An Exception Monitoring System for Java*

Heejung Ohe and Byeong-Mo Chang

Department of Computer Science
Sookmyung Women’s University
Seoul 140-742, Korea
lutino@sookmyung.ac.kr, chang@sookmyung.ac.kr

Abstract. Exception mechanism is important for the development of
robust programs to make sure that exceptions are handled appropriately
at run-time. In this paper, we develop a dynamic exception monitoring
system, which can trace handling and propagation of thrown exceptions
in real-time. With this tool, programmers can examine exception han-
dling process in more details and handle exceptions more effectively. Pro-
grammers can also trace only interesting exceptions by selecting options
before execution. It can also provides profile information after execution,
which summarizes exception handling in each method during execution.
To reduce performance overhead, we implement the system based on
code inlining, and presents some experimental results.

Keywords: Java, exception propagation, exception analysis.

1 Introduction

Exception handling is important in modern software development because it can
support the development of robust programs with reliable error detection, and
fast error handling. Java provides facilities to allow the programmer to define,
throw and catch exceptional conditions. Because uncaught exceptions will abort
the program’s execution, it is important for the development of robust programs
to make sure that exceptions are handled appropriately at run-time. However,
it is not easy for programmers to trace and handle exceptions effectively.

A number of static exception analyses including our previous works have been
proposed based on static analysis framework [2,3,9,10]. They approximate all
possible exceptions, and don’t consider runtime exceptions usually. The static
analysis information is usually used to check that all uncaught exceptions are
specified in the method header. They, however, are not able to provide exact
information on how exceptions are thrown, caught and propagated at runtime.

To assist developing robust software, we need a tool to trace or monitor
raised exceptions effectively during execution. For example, J2ME Wireless Tool
Kit(WTK), a dynamic analysis tool, provides just the names of exceptions,
whenever exceptions are thrown, but it cannot trace how thrown exceptions

* This Research was supported by the Sookmyung Women’s University Research Grants 2004

are handled and propagated. In addition, J2ME WTK is too slow when tracing
exceptions, because it relies on JVMPI. Programmers cannot trace propagation
and handling of exceptions with this tool. To develop reliable and robust Java
programs, programmers need a more powerful tool, which can trace exception
propagation and exception handling during execution.

In this paper, we develop a dynamic exception monitoring system, which
can trace how thrown exceptions(including runtime exceptions) are handled and
propagated in real-time. Programmers can examine exception handling process
in more details and handle exceptions more effectively. Moreover, programmers
can trace only interesting exceptions by selecting options before execution. It
also provides profile information after execution, which summarizes exception
handling in each method during execution.

To reduce performance overhead, we design the system based on code inlin-
ing. Input programs are transformed by inlining codes so as to trace only inter-
esting exceptions according to user options. The transformed programs produce
trace information during execution, and profile information after execution. We
implement the event monitoring system in Java based on Barat [1], which is a
front-end for a Java compiler. We also present some experimental results, which
can show the effectiveness of the system.

The rest of this paper is organized as follows. The next section gives prelim-
inaries on exceptions. Section 3 describes overall design of the system. Section 4
describes the implementation of the system, and Section 5 presents some exper-
iments. Section 6 concludes this paper and discusses further research topics.

2 Preliminaries

Like normal objects, exceptions can be defined by classes, instantiated, assigned
to variables, passed as parameters, etc. Exception facilities in Java allow the
programmer to define, throw and catch exceptional conditions. The throw state-
ment throw ey evaluates ey first, and then throws the exception object. The
try statement try S; catch (¢ z) S; evaluates S; first. If the statement S;
executes normally without thrown exception, the try-catch statement executes
normally. If an exception is thrown from S; and its class is covered by ¢ then
the handler expression Sy is evaluated with the exception object bound to z.
If the thrown exception is not covered by class ¢ then the thrown exception
continues to propagate back along the call chain until it meets another handler.
The programmers have to declare in a method definition any exception class
whose exceptions may escape from its body. The formal semantics of Java was
proposed in [5] with exception throwing, propagation and handling taken into
consideration.

Let’s consider a simple example in Figure 1, which shows exception prop-
agation. The thrown exception E1 from the method m2 is propagated through
m2 and m1, and caught by the try-catch in the main method. The exception
E2 may be thrown from the method m3. If it is thrown, then it is propagated
until the main method and not caught. The method m3 also has a recursive call

class Demoq
public static void main(String[] args) throws E2
{
try {
mi();
} catch (E1 x) { ; }

m3();
}

void m1() throws E1{
m2();
}

void m2() throws Ei{
if (...) throw new E1();
}

void m3() throws E2 {
if (...) throw new E2();
if (...) m3();

Fig. 1. An example program for exception propagation

to itself, so that the thrown exception E2 may be propagated back through the
recursive calls.

Because uncaught exceptions will abort the program’s execution, it is im-
portant for the development of robust programs to check that exceptions are
handled appropriately at run-time.

3 Design considerations

There are several ways that monitors can mediate all application operations. A
traditional reference monitor is implemented by halting execution before certain
machine instructions and invoking the reference monitor with the instruction
as input. An alternate implementation, not limited by hardware support, runs
applications inside an interpreter like JVM that executes the application code
and invokes a reference monitor before each instruction. JVMPI(JVM Profiler
Interface) follows this approach. However, this approach has unacceptable per-
formance overhead [6], since a cost is incurred on every executed instruction. The
third option inlines reference monitors in the target software. This approach is
shown to overcome the limitations of traditional reference monitors, yet exhibits
reasonable performance [6].

An inlined reference monitor is obtained by modifying an application to
include the functionality of a reference monitor. As in Figure 2, IRMs are inserted
into applications by a rewriter or transformer that reads a target application
and a policy, and produces a secured application, whose execution monitors its
execution. The inlining approach is shown to be efficient for monitoring Java
programs in [6].

- . Secured Application

Original Application IRk r

Rewriter 8
H

Fig. 2. Inlined monitor [6]

We follow the inlining approach to design a dynamic exception monitoring
system for efficiency. We take the following things into consideration in the
design.

The first one is to provide users with options to select interesting exceptions.
By selecting options before execution, users can focus on interesting exceptions
and methods by tracing only interesting exceptions in real-time. This option can
also contribute in reducing performance overhead, because it makes the system
to trace only interesting exceptions instead of all exceptions. The second one is
to provide a profile option to produce profile information after execution, which
summarizes exception throwing and handling during execution. The third one
is to reduce performance overhead. We try to reduce performance overhead by
inlining code instead of using JVMPI. An input program P is transformed into a
program P’ by inlinig codes so as to trace only interesting exceptions according
to user options. The transformed program P’ will trace how thrown exceptions
are handled and propagated during execution, and give profile information on
exception handling after execution.

Overall architecture of the system is shown in Figure 3. This system consists
of four steps as in Figure 3. The function of each step is as follows:

The first step extracts exception-related constructs by static analysis. This
static information is used to give users options. The second step is option selec-
tion, where users can select interesting exceptions and methods using the static
exception information. Users can trace only interesting exceptions and methods
by selecting options in this step. The third step is a transformer, which trans-
forms an input program P into a program P’ by inlining codes so as to trace only
interesting exceptions according to user options. The fourth step is to compile
and execute the transformed program P’. It is to be executed on Java 2 SDK or
J2ME WTK.

Analysis Program P~
I
Step 4.
Main Interface Program P’ Information
Step 1. Print
Static Exception Info.
Analysis Extraction
]
i race Info.
Static Information Print (nterface
,
Print Interface
Selection Interface
2
Program
Step 2. Transformation —_—)
Option) Step 3.
Selection Code

Fig. 3. System architecture

4 Implementation

The exception monitoring system is implemented in Java based on Barat [1],
which is a front-end for a Java compiler. Barat builds an abstract syntax tree
for an input Java program and enriches it with type and name analysis infor-
mation. It also provides interfaces for traversing abstract syntax trees, based on

Jlava = | paat | — AST Name Analysﬁs
Program Type Analysis

Fig. 4. Architecture of Barat

visitor design pattern in [7]. We can traverse AST nodes and do some actions
or operations at visiting each node using a visitor, which is a tree traverse rou-
tine based on design patterns. Barat provides several visitors as basic visitors:
DescendingVisitor which traverses every AST node in depth-first order and
OuputVisitor which outputs input programs by traversing AST nodes. We can
develop a static analyzer by implementing visitors to do necessary actions or
operations at visiting AST nodes by extending basic visitors [1].

As described in Figure 3, our system consists of four steps. We implement
the first three steps. The last step is a real execution on Java SDK.

A main window for selecting options is shown in Figure 5, which shows all
files in the package of a benchmark program Check from specjvm98. After users
select files from the package, the window displays a list of exceptions, handlers
and methods based on the static analysis information. Then, users can select

& Select the Package E]@

* Enter the package name which you want to analyse

Package Name: |specbenchmarks_zuu_check ” Search |

Class List In Package - - Code Instrumentation Option [Trace/Profile]

FloatingPointCheck [Trace Option | Profile Option |
Lat_mBnunds [v/ line by line select [Caution: You can select only one class in the left class list]
Main || [C] throw statement trace - -
PepTest | 43 static long runBenchmark(String[] args)
Sub | {
Super | | [[] catch statement trace 46: ty

i (

‘ }

| [1] called method trace 51: ut(ion e)

| {

| |[] allinformation trace }

[76 : static void main(String[] args)

| Select

Select Cancel

[] Al Classes Select

Selection History
Trace Selection List | Profile Selection List
|

FileName | Throw | Catch | Method | Al | Linebyline | [fleName | Summary | ArisedEx | CaughtEx [Uncuaghtex| Al
FloatingPoi... false false »false false ‘nuthmg i FloatingPoi... false false 'false »false ‘false
LoopBounds false false »false »false ‘nuthmg | LoopBounds »false false .false »false ‘false
Main false false »false »false ‘nuthmg | [Main false false .false »false ‘false
PepTest false false 'false »false ‘nuthmg 1 PepTest false false Afalse »false ‘false
Sub false false 'false »false ‘nuthmg 1 Sub false false 'false »false ‘false
Super false false false false nothing w Super false false false false false

| new || sumt | | cancer |

Fig. 5. Menu window

only interesting exceptions, handlers and methods among them. By selecting
options, users can get only interesting trace information and focus on interesting
exceptions when debugging.

To provide users with options, we implement a static analyzer to extract
exception-related constructs by extending DescendingVisitor. It extracts static
information about possible exceptions and methods by analyzing input programs
statically. In particular, it extracts static program constructs on exception rais-
ing, handling and methods.

We implement a program transformer called TransformVisitor by extend-
ing OuputVisitor, which transforms an input program P into a program P’
by inlining codes so as to trace handling and propagation of thrown exceptions
according to selected options. Figure 6 shows overall structure of the program
transformer.

A fragment of the transformed Check program is displayed in Figure 7. This
figure shows main method and syncMethod2 which is called from the main
method. The codes in the box are inlined codes by the transformer. The trans-
formed program is to be executed automatically in Java 2 SDK. This transformed
code traces how thrown exceptions are handled and propagated in real-time dur-

Class TransformVisitor extends OutputVisitor{
visitThrow{
// Print the location of thrown exception and its type
}
visitTry{
// Print the location of try statement
}
visitCatch{
// Print the location of catch statement, the type of caught exception
// call printStackTrace() method
}
visitMethod{
// Print the method information and record exception propagation via this method

}

Fig. 6. Structure of TransformVisitor

ing execution. In addition, it can also profile exception handling of each method
during execution and shows the number of thrown, caught, and uncaught excep-
tions for each method after execution.

5 Experiments

We have implemented the system with SDK 1.4.2 on Pentium 4 processor and
Window XP. We first tested it with Check from specjvm98, which is a program
to check that the JVM fits the requirements of the benchmark.

When we execute the transformed program, we can trace handling and prop-
agation of thrown exceptions (including runtime exceptions) as in Figure 8. It
shows the location and exception type when an exception is thrown. It also
shows the propagated path when an propagated exception is caught by a catch-
clause. For example, the propagation path of ArithmeticException, when it
is caught at line 659, is shown in Figure 8 When the program terminates, it
profiles the thrown, caught, and propagated exceptions of each method. Figure
9 shows the names and numbers of thrown, caught and propagated exceptions of
each method. It also shows the name of exceptions, which is specified by throws
clause at method headers. For example, ArithmeticException is specified at
PepTest.syncMethod?2.

We have experimented the system with five Java benchmark programs. The
first one is the small server connecting program ServerStuff. The second one is
Linpack benchmark, which is to solve a dense system of linear equations. The
third one is Check from specjvm98. The fourth one is Jess from specjvm98, which
is an expert system shell based on NASA’s CLIPS program. The last one is Rex
from gnu, which matches a regular expression against strings.

28 synchronized int syncMethod2(int y) throws ArithmeticException {

1
(

31 pi.methodcollect ("syncTest", "syncMethod2", " |ArithmeticException|”);

— | pi.print_methodtrace("syncTest", "syncMethod2","27","synchronized null syncMethod2(int y) throws Arithmer

32 this.x = this.x + y;

34 if (this.x == 99){

35 —» | pi.print_throwtrace("syncTest","syncMethod2","30","new ArithmeticException”);
pi.set_ThrowInfo("syncTest" , "syncMethod2" , "30" ,"new ArithmeticException”);

throw (new ArithmeticException("fisk")):

}

40 return this.x;

43 ppblic static void main(String[] args) {
44 try{

pi.print_methodtrace("syncTest", "main”,"34", "static void main(String[] args)"):
47 — pi.methodcollect ("syncTest",™

,"main","|");
syncTest sy = new synclest();
int xx = sy.syncMethod(4):
XX = 3y.syncMethod2(4);
}catch(Exception apple) {
apple.printStackTrace();

i

}
finally{
pi.print_Profile();
}
}
Fig. 7. Transformed program
r:‘ race rmation Window

| Trace womaton

Trace Information is printed follow Text Area

++ Throw Trace++
Location : PepTest/ loopExitContinuelnExceptionHandler Method / line number (654)
new ArithmeticException

++ Catch Trace++
Location : PepTest/ loopExitContinuelnExceptionHandler Method / line number (659)
ArithmeticException

java.lang. ArithmeticException: fisk
at spec.henchmarks._200_check PepTestloopExitContinuelnExceptionHandler{PepTest java:778)
at spec.benchmarks._200_check PepTestinstanceMain{PepTestjava:1327)
at spec.henchmarks._200_check Main.runBenchmark(Main.java:37)
at spec.benchmarks._200_check Main.main{Main java:46)
++ Throw Trace++
Location : PepTest/ loopExitContinuelnExceptionHandler Method J line number (654)
new ArithmeticException

++ Catch Trace++
Location : PepTest/ loopExitContinuelnExceptionHandler Method / line number (659)
ArithmeticException

java.lang ArithmeticException: fisk
at spec.benchmarks._200_check PepTestloopExitContinuelnExceptionHandler(PepTestjava:778)

Ll

Fig. 8. Trace of Check program

@ S

| Profile of thrown exception |

** Profile Information ** [

ClassMethod | Thiown no) | Caught exceptions (n0) [Propagated exceptions (n0) | Specific [l
PepTesttestExc? class java lang Arithm 1) class java lang ArithmeticException(2), -
LoopBounds execute
PepTestiestExct class Java lang ArithmeticExcepbon(1) class Java lang ArithmeticException(1),
PepTestiestExcs eue(l) class java lang ArithmeticExcepbon(2)
AvithmeticException(1) [

Main.checkSubclassing
PepTest throwAnthmetic... AnthmeticException(2)
PepTesttestexcd RuntimeException(1) class Java lang RuntimeException(1)

Super getName
PepTestinstanceMain

PepTestiestExc3 ArthmeticException(1) class java lang ArithmeticExcepbion(1)
LoopBounds2 sze
PepTestiestexc? RuntimeException(1) class java lang RuntimeException(1)
PepTestisPrime
[Main runBenchmark |class java lang ArrayindexOut0BoundsExceptio.
PepTesttestExc! AnthmeticException(1) class java lang ArrayindexOutOfBoundsExceptio.
class java lang ArithmeticExcepbon(1)
LoopBounds. size
PepTesttestHiddenField
PepTest Verity
PepTesttestLookupSwitch
PepTesttestaray class java lang ArrayindexOutOfBoundsExceptio.
.
.
.
.
ILoopBounds run

PepTest checkRemainde

PapTest checkRemD

'Main.main

PapTesttestBitps

‘smnwulm clone

}Loopaounus constraintal

[PapTest syncMethod? | AriihmebcException
}mmm(ez) total thrown exceptions(107) total caught excepons(122) [otal propagated exceptions(9) Jtotal (1)

Fig. 9. Profile of Check program

Table 1 first shows the numbers of lines of benchmark programs before and
after inlining, and then shows the number of thrown exceptions, the number of
caught exceptions, and the number of propagated exceptions for each benchmark.
If an exception is propagated, it is counted as propagated exceptions at every
method, through which it is propagated back. So a propagated exception can be
counted multiply.

The listed figures of Jess represents propagation of a thrown exception when
an input with wrong syntax is given. The listed figures of Rez also represents
propagation of a thrown exception when a wrong option is given. The listed
figures of Check represents the many numbers of thrown, handled and propagated
exceptions.

6 Related works

In [10, 11], the usage patterns of exception-handling constructs in Java programs
were studied to show that exception-handling constructs are used frequently in
Java programs and more accurate exception flow information is necessary.

| Programs |Lines(before) [Lines(after) Throw|Caught[Propagated|

ServerStuff 71 104 2 2 4
Linpack 1057 1103 1 1 17
Check 1817 1898 107 122 9
Jess 542 574 1 1 10
Rex 3198 3308 1 1 6

Table 1. Experiments with benchmark programs

Exception analyses have been studied actively based on static analysis frame-
work [2,3,12,9]. Static exception analyses analyze input programs before execu-
tion and provide approximate information about all possible uncaught exceptions
of each method. In Java[8], the JDK compiler ensures, by an intraprocedural
analysis, that clients of a method either handle the exceptions declared by that
method, or explicitly specify them at method header. In [9], a tool called Jex was
developed to analyze uncaught exceptions in Java. It can extract the uncaught
exceptions in Java programs, and generate views of the exception structure.

In our previous work [2,12], we proposed interprocedural exception analysis
that estimates uncaught exceptions independently of programmers’s specified
exceptions. We compared our analysis with JDK-style analysis by experiments
on realistic Java programs. We also have shown that our analysis can detect
uncaught exceptions, unnecessary catch and throws clauses effectively.

Static analysis techniques, however, cannot provide information about actual
execution. So, dynamic analysis techniques have also been studied to provide
information about actual execution [4, 13, 14]. Several dynamic analysis tools are
developed for Java including J2ME Wireless Toolkit [14] and AdaptJ [13]. Recent
J2ME Wireless Toolkit can trace method calls, exceptions and class loading as
well as memory usage using JVMPI. However, it provides just the names of
exceptions whenever exceptions are thrown. Moreover, JVMPI imposes heavy
burden on performance overhead, which makes execution speed too slow. It is
hard to trace interesting parts of programs effectively, because all codes including
libraries are included in the trace. AdaptJ don’t provide any exception-related
information during execution.

Our current work differs from the previous static works in that the previous
works focus on estimating uncaught exceptions rather than providing informa-
tion on the propagation paths of thrown exceptions. Our monitoring system
can trace in real-time how thrown exceptions including runtime exceptions are
handled and propagated during execution. This trace function has not been sup-
ported by any dynamic systems yet.

7 Conclusion

We have developed a dynamic exception monitoring system, which can help pro-
grammers trace and handle exceptions effectively. Using this system, program-

mers can examine exception handling process in more details by tracing only
interesting exceptions, and can handle exceptions more effectively. To reduce
performance overhead, we have designed the system based on inlined reference
monitor. We are extending this system in two directions. The first one is to vi-
sualize exception trace and profile information, which can give more insights to
programmers. The second one is to adapt this system to J2ME programs, which
are widely used in mobile environment.

References

1.

2.

10.

11.

12.

13.

14.

B. Bokowski, Andre Spiegel. Barat A Front-End for Java. Technical Report B-98-09
December 1998.

B.-M. Chang, J. Jo, K. Yi, and K. Choe, Interprocedural Exception Analysis for
Java, Proceedings of ACM Symposium on Applied Computing, pp 620-625, Mar.
2001.

J.-D. Choi, D. Grove, M. Hind, and V. Sarkar, Efficient and precise modeling
of exceptions for analysis of Java programs, Proceedings of 99 ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,
September 1999, pp. 21-31.

B. Dufour, K. Driesen, L. Hendren and C. Verbrugge. Dynamic Metrics for Java.
Proceedings of ACM OOPSLA ’03, October, 2003, Anaheim, CA.

S. Drossopoulou, and T. Valkevych, Java type soundness revisited. Techical
Report, Imperial College, November 1999. Also available from: http://www-
doc.ic.ac.uk/ scd.

U. Erlingsson, The inlined reference monitor approach to secure policy enforcement,
Ph.D thesis, Cornell University, January 2004.

E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns:Elements of
Reusable Object-Oriented Software, Addison-Wesley,1995.

. J. Gosling, B. Joy, and G. Steele, The Java Programming Language Specification,

Addison-Wesley,1996.

M. P. Robillard and G. C. Murphy, Analyzing exception flow in Java programs,
in Proc. of 99 European Software Engineering Conference and ACM SIGSOFT
Symposium on Foundations of Software Engineering, pp. 322-337.

B. G. Ryder, D. Smith, U. Kremer, M. Gordon, and N. Shah, A static study of
Java exceptions using JESP, Tech. Rep. DCS-TR-403, Rutgers University, Nov.
1999.

S. Sinha and M. Harrold, Analysis and testing of programs with exception-handling
constructs, IEEE Transations on Software Engineering 26(9) (2000).

K. Yi and B.-M. Chang Exception analysis for Java, ECOOP Workshop on Formal
Techniques for Java Programs , June 1999, Lisbon, Portugal.

AdaptJ:A Dynamic Application Profiling Toolkit for Java,
http://www.sable.mcgill.ca/ bdufoul/AdaptJ

Sun Microsystems, J2ME Wireless Toolkit, http://java.sun.com.

