source. Java associates each
code source with a set of permissions. Starting from the
most recent stack frame, the stack inspection algorithm
determines if the code source of each stack frame has the
permission to perform the operation. If the search en-
counters a frame whose code source does not have the
permission to carry out the operation, then the search
terminates: the access is forbidden and a security excep-
tion is thrown. Intuitively, the permissible operations of
an execution context are defined by the intersection of
all permission sets granted to the code sources it refers
to. In practice, this picture is slightly more complex be-
cause Java has the equivalent of the “super user” mode,
which in effect consists of interrupting the stack inspec-
tion algorithm to a frame that is marked as privileged;
obviously defining privilege operations is itself controlled
by the same security mechanism.

The role of the policy manager is to determine which
permission is granted to a code source. Java provides a
customisable policy manager, able to process security files,
loadable from different locations. Each security file grants
permissions to codebases and signers. The actual permis-
sions that are granted to a given code source are defined
by the union of all permissions given to its codebase and
signers. Most recent implementations of the JVM offer
stack inspection to allow different ‘principals’ access to
different resources.

2.5 Discussion

Link-time byte code verification, lazy loading, name
spaces, and user-programmability make dynamic class
loading a novel element of the Java architecture. Conse-
quently, the class loader and the byte code verifier are crit-
ical elements as far as safety is concerned. Additionally,
the complementary role of the security manager at run-
time constitutes the third pillar of what is usually called
the Java sandboz [118].

Dynamic class loading is not a form of optimisation of-
fered by Java, but it is an essential element of its phi-
losophy. It allows the distributed development of pro-
grams, where programmers reuse libraries offered by oth-
ers, without having to recompile them. It also allows new
paradigms such as mobile agents, according to which the
decision of where to execute code is made dynamically by

programs.

However, we would argue that performing all checks
at link-time is an optimisation, which requires the code
to be checked only once. Optimisation are a common
cause of errors [51], in class loaders, byte code verifiers,
and in particular in the complex interplay between the
class loader, the byte code verifier and the runtime system.
Each single error is a safety loophole. Worse yet, each
error may give rise to a bug fix, and system administrators
will soon grow tired of installing yet another bug fix [66].

Unfortunately, we have not found any statistics for the
performance benefits offered by link-time byte code veri-
fication, though it is hard to imagine that such statistics
would not exist. Compile time techniques that remove
unnecessary dynamic type checks were shown to improve
the overall execution performance of Scheme programs by
up to 10-20% [158, 190]. This figure is an approximate
indication of what may be gained by link-time byte code
verification.

To cultivate trust in the safety of Java it is necessary to
study the three novel aspects of Java in detail. However,
studying each in isolation is not sufficient as there are in-
teractions with te rest of the system, including the imper-
ative core of Java, its object system etc. Since the latter
are in some sense well understood, it should be possible
to adapt existing theories in the study of the interactions
of all Java components.

3 Methodology

The ITSEC standard [95] and the more recent Common
Criteria [140] for evaluating the security of IT products
stipulate that for the highest levels of evaluation formal
specifications must be provided of the system to be evalu-
ated. The process of developing appropriate specifications
can be broken down into the following steps:

e Construct clear and concise formal specifications of
the relevant components.

e Validate the specifications by executing them, and by
stating and proving relevant properties of the com-
ponents. Examples include type soundness (i.e. a
program that is well typed will not go wrong with
a typing error at runtime), and compiler correctness
(i.e. compiling a Java program to a JVM program
should preserve the meaning of the program).

o Refine the specifications into implementations, or
alternatively implement the specification by ad-hoc
methods with an a-posteriori correctness proof.

o Create all specifications in machine-readable form, so
that they can be used as input to theorem provers,
model checkers, and other tools [171].

Not all practitioners in the field work with machine
readable specifications, and even those that do work with
a plethora of different and incompatible formats, tools and
notations.

3.1 Formalising Java

To establish the meaning of programs it is neccessary
to establish the meaning of the programming language.
Therefore we advocate the formal specification of Java
consisting of:

e The semantics of Java.
e The semantics of the JVM language.
e The Java to JVM compiler.

e The runtime support. A specification of the runtime
suppport is needed because for example starting and
stopping threads is effectuated via the Java API and
not via JVM instructions.

Regardless of Java’s claims of being a small and sim-
ple language, which by comparison to C++ it is, Java
is too complex and too large to make it easy for a com-
plete formal specification to be built. It also contains
some novel combinations of language features that have
not been studied before. The principal difficulties are:

o Many different features need to be modelled, such as
multi-threading, dynamic class loading, and garbage
collection.

e Careful consideration has to be given to the interac-
tion of these features, in particular when relatively
novel features are concerned, such as byte code veri-
fication.

e The official Sun references [78, 114] are sometimes
ambiguous, inconsistent and incomplete. See for ex-
ample Bertelsen [20], who provides a long list of am-
biguities in the JVM specification.

e The reference implementation is complex (the Sun
JDK), and not always consistent with the documen-
tation.

Attracted by the potential benefits, and challenged by
the difficulties, many authors have formalised aspects of
Java, and/or its implementation. At the time of writ-
ing we counted more than 50 teams of researchers from
all over the world. Many of those have specified the se-
mantics of subsets of Java. Others have worked on the
semantics of subsets of the JVM language. Some authors
have worked on both, often in an attempt to relate the
two, with the ultimate goal of proving the specification
of a Java compiler correct. To our knowledge, no single

attempt has been made at specifying full Java, the full
JVM, or the full compiler. As far as we have been able
to establish, only two groups have modelled small parts
of the Java API: Coscia and Reggio [47] and the LOOP
team [144]. (See Section 7.3).

The vast majority of the studies that we have found
make various assumptions to abstract away detail, thus
making the specifications more manageable. Popular as-
sumptions include:

e There is unlimited memory.

e Individual storage locations can hold all primitive
data types (i.e. byte as well as double).

e Individual JVM program locations can hold all byte
code instructions.

While such abstractions help to reduce clutter in the
specifications, they also make it impossible to model cer-
tain safety problems, such as jumping in the middle of an
instruction. It is an art to model systems precisely at the
right level of abstraction, with just enough detail to be
able to discuss the features of interest.

3.2 Styles of Semantics

The styles of semantics used are Abstract State Machine
Semantics (ASM), Axiomatic Semantics (AS), Context
Rewriting semantics (CR), Continuation or monad Se-
mantics (CS), Denotational Semantics (DS), Natural Se-
mantics (NS), Operational Semantics (OS), Structural
Operational Semantics (SOS), or a semantic embedding
in a higher odrder logic (HOL).

We refer the reader to Nielson and Nielson [132] for an
introduction into programming language semantics, and
to Nipkow et al. [135] for a brief introduction into the
notion of embedding the semantics of a programming lan-
guage into the logic of a theorem prover.

4 The Java Language

This section reviews the literature on formal aspects of
the Java language. We begin discussing the semantics of
the Java core, showing that the majority of work in this
area is concerned with proving that the type system is
sound. The following subsections discuss the novel fea-
tures of Java in detail: dynamic class loading, the mem-
ory model with multi-threading and stack inspection. We
conclude the section with a general discussion.

We identify the methodological approaches and the
Java subsets being studied. The reason is that some speci-
fication methods, and in particular the accompanying sup-
port tools, are perhaps more appropriate for the task in
hand than others. We are also keen to identify methods

and tools that are able to cope with the largest amount of
complexity in the Java language, with the most features
taken into account.

Table 1 summarises our findings on Java, showing
whether the work is particularly relevant to small foot-
print devices, the purpose of the activity, a reference to
work on which the current work is based, the tools used,
a characterisation of the subset studied, an indication of
the style of semantics used, and whether any proofs have
been reported.

4.1 Core Semantics

We begin our survey with papers that discuss a dynamic
semantics of Java. Alves-Foss and Lam [10] present a
denotational semantics of a Java subset (excluding multi-
threading and garbage collection, but including class load-
ing). The specification gives considerable detail on the
various basic data types in Java. The semantics is not
used for any particular purpose. An alternative deno-
tational semantics is offered by Cenciarelli [35] using a
monadic style to handle multi-threading and exceptions;
in Section 5, we shall see that such a monadic style has
also been adopted by Yelland [191] and Jones [102] to
model the semantics of byte codes.

Attali et al. [16] discuss a reasonably complete exe-
cutable, operational semantics of Java built using the Cen-
taur system. The specification includes concurrency, but
it omits exceptions, arrays, and packages. The aim of
this work is to use the Centaur system to generate an ap-
propriate programming environment from syntactic and
semantic specifications of Java.

All remaining papers discussed in this section present
a static as well as a dynamic semantics of Java, mostly
with the general aim of proving type soundness.

4.1.1 Type Soundness

The Java language provides not only single inheritance
but also interfaces, which allow objects to support com-
mon behaviour without sharing any implementation.
Drossopoulou and Eisenbach modelled these features [60],
by giving a static semantics and a small-step dynamic
semantics of a fairly large subset of sequential Java.
Drossopoulou and Eisenbach then state the soundness
of a type system based on simple subtyping using sub-
ject reduction. In a separate paper, Drossopoulou et
al [58] extend their subset to include exception handling.
Results were proved by hand but neither paper gives
proofs. Instead Syme [171] encodes some of the mod-
els of Drossopoulou et al. in his DECLARE system, and
gives proofs. The mere activity of encoding hand built
specifications in a mechanised system is reported to have
uncovered 40 errors made during the translation. More
importantly, Syme has also found two non-trivial errors

soA| uorye[suer) ou ou ou uoryoadsur yoe)s Apnis [58T] LRI
$o4| o130] [epow ou ou ou [g] uorydadsur ypels £pnis [981] yORI[eM
ou NSV| soA] sed ou soTjuRWIds Apnjs [781] d0R[[eM
804 Qy| ou sed ou TOH/?1eq®es]| [¢81] ssouajo[duwod ‘ssoupunos [181] quIRy() UoA
BRI GN| ou sef ou TOH/?1eq®es]| [F€1] ssoupunos ad£y aao1d [281] quIRy() UoA
BRI poquial oul soh| seAl TOH/?1Pq®esT ‘SAd| [66] UOI}eILIoA] [221] 810g uop uea
o4 SOS| ou sofl ou AYVIOHAA [89] ssoupunos 9d£} aa01d [121] owAg
o4 NSV| so4] sof] sof wjonwsy| [Lg] uorresyrea ‘sonjurwras Jo Apnis [#91] b RS
ou SO| ou oul ou uoryoadsur yoels Apnis [09T] ey[eNS
o4 GN| ou ou ou TOH/?11°q®s] punos 5130[a1eo0}] 2a01d [e7T] I01peH-YosI90g
SO GN| oul ou ou TOH/?11°q®s] ssoupunos 9d£) 9a01d [FeT) moydiN]|
ou SO| sed] oul ou [opowr Lr0ToW [211] UOSUR[A]
oul oreiqod[el sek ou ou [opowr Lr0ToW [STT] LEEEETA
EEY poquud s9Al soh| sof eaer/0SHl [F9] UOTYeILIoA] [211] oumw
ou TOH| so4 ou ou £y1ndes Apnjs [¢0T] qessey]
ou SOS| ou ou ou UOI}eILIoA] [10T1] UISUd[
$94 poqud ou sof sof SAd UOI)ROYLIOA [66] sqooer
$94 SOS| ou ou ou snnoyed [76] ysered|
$94 GN| ou ou ou ssoupunos 9d43 da01d [¢6] ysered|
S04 poquuo| soA] oul sof NIdS UOT)eIYLIoA [98] punpeaeq
o4 Qy| sed ou ou (8] [epow A10woUy] [92] I9YRU)UON)
ou GN| ou ou ou soTjuRwWdS Apnjys [g2] IDUSI[Y)
soh gy| ou ou sof sorjuewos Apnjs [69] nonodossoi(]
So4] gDl ou ou ou [09] sorjuewos Apnjs [9¢ ‘z9] nonodossoi(]
ou ol ou sofl ou ssoupunos 9d£} aao1d [19 ‘85 ‘LS “09] nojnodossoi(q|
soh poquid s9A| soh| sof NIdS UOIYROYLIOA [zg] TUI}Ie WO (]
sod SOS+SN| ou se ou [29] UOI}eIYLIoA] (L7 ‘87 BIISO)
ou gq| sed ou ou soTjuRwIds Apnjs [ge] [[9IRIDUR))
oA SOS| seAl sedl ou sorjuewos Apnjs [9g] [[PIRIDUD))
ou NSV| soA] sed ou soTjuRwIds Apnjs [22] 1810g
ou gal ou oul sof sorjuewds Apnjs [12] LR ERETe|
ou SOS+SN| o4 oul ou mnejus)) uo1yeoy109ds 9[qeINIAXI [971] 1V
ou gql ou sof| sof sorjuewds Apnjys [0T1] SSO-SOATY
o4 SO| so4] oul ou punos 2130] a1eof] 9a01d [7] wwnp-weyeiqy
jooig somuewns LN HHA TO [00]) oseq asodinyg| [rewg ‘Y I0YINY ISIL]

Java Language — For legend see Table 3

Table 1

in the hand written proofs of Drossopoulou and Eisen-
bach.

Drossopoulou and Valkevych [61] propose a semantics
of a Java subset with both checked and unchecked excep-
tions. The semantics relies on Felleisen’s context rewriting
technique to model the dynamic behaviour of exceptions.
As far as typing is concerned, exceptions are regarded as
“effects” [173]; two types are associated with each expres-
sion: a normal type describes the type of the program
in the absence of exceptions (or more precisely, when all
exceptions are caught), and an abnormal type describes
the type of uncaught exceptions. Type soundness is es-
tablished by subject reduction up to type widening.

Glesner and Zimmermann [73] specify the type system
for a small fragment of Java as an example of their work
on many sorted logic. Their method allows a generic static
semantics to be instantiated to a type system, or a static
analysis.

Igarashi and Pierce [93] give a static semantics of a
small subset of Java with just inner classes and inheri-
tance. They show that this semantics coincides with a
semantics given by translation of Java with innerclass to
Java with just top level classes, as stipulated by the official
Sun documentation.

Nipkow and von Oheimb [134] prove type soundness of
their Javasgn: subset, which is similar to the subset used
by Drossopoulou et al. [60]. However, the former use Is-
abelle/HOL to machine-check the proofs from the outset,
giving a higher degree of confidence in the correctness of
the specifications and the proofs. While the semantics
are verified using a proof checker, Nipkow and von Ohe-
imb were not able to validate the specifications due to the
lack of support for generating executable semantics [182].
One conclusion of their work is that theorem provers are
too sensitive to the precise formulation of a specification,
and that more support in the provers is needed to support
the development of programming language semantics [182,
Page 151]. To complement the operational semantics of
Javayign: [182], von Oheimb presents an axiomatic seman-
tics [181], and proves the soundness and completeness of
the latter with respect to the operational semantics.

4.1.2 Calculi for Java

Igarashi, Pierce and Wadler [94] present Featherweight
Java (FJ) as a calculus for Java, like the lambda-calculus
is a calculus for languages such as ML and Haskell. Mini-
mality of the calculus is a key feature of their design; only
the following constructs are supported: recursive class def-
inition, object creation, field access method invocation,
method override, method recursion through this, subtyp-
ing and casting. As assignment is not part of the calculus,
FJ looks like a “functional” version of Java. Their calculus
is smaller than CLASSICJAVA proposed by Flat et al. [64]

as a formal foundation for mixins, a kind of functor over
classes.

4.1.3 Polymorphism

While the previous papers are concerned with the core
semantics of Java, some authors note that the lack of
polymorphism in Java is not conducive to safety: with-
out proper polymorphism, Java programmers must make
explicit use of type casts, creating scope for errors. Con-
sider for example the collection classes in Java 2. The
class of the items being stored and manipulated by the
collection classes is Object. So when storing an object
of some meaningful type, say MyObject, one must re-
member to cast the raw object back into the user class
MyObject when retrieving the information. Erroneous
type casts will eventually cause unexpected runtime ex-
ceptions. Java extensions such as Pizza [137] and Generic
Java [32] address these problems by providing generic
types for Java, a mechanism by which classes and meth-
ods may be abstracted with respect to type; for instance,
programmers may defined vectors of MyObject. Generic
types are compiled into Java using a method called type
erasure removing type parameters and automatically in-
serting the required type casts; Generic Java then guaran-
tees that no cast inserted by the compiler will fail. Generic
Java programs inter-work perfectly with legacy code, the
compiler is even able to make legacy Java code available
for use with genericity without the need to even recompile
the legacy code. As an application of their FJ calculus,
Igarashi et al. [94] show how to compile Featherweight
Generic Java (FGJ) in to FJ, where FGJ is defined as
the calculus version of Generic Java. While a number of
approaches with similar goals have been proposed, such
as type parameterisation [7], NexGen [33], PolyJ [126], it
remains a challenge to design extensions and associated
compilers, which do not require changes to the JVM and
preserve backward and forward compatibility with exist-
ing libraries. Only the type erasure technique is currently
able to do so, but it has an important limitation due to its
lack of support for parameterisation over primitive types.

4.2 Dynamic Class Loader

This section covers dynamic class loading from the Java
point of view. Section 5.3 revisits class loading from the
JVM point of view.

According to the Java language specification, a change
to a type is binary compatible with preexisting bina-
ries if preexisting binaries that previously linked with-
out error will continue to link without error (cf. [78, 79,
Ch. 13]). More specifically, a list of important binary
compatible changes supported by Java is enumerated in
the language specification. Drossopoulou, Eisenbach and

Wragg [62, 59] observe that not only do binary compati-
ble changes not require re-compilation of other units, but
such re-compilations may not be possible. For the purpose
of illustration, they provide the source code of a class and
some change, which is binary compatible according to the
Java specification; they show that the changed class still
allows linking and execution of the code, but the source
code of all the classes taken together is no longer type cor-
rect. Consequently, separate compilation as supported by
Java is not equivalent to compilation of all units together,
and therefore requires a specific study. Binary compati-
bility is a powerful concept because it is needed for dis-
tributed development of programs, but it is an immature
language feature, which deserves a formal understanding.

Drossopoulou et al. [62] study the problem of separate
compilation and binary compatibility on the significant
subset of Java described in [60], and by using the well-
typedness judgment there defined. Notions of fragment
concatenation and compilation are introduced, and the
concept of link compatible change is defined so as to cap-
ture the guarantees given by binary compatibility. A set of
properties of link compatibility are proved; in particular,
link compatible changes are shown not to satisfy a dia-
mond property, which explains why programmers cannot
apply independent link compatible changes to the same
fragment and expect the linking capabilities to be pre-
served [62]. Then, a notion of type preserving change
is defined and proved to imply link compatibility. They
show that all but one of the changes enumerated in the
language specification are type preserving; interestingly,
the change that is not type preserving was used in the
example given by Drossopoulou et al. [62, 59].

In contrast to their first formalisation of binary compat-
ibility based the language and typing judgements of [60],
Drossopoulou et al. investigate an alternative approach
based on axiomatic definitions of fragments, compilation
and linking, which allow them to reflect on these issues at
a more abstract level [59]. The authors discuss a number
of interpretations of the language specification [78, 79];
in particular, they analyse the notion of locality, accord-
ing to which properties established in an environment also
hold in a larger one. Overall properties of link compatibil-
ity similar to [62] are established using the new axiomatic
definitions.

In a subsequent paper, Drossopoulou [56] considers the
complete sequence of Java components in a single frame-
work, namely evaluation, loading, verification, prepara-
tion and resolution. Her work differs from work on the
JVM discussed in Section 5.3 because she considers a
source language close to Java [60] and not the byte code
language. Additionally, she does not consider each com-
ponent in isolation, but instead proposes a single frame-
work to understand their interplay. An informal descrip-
tion of her investigation may be summarised as follows.

Verification does not ensure the presence of fields or meth-
ods, it only ensures that all methods in a verified class re-
spect their signatures. Resolution checks for the presence
of fields and methods of given signatures. The resolver
and the verifier are mutually dependent: the verifier re-
lies on resolution to pick some of the possible errors, and
resolution is safe on code previously checked by the ver-
ifier. Verification alone does not guard against link-time
errors but guarantees the integrity of the system. The
integrity of the system is demonstrated by a subject re-
duction lemma, and it relies on the well-typedness of the
expression and prepared code. This work does not con-
sider multiple class loaders as opposed to [152], and does
not integrate the notion of link compatibility [62].

4.3 Memory Model and Multi-threading

Java is the only widespread programming language that
provides a memory model for parallel execution. The Java
language specification allocates a whole chapter to the
complex Java memory model. In Java, each thread of
control has its own private working memory, in which it
keeps its own working copy of variables that it must use
or assign. As the thread executes a program, it operates
on these working copies. The main memory contains the
master copy of every variable. There are rules about when
a thread is permitted or required to transfer the contents
of its working copy of a variable into the master copy of
vice-versa [79, Ch. 17.1].

These rules are not straightforward to understand be-
cause they rely on a double indirection, for the transfer of
values between a thread engine and its working memory,
and for the transfer of values between its working mem-
ory and the main memory. Cenciarelli et al. [36] propose
a structural operational semantics (SOS) that is paramet-
ric in a notion of event space, used to formalise the con-
straints between memory actions. As an illustration of
the parametric nature of their semantics, the authors ex-
press the set of constraints characterising prescient store
actions. Such store actions, defined by the Java language
specification [79, Ch 17.8], use a set of relaxed constraints,
allowing optimising Java compilers to perform some code
rearrangement that preserve the semantics of properly
synchronised programs. Cenciarelli et al. then establish
that any properly synchronised program without prescient
store actions is equivalent to itself in the presence of pre-
scient store actions. (The equivalence used in the proof is
a bisimulation.)

Gontmaker and Schuster investigate the Java mem-
ory model in isolation (independently of the language it-
self) [76]. They provide a non-operational, trace based
characterisation of the memory model, which they com-
pare with existing memory models [8]. Gontmaker and
Schuster’s investigation considers the programmer’s and

the implementor’s points of view. For the programmer,
understanding memory models may assist in the selection
of algorithms and their porting to Java. The programmer
can rely on Cache Consistency (Coherence) [8] and some
weak variation of Causality for regular variables, on Se-
quential Consistency for volatile variables, and on Release
Consistency when using the synchronize construct. On
the other hand, the implementor has to provide an im-
plementation of the JVM that supports all byte codes
that comply with the Java specification; the memory be-
haviour is shown to be a combination variant of Cache
Consistency and Causality.

Java designers intended that a relaxation of the Java
memory model would be exploited by implementors of
parallel or distributed Java systems. The Hyperion sys-
tem [12] is a Java implementation on top of a specifically
designed Distributed Shared Memory (DSM), which gives
the programmer the illusion that a cluster of processors
operates as a single JVM. An informal discussion on how
Java Consistency is achieved can be found in the paper:
a thread’s object cache is flushed upon entry to a monitor
and local modifications to cached objects are transmitted
to the main memory when a thread exits a monitor. Addi-
tionally, Hyperion shared memory is able to bring copies
of objects to the node using them, hereby offering better
locality to the threads accessing these objects. Chen and
Allan [38] describe MultiJav an alternative cluster imple-
mentation of the JVM; they discuss their implementation
of Sequential Consistency for synchronisation-protected
shared objects and Release Consistency for volatile vari-
ables. ¢JVM is another implementation providing a single
system image of a JVM while executing in a distributed
fashion on the nodes of a cluster [13, 14]. In ¢cJVM, meth-
ods calls are performed on the node that holds the master
copy; additionally, several caching techniques have been
proposed to improve the performance. The papers above
on relaxation of the Java memory model tend only to dis-
cuss implementation issues and do not present appropri-
ate formalisms and theories, which would be required for
a complete proof of correctness of these implementations.

Pugh [147] wrote a critique of the Java memory model
and he argues that it requires Coherence (Cache Con-
sistency) [8], which informally means that the memory
should be sequentially consistent on a per-location basis.
He then shows that fairly standard compiler optimisations
are not possible with the Java memory model, and more-
over, many JVM implementations are not compliant with
the Java specification (cf. Javasoft bug 4242244). Addi-
tionally, he shows that some assumptions made by Java
programmers may no longer hold: for instance, Strings
may not be thread safe, and it may be difficult to effi-
ciently implement their thread safety on shared memory
multiprocessors with weak memory models. Alternative
memory models, proposed by Manson and Pugh [117] and

Maessen et al. [115], answer some of the problems raised
by the Java memory model. Both proposals bear some
similarities as they arise independently from discussions
on the Java Memory Model mailing list. In both cases for-
mal semantics are proposed; [117] contains an operational
description of memory related operations, whereas [115]
enumerates algebraic rules specifying the order of these
operations. The authors have not re-established that
the behaviour of properly synchronised programs is pre-
served over their proposed memory model (as Cenciarelli
et al. [36] did for the Java memory model). Finally, they
also discuss the validity of lock elimination transforma-
tions, which have been shown to remove approximately
50% of the useless locking [9, 24, 40, 189], but may break
the semantics of programs over the new proposed memory
models.

Coscia and Reggio [48, 47] present a structural opera-
tional semantics (SOS) of Java’s multi-threading. Their
aim is the development of a foundation for program ver-
ification. Java’s rather loose coupling of threads, via the
separated working and main memory model is identified
as the source of difficulty in writing correct, concurrent
Java programs. Coscia and Reggio characterise a subset of
Java, which avoids some of the concurrency problems. Un-
fortunately, the subset cannot be statically characterised.
This makes it less than straightforward for programmers
to take heed of the advice offered. Coscia and Reggio in-
clude small parts of the Java API in their formalisation,
namely the methods necessary to control threads, such as
start, stop etc.

Abrahdm-Mumm and de Boer [4] present an opera-
tional and an axiomatic semantics of a subset of Java.
The purpose of their work is to provide a framewrok for
proving properties of multi-threaded control flow. Their
subset is an abstract version of the Java core with multi-
threading. Soundness and completeness are proved in a
separate technical report.

Kassab et al. [103] create a state based abstraction of
Java threads and security policies to study the enhanced
Java 2 security model. The main thrust of the paper is
the complexity analysis of the thread abstraction, which is
shown capable of coping with generalisations of the Java 2
security model. The authors are concerned however, that
adding further flexibility to the Java security model will
make it too difficult to implement correctly.

4.4 Stack Inspection

The stack inspection algorithm summarised in Section 2.4
allows implementors to control permissions in a fine
grained manner. Stack inspection assumes an operational
model with a stack that is not visible at the Java level.
Even informal reasoning about stack inspection requires
making the stack explicit at a level where the stack is not

visible. Stack inspection is a low level concept that it
is at odds with the abstractions provided in a high level
language.

Wallach and Felten [186] develop an abstract model of
stack inspection in terms of a belief logic, known as ABPL
(Abadi, Burrows, Lampson and Plotkin) [3]. Java’s ac-
cess control decisions are shown to correspond to proving
statements in ABPL.

The stack inspection approach suffers from a number of
problems. First, the stack inspection algorithm expects
a specific stack layout, which, though standardised by
the JVM, prevents optimisations that just-in-time com-
pilers are expected to perform. Second, the result of this
algorithm is potentially sensitive to optimisations such
as tail recursion optimisations (in particular in the case
of mutually tail-recursive methods belonging to different
classes). To solve these problems, Wallach [185] proposes
a program transformation, security-passing style, which
like continuation-passing style, adds an extra argument
to each method and each method invocation, which is the
current security context of the program. This has two
advantages. First, it does not restrict compiler optimi-
sations. Second, security-passing style allows the access
controller to be written as regular Java code, so that it
can be ported to JVMs that do not implement the stack
inspection algorithm.

Skalka and Smith [160] propose a lambda calculus for-
malising Java stack inspection. Lambda expressions are
annotated by the name of the principal they “belong to”.
The application of a lambda expression extends a stack
with an association between principals and a set of priv-
ileges. A letpriv expression allows adding privileges to
the current principal. A checkpriv expression performs
stack inspection in a similar way as the JDK does. Then
the authors define security stack safety as the property ac-
cording to which no well-typed program will ever have any
stack inspection failure during runtime execution. The
essence of their type system is the annotation of the ar-
row type with the set of privileges necessary to execute
that function. They establish the safety and subject re-
duction of the typing system, with respect to their oper-
ational semantics. As expected with a type system, there
are programs that are operationally safe but not typeable;
a significant reason given by the authors is that the type
system is monomorphic. This is a promising approach,
which may improve efficiency, but it needs to be extended
to the full language. Additionally, Java programs are able
to test their privileges and act accordingly; the type sys-
tem does not currently support type that depends on the
dynamic security level of the execution context.

10

4.5 Discussion

Java is type safe and supports dynamic loading, binary
compatibility, a memory model for parallel execution and
security management. All these topics have been investi-
gated by the research community, and research has helped
to understand them. In some cases, research has helped
to identify flaws in the specification of the language, and
resulted in new solutions.

Many investigations typically focus on a subset of the
language or on some specific aspect in isolation of other
components. There is a need for unifying frameworks that
help understand interactions between components. This
is an ambitious task and its size requires mechanical tools
able to handle formalisations.

Garbage collection is an integral part of Java and its
APT since programmers have the right to program final-
izers [87] and have access to different kinds of weak refer-
ences through the package java.lang.ref. Conferences
such as ISMM and OOPSLA regularly include papers on
garbage collection for Java, but these publications tend
to focus on implementation specific issues. The notion
of object reachability has been studied in a language-
independent manner [123], but we have been unable to
trace any work integrating such a type of formalisation
with the Java semantics.

Other APIs can be regarded as language extensions: for
instance, remote method invocation (RMI) adds distribu-
tion to Java, serialisation is a process that has to preserve
some safety invariants across JVMs, and Java’s spaces in-
troduce the idea of coordination to Java. These will also
have to be investigated by the research community.

Once Java safety has been understood, writing safe and
secure applications will be another major challenge. Tools
are needed to understand the behaviour of programs: for
instance, understanding the visibility of data and the per-
missions required to access them, in the presence of pack-
ages, dynamic loading, and explicit security is a non-
trivial task: automatic tools advising programmers would
be useful. While calculi such as FJ are emerging as theo-
retical foundations of the Java language, we have not yet
observed the type of equational reasoning that exists for
functional languages: notions of observational equivalence
or bisimulation are rarely mentioned (except by Abadi [2]
and Cenciarelli et al. [36], respectively).

We have not found many papers focusing on Java for
small footprint devices, such as PDAs, mobile phones and
smart cards. Yet embedded systems are a particularly
interesting application area for Java, as witnessed for ex-
ample by the successful introduction of Java for smart
cards (See section 8).

S04 Ggn| ou sof| soA [sey ssoupunos 9d£y aaoad [16T1) PU®R[PA
94 TOHl oul ou ou £y1andos £pnjs [98T] yIe[eM
ou gl ou seA| sof] so1yURWAS ApNjs [29T] uosuaydelg
sof SO| ou sed ou sonjuewos Apnjs [99T ‘G9T] LA
S94 GN| oul ou ou [66T] ssoupunos od£) eao1id| sof [95T] 9s0y
594 SO| ou soi] ou g 21V [69T] ssoupunos od£) eaoid| sof [rer] 1onbay]
S94] gO| ou oul sof ssoupunos 2d£y aaoxd [T uelp)
oy SO| ou sed] ou ssoupunos 2d£y aaoxd [0ST] uelp)
EEY SO| oul ou sedl TOH/°IPqES] [871]] sseupunos od£) saoi1d [671] SN g
S94 SO| oul ou sedl TOH/°IPq®S] [06T] ssoupunos ad£) aaoxd [871] yosng
S94 [00) ou soi] ou AINS [gg] ssoupunos od£y sroxd sof] [871] e38eso |
ou gn| ou sof ou [59T] sorjuewos Apnjs [9gT]| ueye[ERD.O
S94 pequd ou ou oul IOV [e7] UOTYeILIoA] [121] 9I00IN]
S94 pequd ou ou oul g I21[9Y]| [0GT]l 2901100 19910AU0D 0A0Id] SO [0TT1] jouer
S04 GN| oul ou ou a[oqes] [96T]| ssoupunos od£) eao1id| sof [90T] ey
ou gDl ou sedl ou [eYseH ssoupunos adA) aa01d [z0T] souof
ou SO| ou ou| sof] sorjuewas Apnjs [00T] U9Sud
ou gO| ou oul sof SOIAT sorjuewas Apnjs soA] 78] PHeH
S94] gO| ou oul sof [59T] sorjuewos Apnjs [9LT ‘GLI] eA13ef
04 go| oy sod ou [go1] sorjuewes Apnjys (28] ef18eqy
ou poquis| ou oul sof aIep\00dg ssoupunos adA) aa01d 7] 819qp[on)
04 go| oy sod ou [go1] sorjuewes Apnjys [0 “69)] punay
oy SO| ou sed] ou [59T] ‘[89] sorjuewds Apnjs [29] punaxq
ou TOH@ oul ou sof sorjuewos Apnjs [99] Suoy]
sof] SO| ou ou ou bo) [6T] 1901100 19110AU0D 2A01d] SO [gg] Luua (g
S04 poquid| ou oul sof] SAd so1juRWdS Apnjys [0g] uea(]
ou poquid| ou oul sof] IOV so1juRWdS Apnjys [e7] udyo))
ou poquid| ou oul sof] arep 0odg [7L] sseoupunos ad£y aaoid k47 or8on
ou NSVy| ou ou sof so1pURWAS ApNjys [82] 198109
So4 SO| seA oul ou [5971] so1pURWAS ApNjys [ez] prerSigl
ou SO| ou oul ou [61] SOT)URWISS ApNIS [02] ENIETRETe |
ou SO| ou sof] sof sonjuewos Apnjs [61] ER ciRETe|
jooig sonwewng TN HA T oo, aseq| asoding| rewg ‘Y| I0YIMY 98I

JVM Language— For Legend see Table 3

Table 2

11

5 The JVM Language

The JVM language was specifically designed to compile
Java programs and bears numerous similarities with Java:
it is also object-oriented and supports packages, threads
and dynamic loading. The JVM language differs from
Java. For example the JVM has a notion of subroutine
and it does not have built-in inner classes. Due to their
differences, the Java language and the JVM language have
different observable properties; such a phenomenon was
described by Abadi [2], who observes that the compilation
process of the Java language is not fully abstract. (See
Section 6.1.)

A crucial role of the JVM is to ensure that byte codes
do not corrupt its internal state and lead to undesired
behaviour. Typically byte code programs are generated
by compilers, but they may also be written by hand, or
corrupted during network transmission. Therefore, the
JVM uses a byte code verifier that performs a number of
consistency checks before executing the code.

As in the previous section on Java, the current section
on the JVM is structured to highlight the novel aspects of
the JVM language: byte code verification and class load-
ing. We begin with a brief mention of papers that merely
present a semantics of a JVM subset. We conclude with
a discussion of alternative representations of byte codes
as a potential improvement to the JVM and a conclusion.
Table 3 summarises the literature on the JVM

5.1 Core Semantics

Bertelsen [19, 20], and Stephenson [167] give an opera-
tional semantics of a subset of the JVM. A detailed speci-
fication of a subset of the JVM (excluding multi-threading
and garbage collection, but including class loading) is
given by Cohen [43]. His specification is large but exe-
cutable (using ACL2), which makes it relatively easy to
validate. Cohen’s semantics comprises explicit runtime
checks to assure type-safe execution of byte codes instead
of requiring a link-time byte code verification. The pur-
pose of each of these works is purely to study semantics.

5.2 Byte Code Verification

Byte code verification is difficult for two reasons. First,
byte codes offer scope for optimisation, which has the ten-
dency to destroy information. Second, the information
necessary to check certain properties is often spread across
a section of byte code instructions, whereas the same in-
formation would be more readily available in the original
Java sources. Consider for example the initialisation of
Figure 1; we see that one Java expression corresponds to
5 separate JVM instructions, which could even be mixed
with other instructions.

12

Java statement:
Point p = new Point (1,0);
Compiled JVM code:

0 new #1 <Class Point>
dup

iconst_1

iconst_0

invokespecial #5 <Method Point (int,int)>

o O W

Figure 1: a Java statement and the equivalent JVM code
showing how information is scattered by compilation into
byte codes (compiled by Sun JDK 1.1.2 on SunOS 5.6).

The byte code verifier has to recreate the information
that was once readily available in the Java source. This
re-discovery of information complicates the byte code ver-
ifier, and makes it difficult to specify in a clear and concise
fashion what byte code verification is.

Stata and Abadi [165, 166] were the first to propose
the use of typing rules to describe the byte code verifi-
cation process. Such rules are more precise than a nat-
ural language description of the verifier [114] and easier
to understand and reason about than Sun’s reference im-
plementation. Stata and Abadi’s initial publication [165]
considered a small but representative sets of byte codes (9
instructions out of over 200) and addressed the problem
of subroutines, which will be explained in Section 5.2.1.
Their proposal was followed and extended by several au-
thors. Freund and Mitchell [68] used the same typing
framework to investigate the problem of object initiali-
sation. Then, Freund and Mitchel [70] integrated in a
single framework the handling of subroutines and object
initialisation. The same authors again [69] added objects,
classes, interfaces, arrays, exceptions and double types.
Using the same approach, Hagiya and Tozawa [175, 176]
formalised the instruction invokevirtual and its rela-
tionship with dynamic loading, which we study in detail in
Section 5.3. The approach was then extended by Bigliardi
and Laneve [23] to check that monitors entering and leav-
ing instructions were properly balanced.

In its simplest version, Stata and Abadi’s framework is
based on a form of dataflow analysis and uses type judge-
ments to express the existence of valid instructions at the
location pointed by the program counter, the type of reg-
isters and stack content and the type compatibility of the
current instruction with its arguments. Successive papers
extend these judgement with, e.g., information related to
subroutine calls or the initialisation of objects. Sound-
ness is established by showing that well-typed programs
only get stuck when a halt instruction is reached, which
means that programs do not attempt to perform any ille-

gal operation.

Alternative approaches to formalise the byte code ver-
ification process have been proposed. Goldberg [74], and
Qian [150] aim to prove type soundness of the JVM
(i.e. the correctness of the byte code verifier) for a rela-
tively small subset of the JVM, excluding multi-threading,
garbage collection, class loading etc. The main tool is
a data flow analysis, which establishes constraints at all
program points. Solving the generated constraints then
establishes the desired properties of the program, such as
the byte code verification conditions listed in Section 2.3.
In a joint paper Coglio, Goldberg and Qian [42] extend
their previous work towards a provably correct implemen-
tation of their specifications, using SpecWare [162]. This
tool supports refinement of specifications towards Lisp
and C++. As far as we know, this is the only proposal
to derive a provably correct implementation of (part of) a
JVM implementation. Qian [151] revisits byte code veri-
fication, using a chaotic fixed point iteration technique to
compute a least type for a byte code program. If such a
type exists, then the byte code is well typed.

Pusch [148, 149] offers an alternative to Qian’s
work [150], by stating and proving type soundness at the
JVM level using Isabelle/HOL to mechanise the proofs.

Two independent approaches regard byte code verifica-
tion as equivalent to typing a Haskell program. Jones [102]
models individual byte code instructions, and their com-
positions, as appropriately typed functions in the func-
tional language Haskell. This allows him to describe the
process of byte code verification as a type inference that
guarantees that the execution of verified programs will
not “go wrong”. He presents his type system as a gen-
eral framework for data-flow analysis. In a first instance,
byte codes are defined as functions mapping a frame and a
stack onto a frame and a stack. He then extends the model
to support multi-word values such as long that are stored
in two ints. The limitations of the initial framework be-
come clear when I/0, exceptions and mutable state should
be formalised: Jones redefines his byte codes so that they
have a reference to a monad. Finally, Jones sketches how
general effects on objects in the heap may be formalised.
A number of questions need to be addressed. In the frame-
work, fields of frames are named and codes refer to names.
Supporting instructions that refer to field indexes as in the
real JVM is not obvious because all fields would be de-
noted by “ints”. Finally, Jones has only investigated a few
instructions. It is not straightforward that this framework
will support the whole JVM instruction set.

Yelland [191] presents a continuation semantics of a
small subset of the JVM (the pVM) using the functional
programming language Haskell. Using monads [183] and
Rémy’s encoding of sub typing in Haskell’s type sys-
tem [153] (Haskell does not support sub typing), Yelland

13

is able to use the Haskell type checker as a ‘byte code ver-
ifier’. The encoding is rather inefficient, as it requires an
n-tuple as a representation of a class, when there are in
total n-classes defined. However using a pure functional
language as the notational vehicle does give a composi-
tional framework, allowing specifications of further byte
codes to be added as a conservative extension.

5.2.1 Subroutines

At the JVM level, exception handlers are implemented as
subroutines. This technique saves code space, as excep-
tions raised from different places may transfer control to
the same exception handler code. However, this optimi-
sation is problematic both for the byte code verifier and
for the garbage collector.

The first problem with subroutines used for exception
handling is that a local variable that is not actually used
in a subroutine may be polymorphic. To illustrate this,
consider the example of Figure 2 originating from Stata
and Abadi’s paper [165]; their byte code is slightly dif-
ferent, probably because of our using a more recent Java

compiler. The method bar uses five locations to store
local variables:
local type purpose
0 ref to refer to the current object
this
1 int to represent the int argument of
the method bar
2 int to save the int type result of
this.foo()
3 ref to save the exception reference
4 address to save the address to which the

subroutine at address 27 should
return.

Each local is consistently used with only one type. How-
ever, it is possible to optimise the code to use fewer local
variables. For example we could reuse local 2 to store the
return address at statement 21, and to reload the return
address again from local 2 at statement 25, as indicated
in comments in the JVM code of Figure 2. This would
remove the need for local 3. While verifying the byte code
of the subroutine at address 27, the verifier must now take
into account that local 2 may either have type int (when
the call originates from 10), or that local 2 may be a refer-
ence (when the call originates from 22). This optimisation
is safe because local 2 is not actually used in the subrou-
tine. We say that local 2 is a polymorphic variable of the
subroutine.

The second potential problem with JVM subroutines
is that the jsr (Jump subroutine) and ret (return from
subroutine) instruction pair does not use a stack to store
return addresses but instead stores a return address in
a local variable. Stata and Abadi take a special care to
ensure that the ret instruction returns control to the in-

Java Method:

int bar(int i) {
try {
if (i==3) return this.foo();
} finally {
this.ladida();
}
return i;

}
Compiled JVM code:

Method int bar (int)
iload_1
iconst_3
if_icmpne 15
aload_0
invokevirtual #4 <Method int foo()>
istore_2

jsr 27
iload_2
ireturn

jsr 27

goto 35

Exception handler

21 astore_3
22 jsr 27
25 aload_3
26 athrow

The finally block

27
29
30
33

astore 4

aload_O

invokevirtual #5 <Method void ladida()>
ret 4

Return statement at the end of the method bar.

35 iload_1
36 ireturn

Figure 2: A Java method and the equivalent JVM code
showing how subroutines are used to space code space for
exceptions (compiled by Sun JDK 1.1.2 on SunOS 5.6).

14

struction following the last executed jsr instruction. The
JVM however supports returns of multiple subroutines
with a single ret instruction, and this facility is formalised
by Freund and Mitchel [70].

Concerned about the byte code verification complex-
ity, Freund [67] shows that expanding out subroutines
increases code size by about 0.02% for the whole JDK
1.1.5. This suggests that the benefits of having polymor-
phic subroutines may not compensate for the increased
complexity.

Hagiya and Tozawa follow a different approach to com-
bat the complexity in the proofs by proposing a new type
system for byte codes. They show that the complexity of
the proof of type soundness is significantly reduced [82].

O’Callahan provides yet another solution to the prob-
lem by using a polymorphic type system for subrou-
tines [136]. This gives a strictly more powerful type sys-
tem than that of the other proposals referred to above.
Unfortunately, using the polymorphism further increases
the complexity of the byte code verifier.

Subroutine polymorphism is also a problem for type-
precise garbage collection [6], because the type of local
variables that are use in a polymorphic fashion depends
on the call site of the subroutine. Therefore, instead of
the types of all local variables being dependent only on
the current state of the execution, now the type depends
on the history of the execution.

The Java language provides two means to express syn-
chronizations, through synchronized method and synchro-
nized statements. By their syntactic nature these con-
structs are balanced, with clearly specified beginning and
end. The JVM language implements synchronized blocks
with the instructions monitorenter and monitorexit
and is required to exit a monitor at the end of the method
invocation it was entered, whether completion is normal or
abrupt [114]. Bigliardi and Laneve [23] extend Stata and
Abadi [165] and Freund and Mitchell [68] typing meth-
ods to those byte codes, and prove that program typing
implies the proper release of monitors.

5.3 Dynamic Class Loader

This section covers dynamic class loading from the JVM
point of view. Dean [50] offers a simple model of an early
Java class loader using HOL. He proves, using PVS, that
newly loaded classes form a conservative extension to pre-
viously loaded classes. This means that any valid prop-
erty remains valid, no matter how many further classes
are loaded. Examples of interesting properties are the
well-formedness and well-typing of byte codes.

In 1997, Saraswat [157] published a bug related to type
spoofing by use of dynamic class loaders. Saraswat’s solu-
tion was based on checks for type-safety at runtime: byte
code instructions such as invokevirtual need to check

that the actual class of the object being operated upon
is the same as the one obtained by the name resolution
process. His informal discussion of the interaction of class
loaders and type safety was the beginning of a formal un-
derpinning of Java dynamic class loaders.

Sun’s answer to the bug was a major change of the class
loading mechanism of JDK 1.2, as described by Liang and
Bracha [113]. Java differs from other languages that also
support dynamic loading (such as Common Lisp) because
it performs checks at link-time as opposed to runtime;
such an optimisation guarantees that checks need to be
performed only once. Liang and Bracha’s solution relies
on three ideas: (i) a distinction is introduced between
the initiating and defining loaders of a class; (%) a loaded
class cache per loader maintains temporal namespace con-
sistency; (#1) and namespace consistency between dele-
gating loaders is preserved by a set of constraints. Load-
ing constraints are triples (L1, L2, N), consisting of two
class loaders I; and Ly and a class name N; their mean-
ing is that using L; and Lo as the initialising loaders for
name N yields the same (loaded) class if they both suc-
ceed. The paper does not introduce any formalisation
of this solution, but explains what constraints should be
generated and how they should be verified. While it is
not precisely specified when constraints should be verified,
the paper explains that it should take place at link-time,
which makes this solution different from Saraswat’s.

Independently, Jensen et al. [100] offer a formalisa-
tion of name space control and its interaction with Java
visibility modifiers. They provide an abstraction of the
JVM state describing the hierarchy of classes and mem-
bers and their visibility rule. The main result is that the
model provides an answer to the problem uncovered by
Saraswat [157]. The formalisation of Jensen et al. is crit-
icised for containing some inaccuracies, both inadvertent
and deliberate ones [31]. This shows that while formal-
isations often uncover problems, it is also necessary for
system designers to scrutinise the formalisations of their
systems to ensure that the formalisation agrees with their
intention. Clearly, this kind of comments cannot be given
if formalisations are not sufficiently accessible to system
designers.

The difficulty of formalising the JDK 1.2 dynamic load-
ing is due to the fact that, since the JVM loads classes
lazily, the JVM cannot determine what class a name N
denotes until the name N is actually resolved by the class
it is declared in, using the defining class loader of that
class. Tozawa and Hagiya [175, 176] present a formali-
sation of Liang and Bracha’s loading constraint system,
which highlight the subtle relationship between the con-
straint scheme and byte code verification. Their approach
is to extend Stata and Abadi’s byte code verification tech-
nique by typing rules to cope with class loaders. Their
study only focuses on the invokevirtual and areturnin-

15

structions. The soundness is established by showing that
the JVM preserves the well-typedness invariant.

Their formalisation allowed them to exhibit further
flaws in the implementation of the JDK [175]. The first
flaw was as a bug in the JDK implementation, and is
another good illustration of the need for a complete for-
malisation of a system, down to the implementation. The
second flaw is explained by the fact that the JDK does not
verify its system classes, which indicates a major discrep-
ancy between the formalisation and the implementation
that needs to be addressed. Further work is required to in-
tegrate ignored Java features such as primitive types, field
members, array types, member modifiers and threads.

Qian, Goldberg and Coglio [152] offer another formali-
sation of dynamic class loading, expressed as a state tran-
sition system. The result is close to Sun’s solution to
the problem raised by Saraswat. Qian, Goldberg and
Coglio present a type safety proof that relates the dynamic
semantics with some static type information, currently
loaded classes and currently posted constraint (which ex-
press requirements on not-yet-loaded classes). In Sun’s
implementation, the byte code verifier may have to re-
solve class names to check subclass relationships. The
authors observe that this strategy is not the laziest pos-
sible. Therefore, they introduce a notion of subtype con-
straint, which is an important difference with respect to
Tozawa and Hagiya’s formalisation [175, 176]. Subtype
constraints have the form (L, Ny, N2) and mean that if a
loader L yields classes C; and Cs for names N; and Na,
then C5 must be a subclass of C;.

Qian et al. formalised the JVM by its global state con-
sisting of a loaded class cache, a set of loading and subtype
constraints and a heap for storing objects. A valid state
is a state defined as satisfying the type constraints. Load-
ing constraints, subtype constraints, and the loaded class
cache are constantly maintained in a mutually consistent
state. The primary advantage is lazier loading, because
no class needs to be loaded for verification purposes. Ad-
ditionally, Qian et al.’s view of the verifier is simple: the
verifier is just a component that takes a class as argu-
ment and returns a yes/no answer plus a set of subtype
constraints as a result. The paper does not contain the
full semantics, but handles only a few byte codes; the
authors also make some simplifications to the JVM, and
for instance, ignore multi-threading and exceptions. Type
safety is expressed by showing that validity, i.e. satisfia-
bility of all constraints, is preserved by state transitions;
from a valid state, they show that it is always possible to
move to another valid state, unless either there is no more
code to execute or some of the listed conditions that cor-
respond to runtime checks in the actual JVM fail. Coglio
and Goldberg [41], describe examples of type safety vio-
lation that the proposed formalisation avoids.

Fong et al. are concerned that byte code verification,

class loading and linking are too tightly coupled, to allow
for the three components to be verified effectively [66].
Their proposal on a proof linking architecture uncouples
the three components by making their interactions explicit
in queries and updates on an underlying data base of facts.
Before a class is loaded, the modular verifier generates
facts about the class, and checks that these facts are con-
sistent with those already present in the data base. The
proposal does not compare the efforts involved in verify-
ing a standard architecture versus to the newly proposed
proof linking architecture, and as such is inconclusive.

5.4 Alternative Representations

Several authors propose alternative representations for an
intermediate code than byte codes, with as main aim to
avoid the problems and expense of byte code verification.
Knoblock and Rehof [107] propose Java Intermediate Rep-
resentation (JIR), which sits between Java and the Java
byte codes. In JIR local variables that are used with dif-
ferent types at different point in the execution of a pro-
gram are notionally duplicated. Sub-type completion, a
technique that basically creates a new type where one
would otherwise have to work with a set of types, is used
to typecheck programs. This yields a typing for JIR code
that is closer to the typing found in Java programs, mak-
ing type checking inherently more efficient than byte code
verification. Gagnon and Hendren [72] propose three ad-
dress intermediate code, and represent type checking as a
constraint satisfaction problem.

Some authors change the JVM to avoid the problems
with modelling subroutine polymorphism. Others reject
the JVM language, and instead suggest the use of tree-
based code. Indeed, to provide aggressive optimisations,
compilers rely on the control- and data-flow information
that is readily available in an abstract syntax tree. Kistler
and Franz’ Slim binaries [105] avoid the problem of code
scattering as in Figure 1 by using a tree structured inter-
mediate code or ‘slim binaries’. These allow the allocation
and initialisation to remain coupled, just as in the Java
program. Unfortunately, slim binaries require rather more
memory and processing power than is readily available on
small systems.

5.5 Discussion

The JVM language bears some similarity with typed as-
sembly languages, such as TIL [124]. The JVM offers less
polymorphism than TIL but supports subroutines absent
from TIL. Stata and Abadi have proposed a formal frame-
work that can express these features and that has been ex-
tended by several authors to cover byte code verification
for most of the JVM language.

From a flourishing activity on the dynamic class loader,
the use of constraints has emerged as a good mechanism

16

to express properties to be verified by classes not loaded
yet. The interleaving between byte code verification and
class loading is definitely subtle. A complete integration
of these ideas in Stata and Abadi’s framework is an im-
portant target, but its size probably requires automatic
tools to handle the formalisation.

Deriving a correct and efficient implementation of these
formalisations is also a challenge. We refer to Section 7 for
a survey of methods that can be applied in that context.

In Section 4.5, we indicated the need for tools able to
expose security properties of programs. As the JVM lan-
guage has different observable properties than the Java
language, tools working on the JVM byte code would also
be useful (furthermore, because the source code may not
be available for analysis).

6 The Compiler

In Sun’s reference implementation, the compiler javac
takes as input Java classes and generates their byte code
representation, organised as class files, and ready to be
loaded by the JVM. In this section, we survey the formal-
isations of this compilation process, and examine some of
the proposed static analysis to improve the performance
of the generated code. However, the open Java architec-
ture offers new opportunities to translate to and from dif-
ferent representations: we also survey the compilation of
Java source code to alternative representations, and byte-
code to byte-code transformations, which may be used at
load time.

The section begins with a presentation of the work that
discusses the combination of Java and JVM semantics.
The only work we have been able to find that comple-
ments Java and JVM semantics with a specification of the
compiler is discussed in a separate section on the Abstract
State Machine approach. Table 3 includes summaries of
the efforts described below.

6.1 Relating Java and JVM Semantics

Abadi [2] observes that the compilation process of the
Java language, i.e. translating Java source code into JVM
byte code, is not fully abstract. He shows that some com-
piler generated byte code, put in the context of some
JVM-valid byte code (though not necessarily generated
by a compiler), exhibits different properties than its orig-
inal source program. In technical terms, the JVM is said
to have a finer notion of observational equivalence, i.e. the
JVM is able to distinguish more Java programs than the
Java language itself.

Diehl [55] gives the compilation schemes for a sub-
set of the Java that excludes exception handling, multi-
threading and garbage collection to the corresponding
subset of the JVM. He also offers an operational semantics

soyojeys Jooid 10 sjooid syuesoid roded oY) IOYIOYM jooiq

posn soTyueWds JO O[A)1g SOT)URWDG

SurpesIy)-1Nu 23 [PPOW AIOWOA LN

Surpuey wordeoxa/seurynorqng HA

Surpeoy sse[) TO

Pasn S[00} SOTJURWISS IO SPOY}OW [RULIOJ YT, s[ooq,

Paseq SI JI0M JUSIIND Y} YITYM UO JIOM 0} dOUIIARI Y aseq

Ioded o) Surjuam 10j 10yjne oy} jo asodind urejy esoding

$92149p ju11d)00] [[RWS IO SPIED JIews je pajodie) ST JIoM) IdYIRYM [rews

:puagdory
ou| prepuels uou $oA ou sof sIsAeue o1)e)s [68T1] KoTey M|
oA NSYV| soA] sof] seh] 10JonymIsy [22]| uorreoyLioa ‘sorpuewmies Jo Apnis [791] b RIS
So4 NSV| so4] sof ou [L2])‘[87] 100110 19[1dwod d9a01d [¢91] j1e)8
ou GN| ou ou sof 1901102 1o[1dwrod aroxd) seh] [ggT] 9s0Y]]
34 pequid| ou ou ou J[Pqes] [6¥T1] ssoupunos ad£) aaoid| [geT] modiN
ou gO| o4 sof] sof sisATeue J13e)s [c9] uedeue]
oy NSVl ou ou ou so1puRWdS ApNIs [gq] ICEel
ou| prepue)s uou| soA| soh] sof sisA[eue o1je)s [07] 104D
So4 NSV| ou sed oul mjonwsy| [Lz][8T] 1001109 19[1dwod d9a01d [62] 10810¢]
ou NSYV| soA] soA] sof [L2]‘[87] 1001109 19[1dwod d9a01d [gz] 10810¢]
jooig sonuewds| TN HA|l 1D 001, aseq asoding| [ewg °-joy| IoyINy ISILg

Combined Java and JVM languages

Table 3

17

of this JVM subset. No specification of the Java subset is
given, thus missing the opportunity to prove the compi-
lation schemes correct.

Rose [155] gives a natural semantics of a subset of Java,
the corresponding subset of the JVM, static type systems
for both and a specification of the compiler for the subsets.
No proofs are given either of the soundness of the type
systems, or of the correctness of the compiler.

With pJava, Nipkow et al. [135] offer a HOL/Isabelle
embedding of Java’s imperative core with classes. They
present a static and a dynamic semantics of the language
at the Java and JVM levels. The objective of the paper is
to show that the soundness property of the type system
can be parameterised over the operational semantics (i.e.
Java or JVM). This achieves a significant level of reuse in
the soundness proofs of the type system. The authors do
not discuss the scalability of the approach to full Java.

6.2 Abstract State Machine Approach

For a number of years, Borger et al. have been working
on formal specifications of Java, the JVM and the com-
piler. All their work is based on the Abstract State Ma-
chine formalism, a full semantic account of which may
be found in Gurevich [80]. Two earlier papers specify a
modular semantics of a subset of the JVM [28], and a
subset of Java [27]. Both specifications follow a modular
approach, where each new feature is added to the speci-
fication as a conservative extension. The two subsets do
not entirely coincide; for example, the Java specification
includes multi-threading but the JVM specification does
not. This makes the two subsets somewhat less ideal as
a basis for further work to specify the compiler and to
prove the compiler correct with respect to the semantics
of Java and the JVM. Yet in a third paper [25] this is
exactly what is done, by further reducing the subsets of
Java and the JVM to omit Multi-threading, class load-
ing and arrays. The main result is an informal theorem
stating the correctness of the compiler. Two further pa-
pers by the same authors revisit exception handling and
object initialisation, again based on the two initial pa-
pers. The first of these further papers [26] reports on
problems with the initialisation of objects, for which the
official Sun documentation provides conflicting informa-
tion. The problems were identified thanks to the building
of the specification. The second paper [29] revisits the
exception handling mechanism of Java, the JVM, and the
compiler. The main result is a formulation of the correct-
ness of compiling exception handling, with a full proof.
Stark [163] revisits the specification of Java and the JVM
from Borger and Schulte [28, 27]. Stérk also presents a
compiler from the imperative core of Java enriched with
method calls and gives a correctness proof of the compiler
with respect to the semantics of Java and the JVM for

18

the same fragments.

The forthcoming ‘Jbook’ by Stirk, Schmid and
Borger [164] provides a complete revision and extension of
this earlier work described above. The main contributions
of the Jbook are:

An ASM specification of Java as a series of five layers
for the 1) Imperative core, 2) Static Classes, 3) Ob-
ject Orientation, 4) Exceptions and 5) Threads. Each
layer (except the first) is a conservative extension of
the previous.

A specification of the JVM with the same layering as
for Java.

A novel bytecode verifier computing principal types,
and a loading component.

A specification of the compiler for the first 4 layers,
i.e. excluding threads.

All specifications are machine readable; they are exe-
cutable using the AsmGofer toolkit. This includes an
algorithm AsmGofer uses to compute the types for a
program if it is typable at all.

Formal proofs of the soundness of the Java thread
synchronisation model, the type soundness of Java
and the type soundness for the combination of the
JVM with the byte code verifier.

A formal proof of the correctness of the compiler with
respect to the Java and JVM specifications, and a for-
mal proof that the compiler is complete with respect
to the bytecode verifier.

The Jbook does not consider Java packages, compila-
tion units, garbage collection, and class loading at the
Java level — class loading at the JVM level is taken into
account. The memory model is an abstraction of Java’s
mechanism to keep local working memories consistent
with the main memory. However, the Jbook represents
a significant amount of work and gives the most compre-
hensive and consistent formal account of the combination
of Java and the JVM, to date.

Wallace gives a reasonably complete specification of
Java, also based on the ASM framework, but not closely
related to the work of Borger and Schulte. Wallace’s work
includes multi-threading, and exception handling, but ex-
cludes class loading and garbage collection [184]. The
work is purely a study of semantics.

6.3 Static Analysis

A quick look at the proceedings of conferences and work-
shops on programming languages indicates that various

static analyses have been adapted to or specifically de-
vised for Java. Static analysis and associated optimisa-
tions are expected to be correct, i.e. they are supposed
to preserve the meaning of programs. Even though this
is an important aspect of security, a complete survey of
this domain is beyond the scope of this paper. How-
ever, we just draw our attention to two types of analy-
sis that study some Java specific aspects: escape analy-
sis for object-oriented languages and analysis related to
multi-threading. (Another frequent analysis concerns ar-
ray bound checks.)

Whaley and Rinard [189] present a combined pointer
and escape analysis algorithm for Java programs. Using a
data flow approach they construct a graph which charac-
terises how variables refer to other objects in the program.
Using such information, they perform a transformation
that removes unnecessary synchronisations. Additionally,
they determine when objects may be allocated in the lo-
cal stack instead of the shared heap. An interesting as-
pect of their approach is its compositional nature, accord-
ing to which they analyse methods independently of their
callers and the methods they call. Such a compositional
approach is essential for component-based systems where
portions of the code may be loaded dynamically; Sreedhar
et al. [161] also share such a preoccupation in the design
of their Jalapeno compiler. An alternative analysis used
for similar optimisations is described by Choi et al. [40].
In some benchmarks, these analyses remove between 20—
80% of synchronisation operations, and are able to per-
form stack allocations for 20-95% of the objects. Overall
performance improvement in the range 2-20% were ob-
served.

Flanagan and Freund [63] present a static analysis of
Java programs able to detect race conditions in multi-
threaded programs. Their analysis is based on a new
type system, which like an “effect system” [173], speci-
fies the locks required by expressions. Their formalisation
is based on an extension of Flat et al’s CLASSICJAVA
with fork and synchronized statements [64]. No infer-
ence algorithm is offered, so the programmer is required to
annotate the program with lock-related type information.

6.4 Byte Code Modification

Several proposals have been made to enhance the se-
curity of Java programs by automatically modifying in-
coming applets, some standard classes or both to re-
strict the damage that can be done by rogue ap-
plets. Balfanz and Felten [17] rename the stan-
dard AppletClassLoader to XppletClassLoader, and
then insert a new AppletClassLoader that subclasses
XppletClassLoader. The new class pops up a security
dialogue, offering the user full control.

Shin and Mitchell not only rename classes but also

19

methods. This is necessary because final classes cannot
be subclassed [159]. They show how some common at-
tacks can be avoided using their method.

Malkhi and Reiter go another step further by acknowl-
edging that the best defense is to separate a potential
attacker from its victim. Their system modifies applets,
so that they may be run on a separate system called the
playground. An applet may then freely access the re-
sources of the ‘playground’, to which no real harm can
be done [116]. Finally, byte code rewriting has also been
proposed to ‘macro expand’ subroutines with the aim of
avoiding subroutine polymorphism, and all the modelling
problems this brings about [67].

6.5 Byte Code Annotation

The class file format is quite flexible in the sense that
it allows extra information to be supplied with compiled
Java programs. In parallel to the stream of JVM byte
codes, Hummel et al. [92] provide a stream of annotations
that enable the JVM to recreate in a cost effective way
structured, high-level compiler information. One particu-
lar application of the technique is to provide indications
for register allocation, which would otherwise require de-
tailed information and analysis of programs. A significant
advantage of byte code annotation is that the extra infor-
mation in class files can safely be ignored by implemen-
tations that do not support it. The main disadvantage
is that there is no guarantee that the annotations actu-
ally correspond to the byte codes, thus creating potential
security loopholes.

6.6 Discussion

It has proved difficult to implement Java safety features
correctly. Indeed, building a Java system with accept-
able performance requires various optimisations, which
basically distribute the implementation of safety features
throughout the compiler and different parts of the runtime
system. The various components responsible for safety
interact in complex ways, creating scope for design and
implementation problems.

The first implementations of Java were based on byte-
code interpreters, and were rapidly replaced by just-in-
time compilers able to transform byte codes into assem-
bly code. We are now observing the emergence of a new
generation of optimising compilers such as Jalapeno [161].
Moreira et al. [122] show that by applying aggressive opti-
misations for Java’s precise exception model, array bound
checking, and floating point semantics, Java can become
competitive in performance with Fortran for numeric ap-
plications. However, proving the correctness of such com-
pilers is a daunting task, due to the levels of refinements
that would be required. Such a whole process has rarely
been performed for a complete language: we are only able

to mention the verified implementation VLisp [81], includ-
ing compilation to byte code, byte code verification and
memory management for the language Scheme, which is
definitely smaller than Java.

It is not uncommon for static analyses to require whole
programs as input, but such an approach is not suitable
for programs loading code dynamically. We have seen a
couple of papers addressing this problem, and we expect
this topic to be the subject of further investigation as
component-based systems become more prevalent.

Commercial interests understandably prefer preserving
the compatibility with existing Java installations, but dif-
ferences between the JVM and the Java language do not
constitute the most natural route to build safe and secure
systems. Some of the alternative approaches may turn
out to be valuable in the future.

7 Java Verification

Program verification contributes to the safety of Java pro-
grams because formally verified programs contain fewer
design and implementation problems. We review ap-
proaches to program verification based on model checking
and on theorem proving. We discuss these two techniques
in the following sections. The LOOP project aims to de-
velop a comprehensive method and tools to verify Java
programs and the Java API. This is discussed in a sepa-
rate section (7.3). Code certification is a program verifica-
tion technique that is particularly appropriate for mobile
code. We discuss this technique in Section 7.4.

7.1 Model Checking

Demartini et al. [52], and also Havelund et al. [86] de-
scribe how core features of Java can be mapped onto
the Promela language of the SPIN model checker. Both
model multi-threading and objects, Havelund et al. also
model exceptions. Both approaches model the objects us-
ing Promela’s arrays, with one array element per instance
of the class. The resulting models quickly grow too large
to model check effectively. Both approaches only check
for safety properties (e.g. assertions, deadlock), and do
not provide support for the checking of liveness properties.
One of the most useful features of the SPIN model checker
is its ability to display scenarios leading to problems such
as deadlocks. Demartini et al. take care to relate these
scenarios back to the original Java sources, making their
tool more user friendly than that of Havelund et al.. For
small programs a naive mapping from Java to the input
language of a model checker is useful, it is difficult to see
how the results might scale up to larger systems.

Jensen et al. [101] use model checking to verify prop-
erties of Java programs. To address the scalability issue,
they use a more abstract approach than Demartini et al.,

or Havelund et al.. In the proposal by Jensen et al., static
analysis techniques are used to reduce a Java program to
a control flow graph with only three operations: method
calls, method returns and assertions. A simple opera-
tional semantics of the three operations defines the state
transitions of the abstract Java program, and linear tem-
poral logic formulae define the properties of the system.
As an example of use, Jensen et al. show how the sys-
tem can be used to model stack inspection and the Java
sandbox [118].

The Bandera project [46] provides semi-automated
tools for mapping Java programs to the input languages
of SPIN and SMV. The three main tool components are
a program slicer, an abstraction engine, and a two way
translation system. The first two components both serve
to automate the creation of models with smaller state
spaces than the original Java programs. The slicer re-
moves code and data irrelevant to the properties of in-
terest. Under user guidance, the abstraction engine re-
places concrete data sets by smaller abstract data sets.
The translation system maps Java into the native nota-
tion of the model checker, and it maps counter examples
found by the model checker back into Java. The strength
of the Bandera system is its automated support for cre-
ating scalable models.

Stiles [168] summarises various research projects
proposing the combined use of CSP and Java. The idea is
that a concurrent program is best specified first in CSP,
for which a considerable body of theory, as well as some
state-of-the-art modelling tools exist. One of those tools,
the model checker FDR is then used to verify the speci-
fication. Finally, the specification is translated into Java
using one of several Java classes implementing CSP style
communication [88, 188].

7.2 Theorem Proving

Detlefs et al., using Modula 3 [54], and more recently
also Java [112], go beyond the verification offered by type
checking and require the programmer to annotate pro-
grams with pre- and post-conditions. They observe that
programmers do this informally anyway, and claim that
it is not a big step to ask them to annotate their pro-
grams formally. The compiler is then able to generate
and prove the verification conditions (using a form of
Dijkstra’s weakest pre-condition calculus) that need to be
satisfied for the pre- and post-conditions to hold. The
system of Detlefs et al. does not require the programmer
to annotate programs with loop invariants and variants,
which most programmers would find harder to write than
just pre- and post-conditions. Instead the system derives
loop invariants automatically, which, as a consequence,
are weaker than those provided by humans. Alterna-
tively, the system may be directed to assume that loops

20

are executed at most once, thus giving rise to conserva-
tive approximations to the real behaviour of loops. The
system is a compromise between what is achievable with
automated techniques and what programmers are able to
provide. The system is therefore more powerful than a
type checker, but less powerful than programming with
full verification.

Poetzsch-Heffter and Miiller [143] give an operational
and an axiomatic semantics of a subset of Java (the imper-
ative core and method calls). They then prove the sound-
ness of the axiomatic semantics with respect to the oper-
ational semantics. Their axiomatic semantics can thus be
used to as a basis for the verification of Java programs.
Both types of semantics are also embedded in HOL, so
that mechanical checking of the soundness proof would
be feasible in future.

Verification is not restricted to Java programs.
Moore [121] has built a new version of a small subset of
Cohen’s specification [43] of the JVM. Moore shows how
the ACL2 theorem prover is capable not only of executing
simple byte code programs, but also of proving the cor-
rectness of such programs with respect to a specification.

If Java safety would be able to guarantee that computa-
tions terminate, and within certain bounds, then the de-
nial of service attack would be prevented, which is clearly
a desirable safety goal. However, execution time is prob-
ably one of the most difficult resources to control. While
there are languages [11] and type systems [49] that have
been designed to guarantee termination, we have not been
able to find efforts that apply such technology to Java.

7.3 The LOOP Project

The aim of the LOOP project is full verification of Java
programs. The LOOP methodology allows the Java pro-
grammer to annotate a program with appropriate spec-
ifications. The LOOP compiler [178] translates the pro-
gram and the specifications into the Higher Order Logic
(HOL) of a theorem prover, such as PVS [99], or Is-
abelle/HOL [177]. The user then drives the tool to prove
that the programs satisfy the specifications provided by
the annotations. Examples of properties include guaran-
teed termination of a method, invariants on the fields of
a class, or the absence of exceptions. While the theorem
provers provide a degree of automation, user guidance is
often required for example to decide on proof strategies.
The LOOP embedding of Java programs into a HOL is
based on a set of theories representing the denotational
semantics of sequential Java [177]. Jacobs [96] presents
a coalgebraic view of exceptions, emphasizing the state-
based aspect of computations, and its suitability for rea-
soning in a Hoare-style logic. This formalisation has high-
lighted an implicit assumption in the first specification of
Java that “a thrown exception is never the null-reference”.

21

The semantics of Java have been validated by showing a
close, almost literal correspondence between the natural
language specification of the Java Language specification
and the appropriate theories [90]. With a denotational
semantics it is not always easy to model irregular control
flows in a clear and concise fashion. Therefore Jacobs ex-
plores the use of a monad to structure the semantics of
break statements, exception handling etc [97].

LOOP specifications are embedded in Java programs
by way of annotations in the Java Modelling Language
(JML) [111]. JML is designed to mimimise notational
burden by using the syntax of the host language (Java)
as possible for the specifications. Compiled JML speci-
fications are represented in HOL by a set of tailor made
proof rules [98].

The LOOP tool and methodology has been applied ex-
tensively to the smart card API for Java Card (See Sec-
tion 8). In the first case study, the methods in each class
have been annotated with a lightweight specifications stat-
ing the precondition, which, if satisfied guarantee the ab-
sence of unexpected exceptions. This is useful information
for the Java Card programmer, because unexpected ex-
ceptions are a safety hazard, and also for the compiler be-
cause handlers may be omitted. The Application Protocol
Data Unit (APDU) Class has been fully specified [145].

The Application Identifier (AID) class maintains a
unique manufacturer ID and a suffix as a string of a cer-
tain length. The AID string is used to identify applets
and as such forms an important aspect of the security
management in a Java Card. Therefore van den Berg et
al. [179] prove that the length of the string satisfies certain
constraints as a basis for further reasoning about applet
security.

A third case study is the verification of a non-trivial
invariant for Java’s Vector class, stating that “the num-
ber of elements in the array of a vector never exceed its
capacity” [91].

While there are many more useful properties that could
be specified and proved, a solid foundation for the verifi-
cation of the Java Card API and applets has been laid.

7.4 Code Certification

Necula and Lee introduced the idea of proof carrying code
(PCC) [127]. This is a partly automatic verification tech-
nique for assembly level programs designed to allow a code
consumer to have trust in a code producer. PCC has been
been used with compilers for ML [127], type safe C [128]
and more recently Java [45].

PCC works as follows. Suppose a consumer wishes to
receive code from a producer. The consumer establishes a
safety policy for code it is willing to accept, and commu-
nicates this policy to the producer. The latter might be
a compiler, Web site or other source that is not trusted

by the consumer. The producer uses the safety policy
to annotate the code destined for the consumer with a
safety property in terms of loop invariants, pre- and post-
conditions. The producer generates a proof of the safety
property, either by hand, or using a mechanical proof as-
sistant. The consumer receives the code and the proof,
and mechanically checks that the proof is consistent with
the program, and therefore that the program satisfies the
safety property. It is more difficult to generate a proof
than to check a proof. Therefore, separating the two
phases has a significant benefit: The consumer does not
need to trust the producer, or the means by which the
producer creates the code and the proof. Instead, the con-
sumer relies only on a small trusted infrastructure consist-
ing of what is essentially a type checker. This is reported
to be no more than 5 pages of C code in size.

Initially, the PCC approach suffered from proof sizes
exponential in the size of programs [130]. A proof may
become large because of the amount of redundancy. In
a later paper, Necula and Lee [129] show that it is pos-
sible to reduce a proof of size n to a proof of size \/n
by avoiding some redundancy. They also give practical
examples of small programs (e.g. quick sort) with accept-
able proof sizes. Recently, Necula has shown that ora-
cle based techniques allow for even smaller proofs. For a
given benchmark proofs are on average 12% of the code
size [131]. These results apply to the same kind of verifi-
cation as offered by the Java byte code verifier, but in the
case of PCC for Intel x86 machine code rather than Java
byte codes. The proofs of more powerful safety properties
would still be larger.

Kozen’s proposal for code certification [108] does not
suffer from large proof sizes, but it is also strictly less pow-
erful than that of Necula and Lee. For example, Kozen’s
technique cannot make a distinction between different el-
ements of an array. Kozen’s notion of code certification
is roughly as powerful as that of Java byte code verifi-
cation. The differences are firstly that Kozen maintains
the structural information in compiled code that is absent
from JVM byte codes. This greatly simplifies the verifi-
cation process. Secondly, Kozen targets native machine
code, while the JVM offers portability.

7.5 Discussion

An informal argument may sometimes suffice to show
that (safety) properties of programs hold. Formal pro-
gram verification techniques are needed to derive strong
guarantees that programs have certain desired proper-
ties. However, Program verification requires special skills,
to formulate properties, to discover appropriate condi-
tions, such as loop invariants, and to drive specialist tools.
Model checking techniques tend to be more automatic but
have difficulty coping with problems of increasing size.

22

Computer supported theorem proving techniques often re-
quire manual intervention but generally cope better with
larger problems. Unfortunately, relatively few program-
mers are trained in program verification, thus hampering
the widespread use of the techniques.

A number of groups are working on program verifica-
tion techniques that are specifically adapted to Java. Us-
ing such specialised tools and techniques relieves the pro-
grammer from having to deal with many irrelevant issues
because the tools cope with the details. To achieve this,
considerable effort must be spent embedding the seman-
tics of Java in program verification tools. Of course, some
of the prior effort invested in specifying the semantics of
Java is implicitly reused in the development of program
verification tools. However, we have not seen much ex-
plicit reuse of programming language semantics for the
purpose of building verification tools. This may be due
to the fact that program verification is the domain of the
formal methods community whereas the main practition-
ers of semantics are within the programming languages
community.

Many formal methods and semantics tools have
been used to study aspects of Java: ACL2 [104],
ASM [80], B method [5], Centaur [30], Coq, DE-
CLARE, ESC/Java [112], FDR, Haskell, Isabelle [142],
HOL, JML [111], LETOS [83], PVS [141], SMV [119],
SpecWare [162], SPIN [89]. Not all of those tools are suf-
ficiently automatic, or adequately equipped with the right
mathematical theories to prove safety properties of Java
programs.

There is no clear winner amongst the various methods
and tools used. The Abstract State Machines has been
used to build the most comprehensive set of specifications,
complete with experimental and mathematical analysis.
Isabelle/HOL is one of the most popular tools, but even its
users complain about lacking mathematical theories and
validation facilities [182]. This clearly needs improvement.

8 Java on Smart Cards

In this section of our survey we present a case study on
Java Card, the smart card ‘dialect’ of Java [39]. Java Card
offers an important application domain of the tools and
techniques that we have discussed, because smart cards
are used for business critical applications. These include
banking, access control, and health care, and more re-
cently the SIM card in the GSM mobile phone. The safety
(and security) of Java applications on smart cards is of
prime importance to the smart card manufacturers, is-
suers, and users [109)].

Java Card is not plain Java, because Java implemen-
tations are too resource hungry for smart cards. A JVM
implementation requires at least 1 MB of store [187]. This
makes Java acceptable for use in PCs and capacious em-

bedded controllers but less than ideal for use in small foot-
print devices, such as mobile phones, and PDAs. Even the
K Virtual Machine (KVM), which has been designed spe-
cially to fit into small footprint devices requires at least
128KB of RAM [169]. This is still too large, as a smart
card typically offers a few hundred bytes of RAM and a
dozen or so KB of EEPROM.

To reflect the limited computing resources inherent to
smart cards, the Java Card VM and API impose re-
strictions. For example, there is no support for threads,
garbage collection, or real numbers. While the standard
word size for Java is 32 bits, for the Java Card VM this
is 16 bits. Instead of relying on middle-ware products,
the Java Card API includes a simple transaction facility
built in the VM. The Java Card API includes an interface
to the ISO 7816-4 standard [1] for the Application Proto-
col Data Unit (APDU) format of communication between
smart card and terminal. Using this rather low-level pro-
tocol in Java is somewhat cumbersome, but Java Card
applications are fully compatible with legacy terminals.
Without this compatibility, an evolutionary approach for
introducing Java Card technology into the market place
would not work. Finally, Java Card implementations do
not provide generic auditing facilities, which makes it diffi-
cult to evaluate the effectiveness of the Java Card security
mechanisms. Instead, it is left to the Java Card applica-
tion programmers to ensure that appropriate information
logging is maintained.

The differences listed above create a number of serious
disadvantages to the successful deployment of Java Card:

e A semantics of standard Java, or a formal method
tailored to standard Java is not directly applicable to
Java Card. Instead some of the formalisation needs
to be revisited.

The full potential and flexibility of client-server soft-
ware development cannot be realised because devel-
opers need to be aware of the platform on which their
code is going to run (i.e. on or off card).

Java applets running on smart cards cannot be ver-
ified appropriately before they are run because the
full byte code verifier is too large. Current stopgap
measures include digital signing of pre-verified byte
codes.

The freedom of code migration is restricted because
not all platforms support full Java.

In addition to those inherited from Java and the JVM,
Java Card has some safety and security problems of its
own. For example Montgomery and Krishna [120] show
how the security of the Java Card object sharing model
can be broken. Oestreicher [138, 139] discusses the Java
Card memory model. The model is not obviously flawed,

23

but it is rather baroque, and therefore a potential source
of security problems when used incorrectly. Hartel and
de Jong present a critique of the Java Card safety and
security mechanisms [85].

In the remainder of this section we present work based
on the core semantics of Java Card and the Java Card
Virtual Machine (JCVM). Then we discuss the two nov-
elties of Java Card. The first is the applet firewall, which
offers a mechanism for controlled sharing of objects be-
tween applets (Section 8.3). The second innovation is the
class file converter, which reduces the amount of space
needed to represent loaded classes (Section 8.4). We then
revisit byte code verification in the specific setting of the
JCVM.

8.1 Java Card Core Semantics

Attali et al. [15] leverage the Centaur tool suite to build a
programming environment for Java Card. Java Card pro-
grams can be entered using a syntax directed editor, which
knows for example which methods must be implemented
by an applet. This helps Java Card programmers over the
initial hurdle of getting to know the details of Java Card.
The programming environment is able to interpret Java
Card programs. The novelty is in the analyzer, which ex-
tracts the APDU commands from a Java Card program.
The analyzer then generates a terminal application, which
is able to send the required APDU commands to the sim-
ulated Java Card. This enables developers to explore the
behaviour of their applets at a reasonably high level of
abstraction. The paper does not explain how the APDU
analysis works. The tool does not cope with some of the
extensions that Java Card offers over Java, such as trans-
actions, and object sharing.

8.2 JCVM Core Semantics

Hartel et al. [84] provide a complete specification of a
precursor to the JCVM, the Java Secure Processor (JSP).
The JSP subset excludes multi-threading, garbage collec-
tion and exception handling, mainly because the limited
resources on a smart card would not be able to support
these features. The specifications have been validated us-
ing the LETOS tool [83].

An interesting methodological point to note is that the
JSP and also the JCVM were designed essentially by start-
ing from the full JVM, and then cutting back unwanted
features. The newer KVM [169] on the other hand has
been designed from scratch, adding features as required.
This latter method is more likely to yield a coherent re-
sult and is therefore recommended [172]. The developers
of the picoPERC version of the JVM take a different and
promising looking approach. They offer a core VM (still
requiring 64KB) and provide tools to add further func-

tionality to the core VM. Unfortunately, no details are
provided in the paper [133].

8.3 Applet Firewall

In Java Card the only entity that can ‘own’ anything is
a context. A context is associated with a package; con-
texts are unique. The applets defined within a package
are owned by the context of the package. All objects cre-
ated by an applet are also owned by the context of (the
package of) the applet. The Java Card Runtime Environ-
ment (JCRE) is represented by a pseudo context, which
is the owner of any objects not created by an applet (i.e.
system objects).

Objects owned by the same context may be shared
freely. Objects owned by different contexts can only be
shared if the sharable interface object protocol, which we
explain below, is followed. Ownership is thus a relation
between contexts and objects. It would have been more
natural to develop an ownership relation between objects,
but that has not been the choice of the Java Card design-
ers.

In addition to the notion of ownership, Java Card de-
fines the notion of object access. An applet may grant
another applet access, again subject to the sharable in-
terface object protocol. An owner may invoke methods
on an owned object, read and write fields etc. An applet
that has access to a shared object (i.e. an object owned by
someone else) may invoke methods on the shared object,
but the applet may not access fields of the shared object.

The sharable interface object protocol works as follows.
Suppose that a server applet wishes to grants a client
applet access to an object owned by the server. The server
must 1) define a new public interface (I) that extends
the standard Java Card interface Sharable, 2) define a
class (C) that implements the interface I, and 3) create
an object SIO of class C.

The client identifies the server by its Applet Identifier
(AID), and asks the JCRE for a reference to the servers
SI0 object. The JCRE then invokes a method defined by
the server, which enables the latter to decide whether to
grant or deny access to the client. If access is granted,
the JCRE returns the refence to the SIO to the client,
which can then begin to invoke methods on the object.
We have glossed over some details here [39], but it should
be apparent that the protocol is non-trivial. A formal
investigation into the properties of the protocol is thus
useful.

Motré [125] describes a formal model (using the B-
method) of the applet firewall. In the model a number
of simplifications have been made, such as the omission of
looping constructs from the JCVM component. The main
results of the work are twofold. First, the constructed
model has been verified entirely. Second, to reduce the

24

number of proof obligations that need to be discharged
during verification, it is argued that it is a good idea to
break the specification up in a number of separate B ma-
chines. Spending more effort to build a specification that
extends beyond the firewall component, and relating the
specification back to the reference implementation of Java
Card would be valuable future work.

Bieber et al. [22] use the SMV model checker to estab-
lish the conditions under which unexpected information
leaks between applets can be excluded. Their approach is
based on abstract interpretation of Java Card byte codes,
where the domain of the interpretation is a partial order
based on levels of security. Bieber et al. perform their
analysis at the byte code level, which makes it particu-
larly difficult to keep the state space sufficiently small.

8.4 Class File Conversion

Smart cards are too small to contain all the information
of Java’s class files, or the byte code verifier. Therefore,
the Java Card Architecture has a special component, the
class file converter. This component takes standard class
files and converts them into smaller called Card APplet
(CAP) files. The class file converter also implements the
byte code verifier. This means that a smart card cannot
rely on its byte code verifier to ensure that CAP files
are well formed and type correct. Instead cryptographic
techniques are used to ensure that the contents of CAP
files can be trusted.

Lanet and Requet [110] use the B-method (and the asso-
ciated toolkit ‘Atelier B’) to study one particular aspect of
the conversion from JVM to JCVM code. This is the op-
timisation that replaces JVM instructions with int type
arguments by JCVM instructions that take byte, short
or int as appropriate. Their results for a small subset
(the imperative core and method calls) of the JVM byte
codes and the corresponding JCVM byte codes include:

1. A specification of the constraints imposed by the byte
code verifier for the JVM subset.

2. A specification of the semantics of the JVM subset.
3. A specification of the semantics of the JCVM subset.

4. A proof that the specification of the JCVM subset is
a data refinement of the JVM subset.

The subset is small, and the differences between the
JCVM and the JVM are small. However, the work by
Lanet and Requet shows how the B-method can be used
successfully, and succinctly to make the proof.

The same authors use the B-method to prove the JCVM
type system sound. The idea is to specify a JCVM with
runtime type checks first. This specification is then re-
fined into a byte code verifier and a byte code interpreter

without runtime type checks. The correctness proof of
the refinement then constitutes a soundness proof of the
type system. An early paper takes a small subset of the
JCVM byte codes into account [34]. The scalability of the
method, covering about 100 different byte codes, is inves-
tigated in a later paper [154]. Even though the work is
“not representative of the tricky parts of the full instruc-
tion set”, the effort required is considerable.

Denney and Jensen [53] study an aspect that is com-
plementary to that studied by Lanet and Requet. The
former study the conversion of JVM class files to JCVM
class files by a ‘tokenisation’ process. This replaces names
in the class files by more compact representations, thus re-
ducing the size of the class files as well as speeding up the
loading process. Denney and Jensen take essentially the
same four steps as Lanet and Requet above. However,
Denney and Jensen use the Coq theorem prover to me-
chanically check their proofs. They also use an elegant
method to parameterise their operational semantics over
name resolution. Therefore, only one operational seman-
tics is required, that is abstract with respect to the actual
name resolution method, and thus common to both the
JVM and JCVM subsets.

8.5 Lightweight Byte Code Verification

A small footprint device does not have enough memory to
perform byte code verification. Sun’s split VM concept for
Java Card stipulates off-line verification, and signing the
results digitally. When loading the code, all that needs
to be checked is the signature, not the code itself. This
places considerable trust in digital signatures: once the
underlying keys are compromised, verified byte code be-
comes worthless.

Instead of a verifier based on type checking, Posegga
and Vogt [18, 146] propose to use a model checker to per-
form off-line byte code verification for smart cards. Their
argument is that a tried and tested model checker (SMV)
is easier to trust than a Java byte code verifier, but they
give no evidence for this claim. In a separate paper [77],
Posegga et al. propose to implement a tiny proof checker
on a smart card. The proof checker would then be able
to reason about trust policies set by the user. The result
appears to be somewhat disappointing, as proving the-
oremhood of some simple first order logic formulae may
take of the order of minutes.

With lightweight byte code verification, Rose and
Rose [156] do not wish to rely on digital signatures for the
safety of byte code verification on smart cards. Instead
they use Necula and Lee’s proof carrying code method
to ‘split’ the byte code verifier as follows. The first step
(the verification) is to reconstruct the types associated
with all local variables and stack locations of JVM code.
The second step (the certification) uses the reconstructed

25

types to check that each instruction is correctly typed.
The advantages are twofold. First, the certification pro-
cess is simple, so that it is feasible to implement it on
a smart card; the more complex verification can be car-
ried out on a host. Second, only the certification needs to
be trusted, not the verification. This makes the trusted
infrastructure smaller than in a standard Java implemen-
tation. Rose and Rose show that for a small subset of
the JVM, consisting essentially of parts of the imperative
core with method calls, certification is sound and com-
plete. This means that the separated verifier and checker
agree exactly with the original byte code verifier. The pa-
per contains some errors, which could have been avoided
if Rose and Rose had used tool support. Furthermore,
exception handling has been omitted, because it would
complicate byte code verification considerably [165].

Sun’s KVM has a footprint at least 10 times larger than
Java Card. This makes it possible to perform proper on-
line byte code verification, but on simplified (pre-verified)
class files. Indeed the Connected Limited Device version
of the KVM [170] implements byte code verification as
proposed by Rose and Rose (above). The pre-verifier re-
moves all subroutines (by inlining) and adds stack maps
to the class file. These stack maps record the types of the
locals at each branch target. The on-line verifier makes
a single linear pass through the byte codes to check type
consistency. Unfortunately, no formalisations of the KVM
byte code verifier have been reported in the literature.

Klein and Nipkow [106] prove a slight variant of
lightweight byte code verification correct using Isabelle.
Their presentation is clearer than the original by Rose
and Rose.

8.6 Discussion

Java Card is at the same time a subset of Java (due to the
omission of multi-threading, garbage collection etc), and
a super set of Java (due to the addition of a model for con-
trolled object sharing etc). Theories and tools developed
for standard Java are therefore not directly applicable to
Java Card. Special effort is required to develop tools and
theories that can cope with the added features. More se-
riously, extra efforts are required to adapt or redevelop
tools and theories to handle standard features that have
been modified for Java Card. For example class loading in
Java Card is package based as opposed to class based, and
changing final static fields of primitive types is a binary
compatible change in Java, but not in Java Card.

We believe that some of the incompatibility problems
could be avoided. For example, to specify a KVM, one
gives a configuration to determine which VM features are
supported, and which APT’s. In addition, a profile states
which additional, application domain specific API’s are
present. In a sense both the configuration and the profile

are informal specifications of how a core VM is to be ex-
tended. Theoreticians have developed efficient methods
for extending a semantics, stating the conditions under
which theorems proved about a semantics carry over to
an extension of the semantics [65]. Clearly there is scope
for applying such powerful theoretical results to the prac-
tical development of small Java implementations.

Looking to the future one might expect smart cards to
become more powerful, but at the same costs. This will
create a demand for more mainstream Java features to be
made available on Java Cards, such as garbage collection,
or a security manager. Apparently, most vendors of Java
Cards already provide a form of garbage collection. The
opportunity to create a novel, high integrity Java Card is
thus here. We believe that enough work has been done
to form a solid basis for a high integrity version of Java
Card.

9 Conclusions

Our survey indicates that the formalisation of Java is ac-
tively researched by both the programming language and
formal methods communities. The novel features of Java
have been investigated in particular. Initial studies fo-
cused on specific components in isolation of the rest of
the system, but more recent work has been attempting to
propose general frameworks encompassing several compo-
nents of the Java architecture (such as class loading, byte
code verification, preparation and reference resolution).
With reason, the formalisation has focused on the core
of the language, but garbage collection and API’s such
as RMI have almost been ignored by the community. In
the future, we would expect general frameworks including
all components of the architecture and all aspects of the
language to emerge.

A general note on Java and Java Card documentation is
that sometimes high-level concepts are expressed in low-
level terms. For example, the Java security model talks
about stack inspection, and the Java Card security model
discusses which byte codes access objects. Java program-
mers should be able to understand all relevant issues in
Java terms. We believe that with an appropriate formal-
isation of Java to hand, explanations in terms of imple-
mentation level concepts could be avoided.

Recent work on static analyses for Java optimising com-
pilers has highlighted the need for techniques to analyse
programs with dynamically loadable components. We ex-
pect this topic to be the subject of further investigation
as component-based systems and distributed development
become more prevalent.

Most formalisations are still written by hand and prop-
erties are still proved on paper. While such a methodology
has successfully identified flaws in the Java specification or
its implementation, we do not believe that manual meth-

26

ods scale up reliably to a complete formalisation of Java.
There is a need for machine-readable formalisation, which
can be analysed and reused by researchers. Furthermore,
clarity and conciseness will make formalisations more ac-
cessible to systems designers and implementors, who may
be able to give feedback. In particular, obtaining the high-
est level of certification for Java Cards requires a complete
formalisation down to a proof of implementation correct-
ness. Such tasks need automated tools, and endeavors
such as the LOOP projects are a step in the right direc-
tion. To be successful, formal specification, validation and
provably correct implementation should be considered as
a whole, rather than in separation; additionally, modular
formalisation and proof techniques would help facilitate
the separation of work between various research teams.

Formalising Java safety is a pre-requirement to build-
ing safe and secure applications. We see the need for
(semi-)automatic tools that help programmers to under-
stand the behaviour of their programs in terms of the
permissions required to control the access of data; such
tools will have to work at the source code level and with
dynamically loaded libraries in order to be useful. Equa-
tional reasoning on programs, escape analysis, models of
permissions and access control will be required. Addition-
ally, security-specific aspects, which we have not surveyed
in this paper, such as encryption and auditing, will also
have to be addressed.

Acknowledgements

The help and comments of Egon Borger, Bart Jacobs,
Robert Stark and the anonymous referees is gratefully ac-
knowledged.

References

[1] ISO/IEC 7816-4:1995. Information technology—
Identification cards—Integrated circuit(s) cards with
contacts part: Inter-Industry commands for inter-
change. Int. Standards Organization, 1995.

[2] M. Abadi. Protection in Programming-Language
Translations. In Secure Internet Programming: Se-
curity Issues for Mobile and Distributed Objects,
number 1603 in Lecture notes in Computer Science,
pages 19-34, 1999.

[3] M. Abadi, M. Burrows, B. Lampson, and
G. Plotkin. A calculus for access control in dis-
tributed systems. ACM Transactions on Pro-
gramming Languages and Systems, 15(4):706-734,
September 1993.

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

E. Abrahdm-Mumm and F. S. de Boer. Proof-
Outlines for threads in Java. In C. Palamidessi, edi-
tor, 11th. Int. Conf. on Concurrency Theory (CON-
CUR), LNCS 1877, pages 229-242, University Park,
Pennsylvania, Aug 2000. Springer-Verlag, Berlin.

J.-R. Abrial. The B-Book: Assigning Programs to
Meanings. Cambridge Univ. Press, UK, 1996.

O. Agesen, D. Detlefs, and J. E. B. Moss. Garbage
collection and local variable type-precision and live-
ness in Java virtual machines. In Programming Lan-
guage Design and Implementation (PLDI), pages
269-279, Montreal, Canada, Jun 1998. ACM press,
New York.

O. Agesen, S. N. Freund, and J. C. Mitchell. Adding
type parameterization to the Java(TM) language.
In SIGPLAN Conf. on Object-Oriented Program-
ming, Systems, Languages & Applications (OOP-
SLA), pages 49-65. ACM SIGPLAN NOTICES,
32(10), Oct 1997.

M. Ahamad, R. Bazzi, R. John, P. Kohli, and
G. Neiger. The power of processor consistency.
In 5th Annual ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA 93), pages 251—
260, Velen, Germany, June 1993. ACM, New York.

J. Aldrich, C. Chambers, E. Sirer, and S. Eggers.
Static analyses for eliminating unnecessary synchro-
nization from Java programs. In In Static Analysis
Symposium (SAS’99), pages 19-38, 1999.

J. Alves-Foss and F. S. Lam. Dynamic denotational
semantics of Java. In J. Alves-Foss, editor, Formal
Syntax and Semantics of Java, LNCS 1523, pages
201-240. Springer-Verlag, Berlin, 1999.

T. Anderson and R. W. Witty. Safe programming.
BIT, 18:1-8, 1978.

G. Antoniu, L. Bougé, P. Hatcher, M. MacBeth,
K. McGuigan, and R. Namyst. Compiling multi-
threaded Java bytecode for distributed execution.
In Furo-Par 2000: Parallel Processing, volume 1900
of Lect. Notes in Comp. Science, pages 1039-1052,
Munchen, Germany, August 2000. Springer-Verlag.

Y. Aridor, M. Factor, and A. Teperman. cJVM:
A single system image of a JVM on a cluster.
In International Conference on Parallel Process-
ing (ICPP’99), pages 21-24, Fukushima, Japan,
September 1999.

Y. Aridor, M. Factor, A. Teperman, T. Eilam, and
A. Schuster. A high performance cluster JVM pre-
senting a pure single system image. In Conf. Java

27

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Grande, pages 168-177, San Francisco, CA USA,
Jun 2000. ACM, New York.

I. Attali, D. Caromel, C. Courbis, L. Henrio, and
H. Nilsson. Smart tools for Java cards. In
J. Domingo-Ferrer, D. Chan, and A. Watson, ed-
itors, 4th Int. IFIP wg 8.8 Conf. Smart card re-
search and advanced application (CARDIS), pages
155-174, Bristol, UK, Sep 2000. Kluwer Academic
Publishers, Boston.

I. Attali, D. Caromel, and M. Russo. A
formal executable semantics for Java. In
OOPSLA’98 Workshop on Formal Underpin-
nings of Java (FUJ), Vancouver, Canada, Nov
1998. www-dse.doc.ic.ac.uk/ “sue/ oopsla/
cfp.html.

D. Balfanz and E. W. Felten. A Java filter. Techni-
cal Report 567-97, Dept. of Compt. Science, Prince-
ton Univ., Sep 1997.

D. Basin, S. Friedrichs, J. Posegga, and H. Vogt.
Java bytecode verification using model checking. In
R. Alur and T. Henzinger, editors, 11th Int. Conf.
on Computer Aided Verification (CAV), LNCS
1633, pages 491-494, New Brunswick, NJ, 1999.
Springer-Verlag, Berlin.

P. Bertelsen. Semantics of Java byte code. Techni-
cal report, Technical Univ. of Denmark, Mar 1997.
www.dina.kvl.dk/ “pmb/.

P. Bertelsen. Dynamic semantics of Java byte code.
Future Generation Computer Systems, 16(7):841-
850, May 2000.

P. Bertelsen and S. Anderson. The semantics
of a core language derived from Java. Techni-
cal report, Technical Univ. of Denmark, Sep 1996.
www.dina.kvl.dk/ “pmb/.

P. Bieber, J. Cazin, V. Wiels, G. Zanon, P. Gi-
rard, and J.-L. Lanet. Electronic purse applet cer-
tification. In S. Schneider and P. Ryan, editors,
Workshop on secure architectures and information
flow, Royal Holloway, London, Dec 1999. Electron-
ics Notes in Theoretical Computer Science, 32.

G. Bigliardi and C. Laneve. A type system for JVM
threads. Technical Report UBLCS-2000-06, Univer-

sity of Bologna, jun 2000.

J. Bogda and U. Holzle. Removing unnecessary
synchronizations in Java. In SIGPLAN Conf. on
Object-Oriented Programming, Systems, Languages
& Applications (OOPSLA), pages 34-46, Denver,
Colorado, December 1999.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

E. Borger and W. Schulte. Defining the Java vir-
tual machine as platform for provably correct Java
compilation. In L. Brim, J. Gruska, and J. Zlatuska,
editors, 23rd Int. Symp. Mathematical Foundations
of Computer Science (MFCS) LNCS 1450, pages
17-35, Brno, Czech Republic, Aug 1998. Springer-
Verlag, Berlin.

E. Borger and W. Schulte. Initialization problems
for Java. Software Concepts and Tools, 20(4):175—
179, 1999.

E. Borger and W. Schulte. A programmer friendly
module definition of the semantics of Java. In
J. Alves-Foss, editor, Formal Syntar and Seman-
tics of Java, LNCS 1523, pages 353-404. Springer-
Verlag, Berlin, 1999.

E. Borger and W. Schulte. Modular design for the
Java virtual machine architecture. In E. Borger,
editor, Architecture Design and Validation Methods,
pages 297-357. Springer-Verlag, Berlin, 2000.

E. Borger and W. Schulte. A practical method for
specification and analysis of exception handling — a
Java/JVM case study. IEEE Transactions on soft-
ware engineering, 26(9):872-887, Sep 2000.

P. Borras, D. Clément, Th. Despeyroux, J. In-
cerpi, G. Kahn, B. Lang, and V. Pascual. Centaur:
the system. In Third Annual Symp. on Software
Development Environments (SDE3), pages 1424,
Boston, USA, 1988. ACM, New York.

G. Bracha. A Critique of Security and Dynamic
Loading in Java: A Formalisation. Sun Java
Software, 1999. http:// java.sun.com/ people/
gbracha/ critique-jmt.html.

G. Bracha, M. Odersky, D. Stoutamire, and
P. Wadler. GJ: Extending the Java programming
language with type parameters. Technical report,
Bell Labs, Lucent Technologies, Mar 1998. http://
cm.bell-labs.com/ cm/ cs/ who/ wadler/ pizza/

gj/.

R. Cartwright and G. L. Steele Jr. Compatible
genericity with run-time types for the Java pro-
gramming language. In SIGPLAN Conf. on Object-
Oriented Programming, Systems, Languages & Ap-
plications (OOPSLA), pages 201-215, Vancouver,
Canada, Nov 1998.

L. Casset and J.-L. Lanet. How to formally specify
the Java bytecode semantics using the B method.
In Formal techniques for Java Programs, ECOOP
Workshops, pages 104-105, 1999.

28

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

P. Cenciarelli. Towards a modular denotational se-
mantics of Java. In Formal techniques for Java Pro-
grams, ECOOP Workshops, page 105, 1999.

P. Cenciarelli, A. Knapp, B. Reus, and M. Wirs-
ing. An event based structural operational seman-
tics of multi threaded Java. In J. Alves-Foss, editor,
Formal Syntax and Semantics of Java, LNCS 1523,
pages 157—-200. Springer-Verlag, Berlin, 1999.

National Computer Security Center. Trusted Com-
puter System Ewvaluation Criteria (Orange Book).
U. S. Dept. of Defense, Dec 1985. www.boran.com/
security/ tcsec.html.

X. Chen and V. Allan. MultiJav: A distributed
shared memory system based on multiple Java vir-
tual machines. In Conference on Parallel and

Distributed Processing Techniques and Applications
(PDTA’98), Las Vegas, Nevada, June 1998.

Z. Chen. Java Card Technology for Smart Cards:
Architecture and programmer’s guide. Addison Wes-
ley, Reading, Massachusetts, 2000.

J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and
S. Midkiff. Escape analysis for Java. In SIGPLAN
Conf. on Object-Oriented Programming, Systems,
Languages & Applications (OOPSLA), pages 1-19,
Denver, Colorado, December 1999.

A. Coglio and A. Goldberg. Type Safety in the JVM:
Some Problems in JDK 1.2.2 and Proposed Solu-
tions. Kestrel Institute, 3260 Hillview Avenue, Palo
Alto, CA 94304, 2000. www.kestrel.edu/ java..

A. Coglio, A. Goldberg, and Z. Qian. Toward a
Provably-Correct implementation of the JVM byte-
code verifier. In OOPSLA’98 Workshop on Formal
Underpinnings of Java (FUJ), Vancouver, Canada,
Nov 1998. www-dse.doc.ic.ac.uk/ “sue/ oopsla/
cfp.html.

R. M. Cohen. The defensive Java virtual machine
specification version 0.5. Technical report, Com-
putational Logic Inc, Austin, Texas, May 1997.
www.cli.com/.

R. M. Cohen. Formal underpinnings of Java: Some
requirements. In OOPSLA’98 Workshop on Formal
Underpinnings of Java (FUJ), Vancouver, Canada,
Nov 1998. www-dse.doc.ic.ac.uk/ “sue/ oopsla/
cfp.html.

C. Colby, P. Lee, G. C. Necula, F. Blau, K. Cline,
and M. Plesko. A certifying compiler for Java. In
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 95-107,

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Vancouver, British Columbia, Canada, Jun 2000.
ACM, New York.

J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach,
C. S. Pasareanu, Robby, and H. Zheng. Bandera:
extracting finite-state models from Java source
code. In 22nd international conference on on Soft-

ware engineering, pages 439-448, Limerick Ireland,
Jun 2000. ACM, New York.

E. Coscia and G. Reggio. An operational seman-
tics for Java. Technical report, DISI, Univ. of Gen-
ova, Italy, Nov 1998. www.disi.unige.it/person/
CosciaE/ publications.html.

E. Coscia and G. Reggio. A proposal for a se-
mantics of a subset of Multi-Threaded “good” Java
programs. In OOPSLA’98 Workshop on Formal
Underpinnings of Java (FUJ), Vancouver, Canada,
Nov 1998. www-dse.doc.ic.ac.uk/ “sue/ oopsla/
cfp.html.

K. Crary and S. Weirich. Resource bound
certification. In 27th Int. Conf. Principles of
programming languages (POPL), pages 184-198,
Boston, Massachusetts, Jan 2000. ACM, New York.
www.cs.cmu.edu/ afs/ cs/ user/ crary/ www/
papers/.

D. Dean. The security of static typing with dynamic
linking. In 4th Int. Conf. Computer and Communi-
cations Security, pages 18-27, Zurich, Switzerland,
Apr 1997. ACM, New york.

D. Dean, E. W. Felten, and D. S. Wallach. Java
security: From HotJava to netscape and beyond. In
Symp. on Security and privacy, pages 190-200, Oak-
land, California, May 1996. IEEE Computer Society
Press, Los Alamitos, California.

C. Demartini, R. Iosif, and R. Sisto. Modeling and
validation of Java multithreading applications using
SPIN. In 4th Spin workshop, Paris, France, Nov
1998. http:// netlib.bell-labs.com/ netlib/
spin/ ws98/.

E. Denney and Th. Jensen. Correctness of Java
card method lookup via logical relations. In
E. Smolka, editor, 9th European Symp. on program-
ming (ESOP), LNCS 1782, pages 104-118, Berlin,
West Germany, Mar 2000. Springer-Verlag, Berlin.

D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B.
Saxe. Extended static checking. SRC Research re-
port 159, Compaq Systems Research Center, Palo
Alto, California, Dec 1998.

29

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

S. Diehl. A formal introduction to the compila-

tion of Java. Software—practice and exrperience,
28(3):297-327, Mar 1998.

S. Drossopoulou. Towards an abstract model of Java
dynamic linking and verification. In ACM SIG-
PLAN Workshop on Types in Compilation (TIC),
page Paper 19, Montreal, Canada, Sep 2000. Com-
puter Science Department, Carnegie Mellon Univer-
sity.

S. Drossopoulou and S. Eisenbach. Java is type
safe — probably. In M. Aksit and S. Matsuoka,
editors, 11th European Conference on Object Ori-
ented Programming, ECOOP, LNCS 1241, pages
389-418, Jyviaskyla, Finland, Jun 1997. Springer
Verlag, Berlin.

S. Drossopoulou and S. Eisenbach. Describing the
semantics of Java and proving type soundness. In
J. Alves-Foss, editor, Formal Syntax and Semantics
of Java, LNCS 1523, pages 41-82. Springer-Verlag,
Berlin, 1999.

S. Drossopoulou, S. Eisenbach, and D. Wragg D.
A fragment calculus - towards a model of separate
compilation, linking and binary compatibility. In
Logic in Computer Science (LICS), pages 147156,
Trento, Italy, Jul 1999. IEEE Computer Society
Press.

S. Drossopoulou, S. Eisenbach, and S. Khurshid. Is
the Java type system sound? Theory and practice
of object systems, 5(1):3-24, 1999.

S. Drossopoulou and T. Valkevych. Java Ezceptions
Throw no Surprises. Department of Computing, Im-
perial College, London, 2000.

S. Drossopoulou, D. Wragg, and S. Eisenbach. What
is Java binary compatibility? In SIGPLAN Conf.
on Object-Oriented Programming, Systems, Lan-
guages & Applications (OOPSLA), pages 341-361,
Vancouver, Canada, Oct 1998. Sigplan Notices,
33(10).

C. Flanagan and S. Freund. Type-based race detec-
tion for java. In Conference on Program Language
Design and Implementation (PLDI’2000), pages
219-232, Vancouver, Canada, June 2000.

M. Flatt, S. Krisnamurthi, and M. Felleisen. A
programmer’s reduction semantics for classes and
mixins. In J. Alves-Foss, editor, Formal Syntaz
and Semantics of Java, LNCS 1523, pages 241-270.
Springer-Verlag, Berlin, 1999.

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

W. J. Fokkink and C. Verhoef. A conservative
look at operational semantics with variable binding.
Information and Computation, 146(1):24-54, 1998.

http:// adam.wins.uva.nl/ “x/ conimex.ps.

P. W. L. Fong and R. D. Cameron. Proof link-
ing: An architecture for modular verification of
dynamically-linked mobile code. In 6th SIGSOFT
Int. Symposium on the Foundations of Software En-
gineering, pages 222-230, Orlando, Florida, Nov
1998. ACM press, New York.

S. N. Freund. The costs and benefits of Java byte-
code subroutines. In OOPSLA’98 Workshop on
Formal Underpinnings of Java (FUJ), Vancouver,
Canada, Nov 1998. www-dse.doc.ic.ac.uk/ “sue/
oopsla/ cfp.html.

S. N. Freund and J. C. Mitchell. A type system
for object initialization in the Java bytecode lan-
guage. In Conf. on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA),
pages 310-328, Vancouver, Canada, Oct 1998. ACM
Press, New York.

S. N. Freund and J. C. Mitchell. A formal framework
for the Java bytecode language and verifier. In SIG-
PLAN Conf. on Object-Oriented Programming, Sys-
tems, Languages & Applications (OOPSLA), pages
147-166, Denver, Colorado, December 1999.

S. N. Freund and J. C. Mitchell. A type system for
object initialization in the Java bytecode language.
ACM Transactions on Programming Languages and
Systems, 21(6):1196-1250, November 1999.

J. S. Fritzinger and M. Mueller. Java Security.
Sun Micro systems Inc, Mountain View, California,
1996.

E. Gagnon and L. Hendren. Intra-procedural infer-
ence of static types. Technical Report 1999-1, Sable
Group, McGill University, Montréal, Canada, Mar
1999. www.sable.mcgill.ca.

S. Glesner and W. Zimmermann. Using many-
sorted natural semantics to specify and generate se-
mantic analysis. In TC2 WG2.4 Working Confer-
ence on Systems Implementation 2000: Languages,
Methods and Tools, pages 249—-62. Chapman & Hall,
London, 1998.

A. Goldberg. A specification of Java loading and
bytecode verification. In 5th Conf. Computer and
Communications Security, pages 49-58, San Fran-
cisco, California, Nov 1998. ACM Press, New York.
www.kestrel.edu/ HTML/ people/ goldberg/.

30

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

L. Gong. Secure Java class loading. IEEE-Internet-
Computing, 2(6):56-61, Nov /Dec. 1998.

A. Gontmaker and A. Schuster. Java consistency:
Non-operational characterizations for Java memory
behavior. ACM Transactions on Computer Systems,
page to appear, 2000.

R. Goré, J. Posegga, A. Slater, and H. Vogt.
card%P: Automated deduction on a smart card.
In Joint Australian Artificial Intelligence Conf.,
LNAI Brisbane, Australia, Jul 1998. Springer Ver-
lag, Berlin.

J. Gosling, B. Joy, and G. Steele. The Java Lan-
guage Specification. Addison Wesley, Reading, Mas-
sachusetts, 1996.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The
Java Language Specification. Addison Wesley, Read-
ing, Massachusetts, second edition, 2000.

Y. Gurevich. Evolving algebras 1993: Lipari guide.
In E. Borger, editor, Specification and Validation
Methods, pages 9-36. Oxford University Press, 1995.

J. D. Guttman and M. Wand, editors. VLISP:
A Verified Implementation of Scheme. Kluwer,
Boston, 1995. Originally published as a special dou-
ble issue of the journal Lisp and Symbolic Compu-
tation (Volume 8, Issue 1/2).

M. Hagiya and A. Tozawa. On a new method for
dataflow analysis of Java virtual machine subrou-
tines. In G. Levi, editor, Int. Static Analysis Symp.
(SAS), LNCS 1503, pages 17-32, Pisa, Italy, Sep
1998. Springer-Verlag, Berlin.

P. H. Hartel. LETOS - a lightweight execu-
tion tool for operational semantics. Software—
practice and experience, 29(15):1379-1416, Sep
1999. www.ecs.soton.ac.uk/ “phh/ letos.html.

P. H. Hartel, M. J. Butler, and M. Levy. The op-
erational semantics of a Java secure processor. In
J. Alves-Foss, editor, Formal Syntar and Seman-
tics of Java, LNCS 1523, pages 313-352. Springer-
Verlag, Berlin, 1999. www.dsse.ecs.soton.ac.uk/
techreports/ 98-1.html.

P. H. Hartel and E. de Jong. A program-
ming and a modelling perspective on the evalu-
ation of Java card implementations. In I. At-
tali and T. Jensen, editors, Java Card Workshop
Proceedings, page to appear, Cannes, France, Sep
2000. www.dsse.ecs.soton.ac.uk/ techreports/
2000-8.html.

[86] K. Havelund and T. Pressburger. Model check-
ing Java programs using pathfinder. Software Tools
for Technology Transfer, 2(4):to appear, Mar 1999.
http:// ase.arc.nasa.gov/ havelund/.

[87] B. Hayes. Finalization in the collector interface.
In Proc. 1992 International Workshop on Memory
Management, pages 277-298, Saint-Malo (France),
September 1992. Springer-Verlag.

[88] G. Hilderink, J. Broeking, W. Vervoort, and
A. Bakkers. Communicating Java threads. In 20th
World Occam and Transputer User Group Techni-
cal Meeting, pages 48—76, Enschede The Nether-
lands, Apr 1997. IOS Press, The Netherlands.

www.rt.el.utwente.nl/ javapp/.

[89] G. J. Holzmann. The model checker SPIN. IEEE
Transactions on software engineering, 23(5):279-
295, 1997. http:// cm.bell-labs.com/ cm/ cs/
who/ gerard/.

[90] M. Huisman. Reasoning about Java progams in
higher order logic with PVS and Isabelle. PhD the-
sis, Univ. of Nijmegen, The Netherlands, Feb 2001.

[91] M. Huisman, B. Jacobs, and J. van den Berg. A
case study in class library verification: Java’s vector
class. Software tools for technology transfer, page to
appear, 2001.

[92] J. Hummel, A. Azavedo, D. Kolson, and A. Nicolau.
Annotating the Java bytecodes in support of opti-
mization. Concurrency: Practice and Ezperience,
9(11):1003-1016, Nov 1997. www.eecs.uic.edu/
~jhummel/ papers.html.

[93] A. Igarashi and B. Pierce. On inner classes. In 7th
Int. Workshop on Foundations of Object-Oriented
Languages (FOOL), Boston Massachusetts, Jan
2000. www.cs.williams.edu/ “kim/ FOOL/
FOOL7 .html.

[94] A.Igarishi, B. Pierce, and P. Wadler. Featherweight
Java: A minimal core calculus for Java and GJ. In
Conf. on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), pages 132—
146, Denver, Colorado, Oct 1999. ACM Press, New
York.

[95] ITSEC. Evaluation criteria for IT security — part 3:
Assurance of IT systems. INFOSEC central office,
Brussels, Belgium, version 1.2 edition, 1993.

[96] B. Jacobs. A formalisation of Java’s exception mech-
anism. In 10th FEuropean Symp. on programming
(ESOP), LNCS, page to appear, Genoa, Italy, Apr
2001. Springer-Verlag, Berlin.

31

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

B. Jacobs and E. Poll. A monad for basic Java se-
mantics. In T. Rus, editor, Algebraic Methodology
and Software Technology (AMAST), LNCS 1816,
pages 150-164. Springer-Verlag, 2000.

B. Jacobs and E. Poll. A logic for the Java modeling
language jml. In Fundamental Approaches to Soft-
ware Engineering (FASE), LNCS, page to appear,
Genoa, Italy, Apr 2001. Springer-Verlag, Berlin.

B. Jacobs, J. van den Berg, M. Huisman, M. van
Berkum, U. Hensel, and H. Tews. Reasoning about
classes in Java (preliminary report). In Conf. on
Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA), pages 329-340, Van-
couver, Canada, Oct 1998. ACM Press, New York.

T. Jensen, D. Le Metayer, and T. Thorn. Security
and dynamic class loading in Java: A formalisation.
In Int. Conf. on Computer Languages, pages 4-15.
IEEE Comput. Soc. Press, Los Alamitos, California,
1998.

T. Jensen, D. Le Metayer, and T. Thorn. Verifi-
cation of control flow based security properties. In
Symposium on Security and Privacy, pages 89103,
Oakland, California, May 1999. IEEE Comput. Soc,
Los Alamitos, California.

M. Jones. The functions of Java bytecode.
In OOPSLA’98 Workshop on Formal Underpin-
nings of Java (FUJ), Vancouver, Canada, Nov
1998. www-dse.doc.ic.ac.uk/ “sue/ oopsla/
cfp.html.

L. Kassab and S. Greenwald. Towards formaliz-
ing the Java security architecture in JDK 1.2. In
J.-J. Quisquater, Y. Deswarte, C. Meadows, and
D. Gollmann, editors, Furopean Symposium on Re-
search in Computer Security (ESORICS), LNCS
1485, pages 191-207, Louvain-la-Neuve, Belgium,
Sep 1998. Springer-Verlag, Berlin.

M. Kaufmann and J. S. Moore. ACL2: An industrial
strength version of nqthm. In 17th Annual Conf.
on Computer Assurance (COMPASS), pages 23-34,
Gaithersburg, MD, Jun 1996. IEEE Computer So-
ciety Press, Los Alamitos, California.

T. Kistler and M. Franz. A Tree-Based alternative
to Java Byte-Codes. Technical Report 96-58, De-
part. of Information and Computer Science, Univ.
of California, Irvine, Dec 1996.

G. Klein and T. Nipkow. Verified lightweight byte-
code verification. In ECOOP 2000 Workshop on
Formal Techniques for Java Programs, 2000.

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

T. B. Knoblock and J. Rehof. Type elaboration
and subtype completion for Java bytecode. In 27th
Int. Conf. Principles of programming languages
(POPL), pages 228-242, Boston, Massachusetts,
Jan 2000. ACM, New York.

D. Kozen. Efficient Code Certification. Cornell
Univ., Jan 1998. www.cs.cornell.edu/ kozen/
papers/ cert.ps.

J.-L. Lanet. Are smart cards the ideal domain for
applying formal methods? In International Confer-
ence of Z and B Users (ZB), LNCS 1878, pages 363
374, York, UK, Sep 2000. Springer Verlag, Berlin.

J.-L. Lanet and A. Requet. Formal proof of smart
card applets correctness. In J.-J. Quisquater and
B. Schneier, editors, 8rd Int. Conf. Smart card re-
search and advanced application (CARDIS), LNCS
1820, pages 8597, Louvain la Neuve, Belgium, Sep
1998. Springer-Verlag, Berlin.

G. T. Leavens, A. L. Baker, and C. Ruby. JML: A
notation for detailed design. In H. Kilov, B. Rumpe,
and I. Simmonds, editors, Behavioral Specifications
of Business and Systems, pages 175-188. Kluwer
Academic Publishers, Boston/Dordrecht/London,
1999.

K. R. M. Leino, J. B. Saxe, and R. Stata. Checking
Java programs via guarded commands. SRC Re-
search report 1999-002, Compaq Systems Research
Center, Palo Alto, California, May 1999.

S. Liang and G. Bracha. Dynamic class loading in
the Java virtual machine. In SIGPLAN Conf. on
Object-Oriented Programming, Systems, Languages
& Applications (OOPSLA), pages 36—44, Vancou-
ver, Canada, Oct 1998. Sigplan Notices, 33(10).

T. Lindholm and F. Yellin. The Java Virtual Ma-
chine Specification. Addison Wesley, Reading, Mas-
sachusetts, 1996.

J. Maessen, Arvind, and X. Shen. Improving the
Java memory model using CRF. In SIGPLAN
Conf. on Object-Oriented Programming, Systems,
Languages € Applications (OOPSLA), pages 1-
12, Minneapolis, Minnesota, Oct 2000. ACM, New
York.

D. Malkhi and M. Reiter. Secure execu-
tion of Java applets using a remote playground.
IEEE Transactions on Software Engineering, 2000.
www.research.att.com/ “dalia/.

J. Manson and W. Pugh. Semantics of multi-
threaded Java. Technical report, Dept of Computer
Science, University of Maryland, January 2001.

32

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

G. McGraw and E. W. Felten. Securing Java: Get-
ting down to business with mobile code. John Wiley
& Sons, Chichester, UK, second edition, 1999.

K. L. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, Boston, Jul 1993.

M. Montgomery and K. Krishna. Secure object
sharing in Java card. In USENIX Workshop on
Smartcard Technology (Smartcard ’99), pages 119—
127, Chicago, Illinois, 1999. USENIX Assoc, Berke-
ley, California.

J. S. Moore. Proving theorems about Java-like byte
code. In E.-R. Olderog and B. Steffen, editors, Cor-
rect System Design — Recent Insights and Advances,
LNCS 1710, pages 139-162. Springer-Verlag, Berlin,
1999.

J. E. Moreira, S. P. Midkiff, and M. Gupta. From
flop to megaflops: Java for technical computing.
ACM Transactions on Programming Languages and
Systems, 22(2):265-295, Mar 2000.

G. Morrisett, M. Felleisen, and R. Harper. Abstract
models of memory managemen. In Conference on
Functional Programming Languages and Computer
Architecture (FPCA’95), pages 66-77, La Jolla, CA,
June 1995.

G. Morrisett, D. Tarditi, P. Cheng, C. Stone,
R. Harper, and P. Lee. The TIL/ML compiler:
Performance and safety through types. In Flirst
Annual Workshop on Compiler Support for System
Software, Tucson. Arizona, Feb 1996.

S. Motré. Formal model and implementation of the
Java card dynamic security policy. In Approches
Formelles dans I’Assistance au Développement de
Logiciels - AFADL’2000, Grenoble, France, Jan
2000. http:// www-1sr.imag.fr/ afadl.

A. Myers, J. Bank, and B. Liskov. Parametrized
types for Java. In 2/th Principles of programming
languages (POPL), pages 132-145, Paris, France,
Jan 1997. ACM, New York.

G. C. Necula. Proof-carrying code. In 24th
Int. Conf. Principles of programming languages
(POPL), pages 106-119, Paris, France, Jan 1997.
ACM, New York.

G. C. Necula and P. Lee. The design and im-
plementation of a certifying compiler. In Pro-
gramming Language Design and Implementation
(PLDI), pages 333-344, Montreal, Canada, Jun
1998. ACM, New York.

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

G. C. Necula and P. Lee. Efficient representation
and validation of proofs. In 13th Logic in Computer
Science (LICS), Indianapolis, Indiana, Jun 1998.
IEEE Computer Society Press. www.cs.cmu.edu/
“necula/ 1ics98.ps.gz.

G. C. Necula and P. Lee. Safe, untrusted agents us-
ing Proof-Carrying code. In G. Vigna, editor, Mo-
bile Agents and Security, LNCS 1419, pages 61-91.
Springer-Verlag, Berlin, Jan 1998.

G. C. Necula and S. P. Rahul. Oracle-Based check-
ing of untrusted software. In 28th Int. Conf. Prin-
ciples of programming languages (POPL), page to
appear, London, UK, Jan 2001. ACM, New York.

H. R. Nielson and F. Nielson. Semantics with appli-
cations: A formal introduction. John Wiley & Sons,
Chichester, UK, 1991.

K. Nilsen. picoPERC: a small-footprint dialect of
Java. Dr.-Dobb’s Journal, 23(3):50-54, Mar 1998.

T. Nipkow and D. von Oheimb. Javay;gp; is Type-
Safe — definitely. In 25th Int. Conf. Principles
of programming languages (POPL), pages 161-170,
San Diego, California, Jan 1998. ACM, New York.

T. Nipkow, D. von Oheimb, and C. Pusch. pJava:
Embedding a programming language in a theorem
prover. In F. L. Bauer and R. Steinbriiggen, edi-
tors, Foundations of Secure Computation. Proc. Int.
Summer School Marktoberdorf, pages 117-144. 10S
Press, 2000.

R. O’Callahan. A simple, comprehensive type
system for Java bytecode subroutines. In 26th
Int. Conf. Principles of programming languages
(POPL), pages 70-78, San Antonio, Texas, Jan
1999. ACM, New York.

M. Odersky and P. Wadler. Pizza into Java : Trans-
lating theory into practice. In 24th Int. Conf. Prin-
ciples of programming languages (POPL), pages
146-159, Paris, France, Jan 1997. ACM, New York.

M. Oestreicher. Transactions in Java card. In
15th Annual Computer Security Applications Con-
ference (ACSAC), pages 291-298, Phoenix, Ari-
zona, Dec 1999. IEEE Comput. Soc, Los Alami-
tos, California. www.acsac.org/ 1999/ abstracts/
thu-b-1500-marcus.html.

M. Oestreicher and K. Krishna. Object lifetimes
in Java card. In USENIX Workshop on Smartcard
Technology (Smartcard ’99), pages 129-37, Chicago,
Illinois, 1999. USENIX Assoc, Berkeley, California.

33

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

National Institute of Standards and Technology.
Common Criteria for Information Technology Se-
curity Evaluation. U. S. Dept. of Commerce, Na-
tional Bureau of Standards and Technology, Aug
1999. http:// csrc.nist.gov/ cc/.

S. Owre, J. Rushby, N. Shankar, and F. von Henke.
Formal verification for Fault-Tolerant architectures:
Prolegomena to the design of PVS. IEEE Transac-
tions on Software Engineering, 21(2):107-125, Feb
1995.

L. C. Paulson. Isabelle: a generic theorem prover,
LNCS 828. Springer-Verlag, New York, 1994.

A. Poetzsch-Heffter and P. Muller. A programming
logic for sequential Java. In 8th European Symp. on
programming (ESOP), LNCS 1576, pages 162-176.
Springer-Verlag, Berlin, Mar 1999.

E. Poll, J. van den Berg, and B. Jacobs. Spec-
ification of the JavaCard API in JML. In
J. Domingo-Ferrer and A. Watson, editors, Fourth
Smart Card Research and Advanced Application
Conference (CARDIS), pages 135-154, Bristol,
UK, Sep 2000. Kluwer Academic Publishers,
Boston/Dordrecht/London.

E. Poll, J. van den Berg, and B. Jacobs. For-
mal specification of the JavaCard API in JML: the
APDU class. Computer Networks Magazine, page
to appear, 2001.

J. Posegga and H. Vogt. Byte code verification
for Java smart cards based on model checking. In
J.-J. Quisquater, Y. Deswarte, C. Meadows, and
D. Gollmann, editors, Furopean Symposium on Re-
search in Computer Security (ESORICS), LNCS
1485, pages 175-190, Louvain-la-Neuve, Belgium,
Sep 1998. Springer-Verlag, Berlin.

W. Pugh. The Java memory model is fatally flawed.
Concurrency: Practice and Ezperience, 12(1):1-11,
2000.

C. Pusch. Formalizing the Java virtual machine
in isabelle/HOL. Technical report TUM-I9816, In-
stitut fiir Informatik, Technische Univ. Miinchen,
1998.

C. Pusch. Proving the soundness of a Java byte-
code verifier specification in isabelle/HOL. In
W. Rance-Cleaveland, editor, 5th Tools and Al-
gorithms for Construction and Analysis of Sys-
tems (TACAS), LNCS 1579, pages 89-103, Am-
sterdam, The Netherlands, 1999. Springer Ver-
lag, Berlin. www4.informatik.tu-muenchen.de/
“pusch/ pubs/ TACAS99.html.

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

Z. Qian. A formal specification of Java(tm) vir-
tual machine instructions objects, methods and sub-
routines. In J. Alves-Foss, editor, Formal Syntaz
and Semantics of Java, LNCS 1523, pages 271-312.
Springer-Verlag, Berlin, 1999.

Z. Qian. Standard Fizpoint Iteration for Java Byte-
code Verification. Kestrel Institute, Palo Alto, CA
94304, 1999.

Z. Qian, A. Goldberg, and A. Coglio. A formal
specification of JavaTM class loading. In SIGPLAN
Conf. on Object-Oriented Programming, Systems,
Languages & Applications (OOPSLA), pages 325-
336, Minneapolis, Minnesota, Oct 2000. ACM, New
York.

D. Rémy. Records and variants as a natural exten-
sion of ML. In 16th Int. Conf. Principles of pro-
gramming languages (POPL), pages 77-88, Austin,
Texas, Jan 1989. ACM, New York.

A. Requet. A B model for ensuring soundness
of the Java card virtual machine. In S. Gnesi,
I. Schieferdecker, and A. Rennoch, editors, 5th In-
ternational ERCIM Workshop on Formal Methods
for Industrial Critical Systems (FMICS), pages 29—
26, Berlin, Mar 2000. GMD.

E. Rose. Towards secure bytecode verification on a
Java card. Master’s thesis, DIKU, Univ. of Copen-
hagen, Sep 1998.

E. Rose and K. H. Rose. Lightweight bytecode
verification. In OOPSLA’98 Workshop on Formal
Underpinnings of Java (FUJ), Vancouver, Canada,
Nov 1998. www-dse.doc.ic.ac.uk/ “sue/ oopsla/
cfp.html.

V. Saraswat. Java is not type-safe. Technical report,
AT&T Research, Florham Park, New Jersey, Aug
1997. www.research.att.com/ “vj/ bug.html.

M. Serrano. Control flow analysis: a functional lan-
guages compilation paradigm. In 10th Symposium
on Applied Computing, pages 118-122, Nashville,
Tennessee, USA, February 1995.

I. Shin and J. C. Mitchell. Java bytecode modifica-
tion and applet security. Technical report, Comp.
Sci Dept, Stanford Univ., 1998.

Ch. Skalka and S. Smith. Static enforcement of se-
curity with types. In 5th SIGPLAN Int. Conf. on
on Functional programming (ICFP), pages 34-45,
Montreal, Canada, Sep 2000. ACM, New York.

34

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

V. C. Sreedhar, M Burke, and J.-D. Choi. A
framework for interprocedural analysis and opti-
mization in the presence of dynamic class loading.
In ACM SIGPLAN 2000 Conference on Program-
ming Language Design and Implementation (PLDI
2000), pages 176-207, Vancouver, British Columbia,
Canada, June 2000.

Y. V. Srinivas and R. Jullig. Specware: Formal sup-
port for composing software. In Conf. Mathemat-
ics of Program Construction (MPCS), LNCS 947,
pages 399-422, Kloster Irsee, Germany, Jul 1995.
Springer-Verlag, Berlin.

R. Stark. Foundations of Java — Lecture Notes for
Computer Science Students. University of Fribourg,
Switzerland, 1998. www.inf.ethz.ch/ personal/
staerk/ java/.

R. Stark, J. Schmid, and E. Borger. Java and
the Java Virtual Machine: Definition, Verification,
Validation. Springer-Verlag, Berlin, 2001. to ap-
pear.

R. Stata and M. Abadi. A type system for Java
bytecode subroutines. In 25th Int. Conf. Principles
of programming languages (POPL), pages 149-160,
San Diego, California, Jan 1998. ACM, New York.

R. Stata and M. Abadi. A type system for Java byte-
code subroutines. ACM Transactions on Program-
ming Languages and Systems, 21(1):90-37, 1999.

K. Stephenson. Towards an algebraic specification
of the Java virtual machine. In B. Moller and J. V.
Tucker, editors, Prospects for hardware foundations.
ESPRIT working group 8533. NADA - new hard-
ware design methods survey chapters, LNCS 156,
pages 236-277. Springer-Verlag, Berlin, 1998.

G. S. Stiles. Safe and verifiable design of mul-
tithreaded Java programs with CSP and FDR.
In OOPSLA’98 Workshop on Formal Underpin-
nings of Java (FUJ), Vancouver, Canada, Nov
1998. www-dse.doc.ic.ac.uk/ “sue/ oopsla/
cfp.html.

Sun. The K Virtual Machine (KVM) - A white
paper. Sun Micro systems Inc, Mountain View,
California, Jun 1999. http:// java.sun.com/
products/ kvm/.

Sun. Connected Limited Device Specification version
1.0, Java Platform 2 Micro Edition. Sun Micro sys-
tems Inc, Palo Alto, California, May 2000. http://
java.sun.com/ aboutJava/ communityprocess/
final/ jsr030/ index.html.

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

D. Syme. Proving Java type soundness. In J. Alves-
Foss, editor, Formal Syntax and Semantics of Java,
LNCS 1523, pages 83-118. Springer-Verlag, Berlin,
1999.

A. Taivalsaari, B. Bush, and D. Simon. The spot-
less system: Implementing a JavaTMSystem for the
palm connected organizer. Technical report TR-99-
73, Sun Microsystems, Inc., 901 San Antonio Road,
Palo Alto, CA 94303 USA, Feb 1999.

J.-P. Talpin and P. Jouvelot. Polymorphic type, re-
gion and effect inference. J of Functional Program-
ming, 2(3):245-271, July 1992.

T. Thorn. Programming languages for mobile code.
ACM Computing Surveys, 29(3):213-239, Sep 1997.

A. Tozawa and M. Hagiya. Careful analysis of
type spoofing. In C. H. Cap, editor, JIT’99 Java-
Informations-Tage, pages 290-296. Informatik ak-
tuell, Springer-Verlag, 1999.

A. Tozawa and M. Hagiya. Formalization and anal-
ysis of class loading in java. Technical report, Grad-
uate School of Science, University of Tokyo, 1999.

J. van den Berg, M. Huisman, B. Jacobs, and
E. Poll. A type-theoretic memory model for ver-
ification of sequential Java programs. In D. Bert
and C. Choppy, editors, Recent Trends in Algebraic
Development Techniques, LNCS 1827, pages 1-21.
Springer-Verlag, Berlin, 2000.

J. van den Berg and B. Jacobs. The LOOP compiler
for Java and jml. In 7th Int. Conf. Tools and algo-
rithms for the construction and analysis of systems
(TACAS), LNCS, page to appear, Genoa, Italy, Apr
2001. Springer-Verlag, Berlin.

J. van den Berg, B. Jacobs, and E. Poll. Formal
specification and verification of JavaCard’s applica-
tion identifier class. In I. Attali and T. Jensen, edi-
tors, Java Card Workshop, LNCS, page to appear,
Cannes, France, Sep 2000. Springer-Verlag, Berlin.

D. Volpano and G. Smith. Language issues in mobile
program security. In G. Vigna, editor, Mobile agents
and security, LNCS 1419, pages 25—43. Springer-
Verlag, Berlin, 1998.

D. von Oheimb. Axiomatic semantics for
Javagigns. In FECOOP2000 Workshop on
Formal Techniques for Java Programs, 2000.

http:// isabelle.in.tum.de/ Bali/ papers/
EC00POO.html.

35

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

D. von Oheimb and T. Nipkow. Machine-Checking
the Java specification: Proving type safety. In
J. Alves-Foss, editor, Formal Syntar and Seman-
tics of Java, LNCS 1523, pages 119-156. Springer-
Verlag, Berlin, 1999.

P. L. Wadler. Comprehending monads. In Lisp and
functional programming, pages 61-78, Nice, France,
Jul 1990. ACM, New York.

C. Wallace. The semantics of the Java program-
ming language: Preliminary version. Technical Re-
port CSE-TR-355-97, University of Michigan EECS
Department, 1997.

D. S. Wallach. A new Approach to Mobile Code
Security. PhD thesis, Priceton University, 1999.

D. S. Wallach and E. W. Felten. Understanding
Java stack inspection. In Symposium on Security
and Privacy, pages 52—-63, Oakland, California, May
1998. IEEE Computer Society Press, Los Alamitos,
California.

W. Webb. Embedded Java: An uncertain future.
Electrical Design News, 44(10):89-96, May 1999.
http:// 209.67.241.58/ reg/ 1999/ 051399/
10df2.htm.

P. H. Welch. Java threads in light of occam/CSP. In
A. Bakkers, editor, Parallel Programming and Java,
WoTUG 20, pages 282-309, Twente, Netherlands,
Apr 1997. Concurrent Systems Engineering Series,
I0S Press, The Netherlands.

J. Whaley and M. Rinard. Compositional pointer
and escape analysis for Java programs. In SIGPLAN
Conf. on Object-Oriented Programming, Systems,
Languages € Applications (OOPSLA), pages 187—
206, Denver, Colorado, December 1999.

A. K. Wright. Practical Soft Typing. PhD thesis,
Rice University, Houston, Texas, August 1994.

Ph. Yelland. A compositional account of the Java
virtual machine. In 26th Int. Conf. Principles of
programming languages (POPL), pages 5769, San
Antonio, Texas, Jan 1999. ACM, New York.

