
Using Access Control for Secure Information Flow in a Java-like Language

Anindya Banerjee∗

Computing and Information Sciences
Kansas State University

Manhattan KS 66506 USA
ab@cis.ksu.edu

David A. Naumann†

Computer Science
Stevens Institute of Technology

Hoboken NJ 07030 USA
naumann@cs.stevens-tech.edu

Abstract

Access control mechanisms are widely used with the in-
tent of enforcing confidentiality and other policies, but few
formal connections have been made between information
flow and access control. Java and C] are object-oriented
languages that provide fine-grained access control. An ac-
cess control list specifies local policy by authorizing per-
missions for principals (code sources) associated with class
declarations; a mechanism called stack inspection checks
permissions at run time. An example is given to show how
this mechanism can be used to achieve confidentiality goals
in situations where a single system call serves callers of
differing confidentiality levels and dynamic access control
prevents release of high information to low callers. A novel
static analysis is given which applies to such examples. The
analysis is shown to ensure a noninterference property for-
malizing confidentiality.

1. Introduction

Many security policies involve confidentiality require-
ments. Confidentiality properties of programs, formalized
in terms of noninterference [9], can be checked using static
information flow analysis [25, 24]. But this has seen lit-
tle use in practice. As discussed in the recent survey by
Sabelfeld and Myers [21], extant static analyses are some-
what restrictive and a satisfactory treatment of declassifica-
tion remains elusive. It is access control that is widely used.

One approach to checking confidentiality of code using
access control is to somehow designate those atomic steps
by which information can flow, and prove that the steps are
only taken when the appropriate access control events have
occurred. This approach has obvious merit but leaves open
the question of making a rigorous connection with strong
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information flow policies like “the user’s private key is not
leaked to the seller”. What is the connection between au-
thorization of a data-access event and the subsequent dis-
semination of information contained therein?

In fact, previous work on static analysis of information
flow in programs (e.g., [7, 25, 24, 12, 17]) is based on con-
trol of data access, as we discuss further in Section 8. But
the connections are made using constraints that allow en-
tirely static checking of access and the access mechanisms
considered are akin to ordinary scoping mechanisms like
private fields, name-equivalence of types, and pointer con-
finement [4]. Similar connections have been made in more
abstract models [20, 13].

In this paper we are concerned with programs that use
access control dynamically in the sense that permissions de-
termine runtime behavior. Permissions are not simply iden-
tified with data items and principals are not identified with
confidentiality levels. We show how dynamic access control
can allow flexible program interfaces where a data channel
can be used for more than one purpose, while ensuring con-
fidentiality.

We consider the access control mechanism of Java [10],
which aims to protect trusted system code (e.g., a browser)
from untrusted mobile code. The principals that are granted
permissions in an access policy are programs rather than,
say, processes or users as in operating system security.

We consider programs that use access control to enforce
an information-flow policy expressed by labelling of input
and output channels with levels in a lattice [5, 6]. We give a
static analysis in the style of security typing [25, 24] but also
tracking the permissions manipulated by the access con-
trol constructs. We prove a form of noninterference for ty-
pable programs. As in previous work, our analysis validates
code with respect to a given policy. Here, policy designates
both trust (authorization of different permissions for differ-
ent programs) and confidentiality levels.

Our rules account for calls into the trusted computing
base that might return high security information, but which
use access checks to ensure that only low security informa-



tion is returned unless the caller has been given access.
We use a simple form of noninterference, suited to

observation only of the initial and final states of termi-
nating computations of sequential programs. Mantel and
Sabelfeld [14] study connections between program-centric
formulations and the formulation of noninterference in
terms of abstract event systems [9].

In Section 2 we give a streamlined description of the rel-
evant features of the Java access control mechanism, which
is supported by the Java Virtual Machine (a very similar
mechanism is supported by the Common Language Run-
time [11] which is the typical target for compilation of C]).
We also review the use of labelled types to specify confi-
dentiality in imperative [25] and object-oriented [4, 16] pro-
grams.

Section 3 gives an example to illustrate the main idea
of the paper: giving several information-flow types to a
method, dependent on the permissions that may be enabled
by callers. We give two types to a method providing a sys-
tem service. One type says that it returns only low informa-
tion, if called by a program for which designated permis-
sions are not authorized. The other type applies to programs
that are granted the permissions and says that for them the
result is high.

Section 4 formalizes the programming language, giving
typing rules and a compositional semantics which facilitates
proof by structural induction on program syntax. At the
cost of notation more complex than the minimum necessary
to illustrate our main idea, we consider a sequential object-
oriented language with all the features treated in [4] (point-
ers and mutable state, private fields and class-based visi-
bility, dynamic binding and inheritance, recursive classes,
casts and type tests, and recursive methods). The reason for
this choice is to show that the idea scales to a realistic lan-
guage and to lay a broader foundation for future work (e.g.,
permissions and protection domains as first-class objects as
in Java).

The main contributions of the paper are the ideas in Sec-
tion 3 and their technical development in conjunction with
inheritance and dynamic binding. For pointers and confine-
ment the treatment in [4] carries over without difficulty.

Section 5 formalizes a static analysis using permission-
dependent method types in syntax-directed rules which ad-
mit the examples of Section 3. Section 6 proves basic results
about the analysis, which are used in Section 7 to prove the
main result: the static analysis ensures noninterference.

2. Access control and information flow

Access control by stack inspection. In the Java access
control mechanism [10], each class C has a set Auth C of
permissions associated with it; this comprises a local access
control policy. A typical policy grants few permissions to

code from remote sites and many to code residing on the
local disk. The most interesting policies concern trusted
remote sites: Code which has been cryptographically au-
thenticated as originating at a trusted site may be granted
particular permissions.

As an example of the use of permissions, a user pro-
gram might have the permission p for changing passwords
but not the permission w for directly writing the password
file. There is an operation checkPermission for checking
whether a permission is authorized for the classes of all
code with frames (activation records) on the current call
stack. If this fails to be the case, a catchable exception is
thrown. This mechanism has no intrinsic connection with
particular data objects or events; it is up to the program-
mer to ensure that writes to the password file are guarded
by checks of permission w.

Following previous work [8], we refrain from mod-
eling exceptions and instead consider a construct,
test p then S1 else S2, which performs the check,
executing S1 if the check succeeds and S2 if it fails. A
method body that simply performs a check can be written
test p then skip else abort. To model the case where an
exception is thrown and caught, the else part can return
some value that indicates to the caller that a check has
failed.

In fact, what is checked is slightly more subtle than au-
thorization for all code on the stack. In keeping with the
principle of least privilege, permissions must be explic-
itly enabled by an operation doPrivileged. This is imple-
mented using a callback object with the effect of lexical
scoping. We model it by a construct, enable p in S,
the effect of which is to mark p as enabled in the current
frame. The relevant information in a frame is a pair 〈C, Q〉
where C is the class providing the code for the frame and
Q ∈ P(Permissions) is a set of permissions. The effect
of enable p in S is to add p to Q for the duration of S.
The precise meaning of test p is as follows: check whether
p is marked in some frame for which p is authorized, and in
addition p is authorized for all subsequent frames including
the current one. This allows a method to, in effect, tem-
porarily grant a permission to methods in the call chain to
it. It cannot, however, grant permissions to code that it in-
vokes. System code can invoke plug-ins without risk of
giving them unintended permissions and it can also perform
sensitive operations on behalf of untrusted callers. The class
C in the pair 〈C, Q〉 is that which declares the method. Due
to inheritance, it may be a proper superclass (and have dif-
ferent permissions) than the class of the target object.

As described above, stack inspection is lazy in that au-
thorization checks are only performed when needed. For
theoretical analysis, it is convenient to use the equivalent
eager semantics [10, 19, 8] which works as follows. The
effect of enable p in S is to add p to the current frame only
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if p is authorized for the current class. When a method is
invoked from a frame 〈C, Q〉, the new frame is initialized
to be 〈D, Q′〉 where D is the class of the invoked code and
Q′ = Q ∩ Auth D. Finally, test p just checks whether p

is in the current frame. This description does not involve
the operational notion of traversing the stack. In the sequel
we use a compositional semantics where Q is simply an im-
plicit parameter.

Checking information flow using security types. The
idea developed by Volpano et al. [25] is to label not only in-
puts and outputs but also variables and parameters by secu-
rity types, for example replacing a variable declaration x : T
by x : (T, κ) where κ is the security level. As usual, we con-
sider the representative two-element lattice L ≤ H of lev-
els. Syntax-directed typing rules specify conditions that en-
sure secure flow. Overt flows, like an assignment of an H-
variable to an L-variable, are disallowed by the typing rules
for assignment, argument passing, etc. To preclude covert
flow via control flow, commands are given types com κ with
the meaning that all assigned variables have at least level κ.
For a conditional, if e then S1 else S2, with e high, both
S1 and S2 are required to have type com H .

In an object-oriented language, covert flow also happens
via dynamically dispatched method call. Moreover, there is
the possibility of observing differing behavior of the allo-
cator if objects allocated conditionally are accessible. Such
issues are treated in [16, 4]. In [4], commands are given
types (com κ1, κ2) where κ1 is a lower bound on the level
of assigned variables and κ2 is a lower bound on the heap
effect (field assignements and newly allocated objects). An-
notated arrow types are used for modular checking in the
case of methods (or procedures or functions [1]): the type
(T, κ1)

κ2−→(U, κ3) designates input level κ1, heap effect κ2,
and result level κ3. A method body is checked with respect
to its type, which is used as an assumption for checking
method calls.

An access control mechanism may itself be a channel for
covert flows. For the mechanism in this paper, the set of cur-
rently enabled permissions can be seen as an implicit vari-
able which can be tested. But values of this implicit vari-
able are manipulated in a very restricted way that reflects
only control flow information. Our noninterference result
confirms that straightforward security typing rules suffice
to control the flows introduced by test and enable. What
is more interesting is the use of test to achieve information
flow goals.

3. Using access control for confidentiality

Consider a system composed of components, some of
which are from untrusted sources. Class Kern is a trusted
system class and Vend1 is from a less trusted source. To

a first approximation, a confidentiality goal would be that
information confidential to Kern is not leaked to Vend1 .
This policy could be expressed by labelling certain inputs
to Kern as level H and the others as L. In practice, the lev-
els in the security lattice might correspond to code sources
and thus be correlated with permissions. But, like [17] and
unlike [12], we do not want to presuppose a connection be-
tween information flow policy and the access control mech-
anism. Not all information manipulated by Kern is confi-
dential.

For these examples we consider the set Permissions =
{sys, stat, other}. The intention is that sys guards a
method getHinfo of Kern that returns H information, and
stat guards a method getStatus that can be used by trusted
callers manipulating H information and also untrusted ones
manipulating L. Access policy Auth is as follows:

class permissions
Vend1 other

Vend2 stat, other

Kern stat, sys

Class Kern is as follows, where the intended flow policy is
indicated in comments.

class Kern extends Object { // permissions: stat, sys

string Hinfo; // level H
string Linfo; // L
string getHinfo(){ // type L → H

test sys then result : = self.Hinfo else abort }
string getStatus(){ // type L → ?? (see below)

test stat
then enable sys in result : = self.getHinfo()
else result : = self.Linfo }

. . . “other methods that manipulate Linfo and Hinfo”}

Class Vend1 has access to an instance of Kern. It has
a method status returning the catenation of application-
specific data v with the status from the kernel. This ex-
emplifies the use of getStatus by untrusted callers.

class Vend1 extends Object { // permissions: other

Kern k; // L
string v; // L
string status(){ // type L → L

result : = self.v ++ k.getStatus() }
. . .}

Execution of method status proceeds as follows: To eval-
uate the catenation, invoke k.getStatus() which tests stat.
The test fails, as stat has not been enabled, so getStatus re-
turns k.Linfo. This is compatible with the policy that status
has L output.

For an information flow analysis to allow Vend1.status,
it is necessary to take into account the test in getStatus and
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also the access policy for Vend1. Otherwise, a sound anal-
ysis of getStatus would say that it can return H which vio-
lates the flow policy for Vend1.status.

Vend1 could try to gain access to Hinfo as follows:

string status2(){ // type L → L
enable stat in result : = self.v ++ k.getStatus() }

But because stat is not authorized for Vend1, the enable
has no effect and the policy is not violated.

No code in classes Vend1 or Vend2 can successfully in-
voke getHinfo because in Auth neither is granted permis-
sion sys, without which method getHinfo aborts. An at-
tempted enable sys does not help.

Our access policy does, however, grant permission stat

to Vend2. The flow policy also indicates a degree of trust in
that method statusH below returns H .

class Vend2 { // permissions: stat, other

Kern k;
String statusH(){ // type L → H

enable stat in result : = k.getStatus() }}

Method statusH succeeds in obtaining Hinfo: in
k.getStatus(), permission stat is enabled and is authorized
for Kern and for Vend2. This is consistent with the policy
allowing H result from statusH; it would not be consistent
with L result.

As indicated by “??” in class Kern, the question is how
to type method getStatus so we can formulate a modular
check that admits the valid examples while rejecting code
(or access policy) that violates the information flow policy.
In particular, all of the example code above should be al-
lowed.

Volpano and Smith, among others, consider procedure
typings that are polymorphic in levels [24] (to handle cases
where level-α inputs yields level-α outputs). Such systems
cannot handle our examples, because the result level for get-
Status depends not on explicit input parameters but on en-
abled permissions.

The justification of the examples hinges on reasoning
about the behavior of the test in getStatus. This behav-
ior depends on what permissions are enabled by the caller.
This leads to our proposal: Methods are given types that
depend on permissions authorized for the caller. More pre-
cisely, types designate permissions that must not have been
enabled by the caller. For the moment we leave aside heap

effects. The meaning of a type L
P
−→κ is as follows: if in-

voked by a caller which cannot enable any of the permis-
sions in P , the method returns a result of at most level κ.
We annotate each method with one or more such typing,
and check that the method body respects all of them.

Method getStatus is given types L
�

−→H and L
{stat}
−→ L.

The call from Vend1.status can be typechecked with respect

to L
{stat}
−→ L, because stat is not in Auth(Vend1). The type-

checking rule does not allow the call from Vend2.statusH to

be checked using L
{stat}
−→ L, because stat is authorized for

Vend2. It can be checked using L
�

−→H .
Consider this additional method for Vend2:

string statusH2(){ result : = k.getStatus() }

It can be given type L
�

−→H just like statusH. Although stat

is not enabled by statusH2, it could be enabled by a caller
thereof. So it is not sound to check the body of statusH2

using getStatus: L
{stat}
−→ L unless we disallow such callers,

which yields the type L
{stat}
−→ L for statusH2.

We have discussed method types of particular interest,

but others are also sound, e.g., getStatus: L
{stat,sys}

−→ L and

getHinfo: L
{sys}
−→L. There is an evident notion of subtyping

which we do not consider in this paper. For practical appli-
cation, one would specify the security of a method using a
set of types that are minimal with respect to subtyping.

To deal with dynamic binding in a modular way, we re-
quire that an overriding declaration must be checked with
the same set of typings as the method it overrides. The per-
missions involved need not be authorized for the class in
which the declaration occurs. A subclass that overrides a
method may have different permissions than its superclass.
This is discussed further in Section 5, where the security
typing rules are defined using judgements ∆; P ` S that
characterize the behavior of S under the assumption that
permissions P are not initially enabled.1

4. Language

Our results are for a sequential class-based language
similar to the one in the predecessor paper [4] with the ad-
dition of access control. This section presents the language
without security annotations; it is this language for which
the semantics is defined. As compared with [4], some im-
provements have been made to the language and semantics
following [2] to which we refer for more extensive explana-
tions.

We assume given a finite set of Permissions as well
as function Auth : ClassNames → P(Permissions).
Finiteness is not essential, but it saves us from imposing
explicit finiteness restrictions at various points in the syntax
and semantics.

1In an earlier version of this paper, we annotated the typing arrow with
an upper bound on the caller’s permissions, so for example getStatus would

have a type L
P
−→L with stat 6∈ P , where the caller’s permissions must

be contained in P . But this is not modular; the caller may well have per-
missions like other not relevant to the callee.
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T ::= bool | unit | C data type, where C ranges over class names

CL ::= class C extends C { T f ; M } class with private fields f and public methods M

M ::= T m(T x) {S} method with result type T and parameter types T

S ::= x : = e | T x : = e in S | if e then S else S | S ; S assign to variable; local block; conditional; sequence

| e.f : = e | x : = new C | x : = e.m(e) assign to field; construct object; call method

| enable P in S | test P then S else S enable; branch on permissions P ⊆ Permissions

e ::= x | null | true | false | unit variable, constant

| e.f | e==e | e is C | (C) e field access; equality test; type test; cast

Table 1. Grammar.

Γ ` x : Γx Γ ` null : B Γ ` unit : unit Γ ` true : bool Γ ` false : bool

Γ ` e1 : T1 Γ ` e2 : T2

Γ ` e1==e2 : bool
Γ ` e : (Γ self) (f : T ) ∈ dfields(Γ self)

Γ ` e.f : T

Γ ` e : D B ≤ D

Γ ` (B) e : B
Γ ` e : D B ≤ D

Γ ` e is B : bool

Γ ` e : T T ≤ Γ x x 6= self
Γ ` x : = e

Γ ` e1 : (Γ self) (f : T ) ∈ dfields(Γ self)
Γ ` e2 : U U ≤ T

Γ ` e1.f : = e2

Γ ` e : D mtype(m, D) = T→T

Γ ` e : U U ≤ T x 6= self T ≤ Γ x

Γ ` x : = e.m(e)

B ≤ Γx x 6= self B 6= Object
Γ ` x : = new B

Γ ` e : bool Γ ` S1 Γ ` S2

Γ ` if e then S1 else S2

Γ ` e : U U ≤ T x 6= self (Γ, x : T ) ` S

Γ ` T x : = e in S

Γ ` S1 Γ ` S2

Γ ` S1 ; S2

P ⊆ Permissions Γ ` S

Γ ` enable P in S

P ⊆ Permissions Γ ` S1 Γ ` S2

Γ ` test P then S1 else S2

Table 2. Typing rules for expressions and commands.

4.1. Syntax

The grammar is given by Table 1. It is based on given
sets of class names (with typical element C), field names
(f ), method names (m), and variable/parameter names x

(including distinguished names “self” and “result” for the
target object and return value). Identifiers like T with bars
on top indicate finite lists, e.g., T f stands for a list f of field
names with corresponding types T . We let P range over sets
of permissions, without formalizing syntax for sets. We also
assume there is a class Object with no fields or methods.

A complete program is given as a class table, CT , that
associates each declared class name with its declaration.
The typing rules make use of auxiliary notions that are de-
fined in terms of CT , so the typing relation ` depends on
CT but this is elided in the notation. Because typing of each
class is done in the context of the full table, methods can be
recursive (mutually) and so can field types.

Methods and classes are considered public. The rules

for field access and update enforce private visibility: fields
declared in a class are accessible only to methods of that
class.

Subsumption is built in to the rules using the subtyping
relation ≤ specified as follows. For base types, bool ≤
bool and unit ≤ unit. For classes C and D, we have
C ≤ D iff either C = D or the class declaration for C

is class C extends B { . . . } for some B ≤ D.
To define some auxiliary notations, let

CT (C) = class C extends D { T 1 f ; M }

and let M be in the list M of method declarations, with
M = T m(T 2 x){S}. We record the typing information by
defining mtype(m, C) = T 2 → T and let pars(m, C) = x

to record the parameter names. Let super C = D. For
the declared fields, we define dfields C = T 1 f and
type(f, C) = T 1. To include inherited fields, we de-
fine fields C = dfieldsC ∪ fields D and assume f is dis-
joint from the names in fields D. The built-in class Object
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has no methods or fields. If m is inherited in C from B

then mtype(m, C) is defined to be mtype(m, B), so that
mtype(m, C) is defined iff m is declared or inherited in C.

A class table is well formed if each of its method decla-
rations is well formed according to the following rule.

x : T , self : C, result : T ` S

mtype(m, super C) is undefined or equals T→T

pars(m, super C) is undefined or equals x

C ` T m(T x){S}

Table 2 gives the other typing rules. A typing environment
Γ is a finite function from variable names to types. A judge-
ment of the form Γ ` e : T says that e has type T in the con-
text of a method of class Γ self, with parameters and local
variables declared by Γ. A judgement Γ ` S says that S is a
command in the same context. Note that access policy has
no influence on typing, though of course it does influence
semantics.

4.2. Semantics

The state of a method in execution is comprised of a heap
h, which is a finite partial function from locations to object
states, and a store η, which assigns locations and primitive
values to local variables and parameters. Every store of in-
terest includes the distinguished variable self which points
to the target object. A command denotes a function from
initial state to either a final state or the error value ⊥.

For locations, we assume that a countable set Loc is
given, along with a distinguished entity nil not in Loc. We
treat object states as mappings from field names to val-
ues. To track the object’s class we assume given a function
loctype :Loc → ClassNames such that for each C there
are infinitely many locations ` with loctype ` = C. We
write locs C for {` | loctype ` = C}.

For functions of various kinds we write dom or rng for
the domain or range.

Methods are associated with classes, in a method envi-
ronment, rather than with instances. For this reason the
semantic domains, given in Table 3, are relatively simple;
there are no recursive domain equations to be solved. In
addition to domains like [[T ]] and [[Γ]] that correspond di-
rectly to syntactic notations, we use the following: [[Heap]]
is the set of heaps, [[state C]] is the set of states of objects of
class C, [[perms C]] is sets of permissions authorized for C,
[[MEnv ]] is the set of method environments, [[C, x, T → T ]]
is the set of meanings for methods of class C with result T

and parameters x : T . In a language like Java with garbage
collection and without pointer arithmetic, dangling loca-
tions (those not in the domain of the heap) never occur in
program states or as expression values. Capturing this in
the semantics is the purpose of the special cartesian prod-
ucts Heap ⊗ Γ and Heap ⊗ T .

The semantics is defined for an arbitrary allocator, but
the noninterference theorem depends on parametricity.

Definition 1 (Allocator, parametric)
An allocator is a location-valued function fresh such that
loctype(fresh(C, h)) = C and fresh(C, h) 6∈ dom h, for
all C, h. An allocator is parametric if dom h1 ∩ locs C =
dom h2 ∩ locs C implies fresh(C, h1) = fresh(C, h2). 2

For example, if Loc =
�

the function fresh(C, h) =
min{` | loctype ` = C ∧ ` 6∈ dom h} is parametric. In
practice, allocators are typically not parametric: locations
are addresses in a single space used for all objects. It is
possible to drop the assumption of parametricity at the cost
of maintaining a bijection on the visible subset of allocated
objects (in the definition of L-indistinguishability in the se-
quel). For our language, this is worked out in detail in [2];
here we assume parametricity to reduce notational clutter.

The semantics is defined by induction on typing judge-
ments. The meaning of an expression Γ ` e : T is a
function [[Heap ⊗ Γ]] → [[T ]]⊥ that takes a state (h, η) ∈
[[Heap ⊗ Γ]] and returns a value d ∈ [[T ]] (such that (h, d) ∈
[[Heap ⊗ T ]]) or the improper value ⊥ which represents er-
rors. Table 4 gives the definition.

The meaning of a command Γ ` S is a function

[[MEnv ]] → [[Heap ⊗ Γ]] → [[perms(Γ self)]]
→ ([[Heap ⊗ Γ]])⊥

that takes a method environment µ (see below), a state
(h, η), and the enabled permissions Q ∈ [[perms(Γ self)]];
it returns a state or ⊥ which indicates divergence or error or
access control violation. See Table 5.

To streamline the treatment of ⊥ in the semantic defini-
tions, we use a metalanguage construct, let d = E1 in E2,
with the following meaning: If the value of E1 is ⊥ then
that is the value of the entire let expression; otherwise, its
value is the value of E2 with d bound to the value of E1.

Function update is written, e.g., [η | x 7→ d]. In the se-
mantics of local variables, we write � for domain restriction:
if x is in the domain of function η then η � x is the function
like η but without x in its domain.

The semantic domains are partially ordered. The
sets [[Heap]], [[bool]], [[C]], [[state C]], [[perms C ]], and
P(Permissions) are ordered by equality. We write →
for continuous function space, ordered pointwise, and X⊥

for domain X with added bottom element ⊥. Each set
[[C, x, T → T ]] has a least element (the constantly-⊥ func-
tion) and least upper bounds of ascending chains, and this
suffices for the fixpoint semantics of recursive methods.

A method environment µ maps each class name C and
method name m (declared or inherited in C) to a meaning
µ C m in

[[Heap ⊗ Γ]] → P(Permissions) → [[(Heap ⊗ T )⊥]]
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θ ::= T values of type T

| Γ store (maps variables to values)
| state C object state (maps fields to values)
| Heap heap (maps locations to object states) with no dangling locations
| Heap ⊗ Γ (global) states with no dangling locations
| Heap ⊗ T pairs (h, d) where value d is not a dangling location w.r.t. h

| θ⊥ lifting
| perms C permission sets authorized for C

| (C, x, T→T ) method of C with parameters x : T and return type T

| MEnv method environments

[[bool]] = {true, false}

[[unit]] = {it}

[[C]] = {nil} ∪ locs(C↓) where locs(C↓) = {` | loctype ` ≤ C}

[[Γ]] = {η | dom η = dom Γ ∧ η self 6= nil ∧ ∀x ∈ dom η. η x ∈ [[Γ x]]}

[[state C]] = {s | dom s = dom(fields C) ∧ ∀(f : T ) ∈ fields C. sf ∈ [[T ]]}

[[Heap]] = {h | dom h ⊆fin Loc ∧ closed h ∧ ∀` ∈ dom h. h` ∈ [[state (loctype `)]]}
where closed h iff rng s ∩ Loc ⊆ dom h for all s ∈ rng h

[[Heap ⊗ Γ]] = {(h, η) | h ∈ [[Heap]] ∧ η ∈ [[Γ]] ∧ rng η ∩ Loc ⊆ dom h}

[[Heap ⊗ T ]] = {(h, d) | h ∈ [[Heap]] ∧ d ∈ [[T ]] ∧ (d ∈ Loc ⇒ d ∈ dom h)}

[[θ⊥]] = [[θ]] ∪ ⊥ (where ⊥ is some fresh value not in [[θ]])

[[perms C]] = {P | P ⊆ Auth C}

[[C, x, T→T ]] = [[Heap ⊗ (x : T , self : C)]] → P(Permissions) → [[(Heap ⊗ T )⊥]]

[[MEnv ]] = {µ | ∀C, m. µCm is defined iff mtype(m, C) is defined,
and µCm ∈ [[C, pars(m, C), mtype(m, C)]] if µCm defined }

Table 3. Semantic categories θ and semantic domains [[θ]], for given policy Auth.

where T is the return type and Γ = self : C, x : T is the
parameter store, where x = pars(m, C). The result from a
method, if not ⊥, is a pair (h, d) with d in [[T ]] such that, if
d is a location then d is in the domain of the result heap h.

The semantics of a class table CT is the method environ-
ment, written [[CT ]], given as the least upper bound of the
ascending chain µ ∈

�
→ [[MEnv ]] defined as follows.

µ0 C m = λ(h, η). λQ. ⊥
µj+1 C m = [[M ]]µj if m is declared as M in C

µj+1 C m = µj+1 B m if m is inherited from B in C

To be very precise for an inherited method, if
mtype(m, C) = T → T then µj+1 C m should apply
to stores for x : T , self : C whereas µj+1 B m applies to
stores for x : T , self : B. But the latter contains the former,
as C ≤ B implies [[C]] ⊆ [[B]] (see [2]). This does not
obtrude in the sequel.

The interesting aspect of inheritance is that the permis-
sions Auth B are not required to have any relation to the
permissions Auth C. Recall from Section 2 that access con-
trol is defined in terms of the code on the stack, not the

classes of objects for which the code is executing. Leav-
ing aside dynamic binding, the semantics of method invo-
cation could be defined by intersecting the current permis-
sions with those authorized for the called method. To inter-
pret dynamic binding, our semantics branches on the type
of the target object, and the method environment provides
a meaning for every method. In the case of an inherited
method, the permissions “authorized for the called method”
should be those of its defining class, not the class into which
it is inherited. So we consider that a method meaning is
defined for all permission sets. Intersection with the autho-
rized permissions is done not in the semantics of method
call but in the semantics of method declarations. This is
why [[C, x, T→T ]] is defined using P(Permissions) rather
than [[perms C]].

For a method declaration M = T m(T x){S} in class
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[[Γ ` x : T ]](h, η) = ηx

[[Γ ` null : B]](h, η) = nil

[[Γ ` unit : unit]](h, η) = it

[[Γ ` true : bool]](h, η) = true

[[Γ ` false : bool]](h, η) = false

[[Γ ` e1==e2 : bool]](h, η) = let d1 = [[Γ ` e1 : T1]](h, η) in
let d2 = [[Γ ` e2 : T2]](h, η) in if d1 = d2 then true else false

[[Γ ` e.f : T ]](h, η) = let ` = [[Γ ` e : (Γ self)]](h, η) in if ` = nil then ⊥ else h ` f

[[Γ ` (B) e : B]](h, η) = let ` = [[Γ ` e : D]](h, η) in if ` = nil ∨ loctype ` ≤ B then ` else ⊥

[[Γ ` e is B : bool]](h, η) = let ` = [[Γ ` e : D]](h, η) in if ` 6= nil ∧ loctype ` ≤ B then true else false

Table 4. Semantics of expressions

C, here is the semantics:

[[M ]]µ(h, η)Q =

let Q1 = Q ∩ Auth C in
let η1 = [η | result 7→default] in

let (h0, η0) = [[x : T , self : C, result : T ` S]]µ(h, η)Q1 in
(h0, η0 result)

5. Security typing

In this section we annotate the syntax of Section 4 with
security labels. Where a type T could occur, we use pairs
(T, κ) where κ is a security level, L or H . The grammar is
revised as follows.

κ : : = L | H

τ : : = (T, κ)

CL : : = class C κ extends C { τ f ; M }

S : : = . . . | τ x : = e in S | . . .

Note that there is no change for cast and test. As discussed
in Section 8, labels for local variables can be inferred.

In [4], the annotation of a method appears as
τ m(τ x) κ {S}, with κ designating the heap effect and
τ the level of the result. By analogy with the auxiliary func-
tion mtype which gives the declared type of a method, func-
tion smtype is used in [4] to give declared annotation τ

κ
−→τ

as discussed in Section 2.
In this paper we allow multiple typings of a method, each

of the form κ
P ;κ1

−→κ2. The intended meaning is as follows: if
the method is called with arguments compatible with κ and
enabled permissions disjoint from P then the heap effect
is ≥ κ1 and the result level ≤ κ2. By contrast with [4]
as discussed above, we do not annotate method parameters,
heap effect, or result levels in the concrete syntax. Instead
we assume a function smtypes is given.

Definition 2 (Annotated class table)
An annotated class table is a class table with annotations

according to the grammar above, together with a partial
function smtypes satisfying the following conditions. First,
smtypes(m, C) is defined iff mtype(m, C) is defined. Sec-
ond, if smtypes(m, C) is defined then it is a non-empty

set of annotations of the form κ
P ;κ1

−→κ2. Third, if C ≤
D and mtype(m, D) is defined then smtypes(m, C) =
smtypes(m, D). 2

Note that we do not require P ⊆ Auth C. A method may be
declared in one class and inherited or overridden in a sub-
class with different permissions. The third condition allows
us to reason about method calls in terms of the static type
of a called method, because any implementation that can be
invoked by dynamic dispatch is checked with respect to the
same smtypes.

As in our previous work [4], each class is assigned a level
which determines the type of self. For L classes, flows are
tracked in terms of fields (which may be H or L), vari-
ables and control flow (and the rules are similar to those
in Jif [16]). Classes labelled H are also subject to a con-
finement condition that separates all values of the type from
L fields and variables. This can be seen as a form of ac-
cess control, as will be explored in future work. Here the
main benefit is that we avoid more complicated tracking of
information flow via allocation.

Tables 6 and 7 give typing rules for annotated programs.
We write ∆ for typing environments that assign security
types. A judgement ∆; P ` S : (com κ1, κ2) says that S

is safe and assigns only to variables (locals and parame-
ters) of level ≥ κ1 and to object fields of level ≥ κ2 (see
Lemma 6.4) provided that no permissions in set P are en-
abled initially.

We use the symbol † to erase annotations: (T, κ)† = T ,
and this extends to erasure for typing environments, com-
mands, and method declarations in an obvious way. We
write “−” for set subtraction.
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[[Γ ` x : = e]]µ(h, η)Q = let d = [[Γ ` e : T ]](h, η) in (h, [η | x 7→d])

[[Γ ` e1.f : = e2]]µ(h, η)Q = let ` = [[Γ ` e1 : (Γ self)]](h, η) in
if ` = nil then ⊥ else
let d = [[Γ ` e2 : U ]](h, η) in ([h | ` 7→ [h ` | f 7→d]], η)

[[Γ ` x : = new B]]µ(h, η)Q = let ` = fresh(B, h) in
let h1 = [h | ` 7→ [fields B 7→ defaults ]] in (h1, [η | x 7→`])

[[Γ ` x : = e.m(e)]]µ(h, η)Q = let ` = [[Γ ` e : D]](h, η) in
if ` = nil then ⊥ else
let x = pars(m, D) in

let d = [[Γ ` e : U ]](h, η) in

let η1 = [x 7→ d, self 7→ `] in
let (h0, d0) = µ(loctype `)m(h, η1)Q in (h0, [η | x 7→d0])

[[Γ ` S1 ; S2]]µ(h, η)Q = let (h1, η1) = [[Γ ` S1]]µ(h, η)Q in [[Γ ` S2]]µ(h1, η1)Q

[[Γ ` if e then S1 else S2]]µ(h, η)Q = let b = [[Γ ` e : bool]](h, η) in
if b then [[Γ ` S1]]µ(h, η)Q else [[Γ ` S2]]µ(h, η)Q

[[Γ ` T x : = e in S]]µ(h, η)Q = let d = [[Γ ` e : U ]](h, η) in
let η1 = [η | x 7→d] in
let (h1, η2) = [[(Γ, x : T ) ` S]]µ(h, η1)Q in (h1, (η2 � x))

[[Γ ` enable P in S]]µ(h, η)Q = [[Γ ` S]]µ(h, η)(Q ∪ (P ∩ Auth(Γ self)))

[[Γ ` test P then S1 else S2]]µ(h, η)Q = if P ⊆ Q then [[Γ ` S1]]µ(h, η)Q else [[Γ ` S2]]µ(h, η)Q

Table 5. Semantics of commands, for given policy Auth and allocator fresh .

∆ ` x : ∆ x ∆ ` null : (D, κ) ∆ ` unit : (unit, κ) ∆ ` true : (bool, κ)

∆ ` e1 : (T1, κ1)
∆ ` e2 : (T2, κ2)

∆ ` e1==e2 : (bool, κ1 t κ2)

C = ∆†self
(T, κ1)f ∈ sdfields C

∆ ` e : (C, κ2)
∆ ` e.f : (T, κ1 t κ2)

∆ ` e : (D, κ)
B ≤ D

∆ ` (B) e : (B, κ)

∆ ` e : (D, κ) B ≤ D

∆ ` e is B : (bool, κ)

Table 6. Security typing rules for expressions.

For commands, it suffices to consider judgements where
P ⊆ Auth(∆†self); only such P is relevant to the behavior
of a command declared in class ∆†self, as can be seen in
the rule for method declaration below.

The rule for class declarations is as follows.

level D ≤ κ

C κ extends D ` M for each M ∈ M

If level D 6= κ then every m with mtype(m, D)
defined is overridden in C by some M ∈ M

` class C κ extends D { τ f ; M }

The condition on overriding prevents bad flows in the case
where code is checked where self is L but inherited in an
object of H class [4]. Here is the rule for method declara-

tion.

For each (κ
P ;κ3

−→κ4) ∈ smtypes(m, C) we have
∆; (P ∩ Auth C) ` S : (com κ2, κ3)
where T → T = mtype(m, C)

x = pars(m, C)
∆ = x : (T , κ), self : (C, κ1), result : (T, κ4)

C κ1 extends D ` T m(T x){S}

The hypothesis checks the method body against all typings
in smtypes, restricting the permissions to those that can pos-
sibly be enabled for this class. There is no constraint on κ2

because it tracks assignments to local variables.
The rules in Table 6 and 7 use versions of the auxiliary

functions that take security levels into account. Let

CT (C) = class C κ1 extends D { τ1 f ; M }
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x 6= self T2 ≤ T1 κ2 t κ3 ≤ κ1

∆, x : (T1, κ1); P ` e : (T2, κ2)
∆, x : (T1, κ1); P ` x : = e : (com κ3, κ4)

C = ∆†self (T, κ2)f ∈ sdfields C

∆ ` e1 : (C, κ1) ∆ ` e2 : (U, κ3)
U ≤ T κ1 t κ3 t κ5 ≤ κ2

∆; P ` e1.f : = e2 : (com κ4, κ5)

x 6= self B ≤ D level B t κ2 ≤ κ1 κ3 ≤ level B
∆, x : (D, κ1); P ` x : = new B : (com κ2, κ3)

κ
P ′;κ1

−→ κ2 ∈ smtypes(m, D) P ′ ∩ Auth(∆†self) ⊆ P mtype(m, D) = T → T ′

∆, x : (T, κ) ` e : (D, κ3) ∆, x : (T, κ) ` e : (U, κ4)

T ′ ≤ T U ≤ T κ4 ≤ κ κ2 t κ3 t κ5 ≤ κ κ3 t κ6 ≤ κ1

∆, x : (T, κ); P ` x : = e.m(e) : (com κ5, κ6)

∆; P ` S1 : (com κ1, κ2)
∆; P ` S2 : (com κ3, κ4)
κ5 ≤ κ1 u κ3 κ6 ≤ κ2 u κ4

∆; P ` S1 ; S2 : (com κ5, κ6)

∆ ` e : (bool, κ5)
∆; P ` S1 : (com κ1, κ3) ∆; P ` S2 : (com κ2, κ4)
κ5 ≤ κ6 u κ7 κ6 ≤ κ1 u κ2 κ7 ≤ κ3 u κ4

∆; P ` if e then S1 else S2 : (com κ6, κ7)

∆ ` e : (U, κ4)
∆, x : (T, κ1); P ` S : (com κ2, κ3)
U ≤ T κ4 ≤ κ1 κ2 ≤ κ5 κ3 ≤ κ6

∆; P ` (T, κ1) x : = e in S : (com κ5, κ6)

∆; (P − (P ′ ∩ Auth(∆†self))) ` S : (com κ1, κ2) κ3 ≤ κ1 κ4 ≤ κ2

∆; P ` enable P ′ in S : (com κ3, κ4)

P ′ ∩ P = � κ5 ≤ κ1 u κ3 κ6 ≤ κ2 u κ4

∆; P ` S1 : (com κ1, κ2) ∆; P ` S2 : (com κ3, κ4)
∆; P ` test P ′ then S1 else S2 : (com κ5, κ6)

P ′ ∩ P 6= � ∆; P ` S2 : (com κ1, κ2) κ3 ≤ κ1 κ4 ≤ κ2

∆; P ` test P ′ then S1 else S2 : (com κ3, κ4)

Table 7. Security typing rules for commands, for given Auth.

Corresponding to dfields, fields and type, we define sdfields,
sfields and stype which differ only in that they give security
types, e.g., sdfieldsC = τ1 f . We also need a function level
that gives the level associated with the class itself: for the
declaration above, level C = κ1. Define level Object = L.
For locations, define level ` = level(loctype `).

Examples. Let us consider how the examples of Section 3
are formalized. For the information flow policy, class Kern
is annotated as

(string,H) Hinfo; (string,L) Linfo;

and class Vend1 is annotated as

(Kern,L) k; (string,L) v;

The most interesting method typings are given as

smtypes(getHinfo, Kern) = {L
�

;H
−→H}

smtypes(getStatus, Kern) = {L
{stat};H
−→ L, L

�
;H

−→H}

smtypes(status,Vend1) = {L
�

;H
−→L}

The body of Vend1.status is checked in the context
of result : (string, L) and excluded permission set � ∩

Auth(Vend1), i.e., � . The call to getStatus can be

checked using the type L
{stat};H
−→ L, because {stat} ∩

Auth(Vend1) = {stat} ∩ {other} ⊆ � .
Method Vend1.status2 can also be checked using the

same types, as the rule for enable takes into account that the
attempt to enable stat fails because stat 6∈ Auth(Vend1).

Consider the policy smtypes(statusH, Vend2) =

{L
�

;H
−→H}. This requires checking the body of

Vend2.statusH in the context of result : (string, H)
and � . To check the command

enable stat in result : = k.getStatus()

we check result : = k.getStatus() in the context of � , which

is � −{stat}. This check succeeds, using the type L
�

;H
−→H

for getStatus.
Finally, consider checking getStatus. To check it with

respect to L
�

;H
−→H requires checking both branches of

test stat then enable sys in result : = getHinfo() else . . .
in the context with result : (string, H). This succeeds. To

check with respect to L
{stat};H
−→ L, note that the assignment

to result in the then branch of the test is not compatible
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with the context result : (string, L). But, on the assumption
that the caller has excluded {stat}, the second of the rules
for test is applicable and the then branch is not checked.

Finally, we consider subclassing. Here is an un-
trusted subclass of Kern that adds a method; suppose
Auth(KernSub) = {other}.

class KernSub extends Kern { // permissions: other

string myStatus(){ // type L → L
result : = self.getHinfo() } . . .}

In fact the call to getHinfo aborts, for lack of permission
sys. This program is untypable for policy L → L only if

we include L
{sys}
−→L in smtypes(getHinfo, Kern).

Suppose KernSub also included an overrid-
ing declaration for getStatus. Definition 2 requires

smtypes(getStatus, KernSub) = {L
�

;H
−→L, L

{stat};H
−→ H}

and thus two checks of the method body. The interesting

case is for L
{stat};H
−→ H . Here the body is checked in the

context {stat} ∩ {other} which is � . In particular, this
precludes a call to getHinfo. For lack of space we do not
give a thorough discussion of overriding. Moreover, we
omit super-calls, although they pose no difficulty.

Properties of security typing. For any judgement
∆; P ` S : (com κ1, κ2) derivable using the rules in Ta-
bles 6 and 7, the erased judgement ∆† ` S† is derivable
using the rules of Table 2. Conversely, any program ty-
pable using the rules of Table 2 can be annotated every-
where by L and typed by the rules in Tables 6 and 7, taking

smtypes(m, C) = {L
�

−→L} for all m, C.

If a method is typable with respect to κ
P ;κ1

−→κ2 then it

is also typable with respect to κ′P
′;κ′

1−→ κ′
2 for any κ′ ≤ κ,

P ′ ⊇ P , κ′
1 ≤ κ1, and κ′

2 ≥ κ2. We do not prove this
fact here because it is not needed for our main result. But it
suggests a notion of subtyping and subsumption that would
be important for practical application.

For brevity we write Q#P for Q∩P = � . For reasoning
about method calls we repeatedly use the following.

Lemma 5.1
Suppose ∆, x : (T, κ); P ` x : = e.m(e) : (com κ5, κ6) is

derivable using κ
P ′;κ1

−→ κ2 ∈ smtypes(m, D). If Q # P and
Q ⊆ Auth(∆† self) then Q # P ′.

Proof: By the typing rule we have P ′∩Auth(∆† self) ⊆ P

hence, from Q # P , we have P ′ ∩Auth(∆† self)∩Q = � .
Then Q ⊆ Auth(∆† self) implies P ′ ∩ Q = � . 2

Remarks about proofs. The proofs involve detailed anal-
ysis of the semantics and the security typing rules. For each
specific case, the semantic definition may involve several
values (e.g., the value of e is needed in the semantics of
x : = e), and the rule may involve several types and secu-
rity labels. In writing a given proof case, we found it conve-
nient to write down both the rule and the semantics for refer-
ence. It is impractical to include such redundancy in the pa-
per, however. Instead, when it comes to proving something
about a particular construct we make free use of identifiers
in the typing rule (in Table 6 or 7), for types and labels, and
identifiers in the semantic definition for semantic values (in
Table 4 or 5). Note that the semantic definition may use
different identifiers for types, as the semantics is based on
the typing rules in Table 2 rather than the security rules in
Tables 6 and 7. We streamline the proofs by ignoring ⊥
outcomes and omitting many cases.

6. Confinement

This section shows that if a program is accepted by the
security typing rules of Section 5 then it maintains the in-
variant that L fields and variables never hold H locations.
Moreover, commands with H effect do not assign to L-
fields or L-variables. These results are similar to those in
[4], especially for the imperative control constructs.

The formalization uses the indistinguishability relation
∼ also used in the main results of Section 7. In formalizing
the absence of L-variables that refer to H-objects, we take
advantage of the fact that nil 6∈ Loc and ⊥ 6∈ Loc. We use
the short name “ok” for L-confinement.

Definition 3 (L-confinement (ok ))

• Define LLoc = {` ∈ Loc | level ` = L}.

• For heaps, define ok h iff for all ` ∈ dom h and every
f ∈ fields(loctype `), if stype(f, loctype `) = (T, L) for
some T and h`f ∈ Loc then h`f ∈ LLoc.

• For stores, define ok ∆ η iff for every x with ∆ x =
(T, L) for some T , if η x ∈ Loc then η x ∈ LLoc.

• For method environments, ok µ iff the following holds

for every m, C and κ
P ;κ2

−→κ in smtypes(m, C). For all
η, h, Q, if ok h, ok ∆ η, Q # P , and µCm(h, η)Q 6= ⊥
then ok h0 and κ = L ∧ d ∈ Loc ⇒ d ∈ LLoc,
where (h0, d)=µCm(h, η)Q
and T → T = mtype(m, C),
and ∆=pars(m, C) : (T , κ), self : (C, level C).

Lemma 6.1 (L-confinement of expressions)
Let ∆ ` e : (T, L) and let d = [[∆† ` e : T ]](h, η). If

ok ∆ η, and ok h then d ∈ Loc ⇒ d ∈ LLoc.
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Lemma 6.2 (L-confinement of commands)
Let ∆; P ` S : (com κ1, κ2). If ok µ, ok h, ok ∆ η, Q ⊆
Auth(∆† self), Q # P , and [[∆† ` S†]]µ(h, η)Q 6= ⊥ then
ok ∆ η0 and ok h0, where (h0, η0) = [[∆† ` S†]]µ(h, η)Q.

Proof: By induction on the derivation of ∆; P `
S : (com κ1, κ2). We consider cases on S.

• x : = e.m(e): We have η0 = [η | x 7→ d0], and
ok ∆ η by assumption, so it suffices to show d0 ∈
Loc ⇒ d0 ∈ LLoc. Moreover we must show
ok h0. Let ∆1 = x : (T , κ), self : (loctype `, level `), and
η1 = [x 7→ d, self 7→ `]. Lemma 5.1 is applicable and
yields Q # P ′. We claim ok ∆1 η1; then we get the
result by ok µ. It remains to show the claim. If
κ = L, then by the typing rule, κ4 = L. So by in-
duction on e, and since the semantics is non-⊥, we get
d ∈ Loc ⇒ d ∈ LLoc. Hence ok (x : (T , κ)) [x 7→ d].
We get ok (self : (loctype `, level `)) [self 7→ `] directly
from the definitions of ok and LLoc, as level ` = L iff
` ∈ LLoc.

• enable P ′ in S: To use induction on S it suffices that
(Q∪ (P ′∩Auth(∆†self))#(P − (P ′∩Auth(∆†self)).
This follows by set theory from hypothesis Q # P .

• test P ′ then S1 else S2: Suppose P ′ ⊆ Q. Thus P ′#P ,
by hypothesis Q#P . Thus the first of the rules in Table 7
must have been used for test P ′ then S1 else S2. Since
P ′ ⊆ Q, the test condition is true and the semantics is
given by semantics of S1 which is checked by the rule.
So we can use induction on S1 which yields the result.

In the other case, P ′ 6⊆ Q, the test condition is false so
the semantics is given by semantics of S2. Both of the
rules for test P ′ then S1 else S2 depend on checking S2

so we get the result by induction on S2. 2

Lemma 6.3 (L-confinement of method environments)
If annotated class table CT satisfies the security typing
rules then ok [[CT †]] and also ok µi for each µi in the
approximation chain defining [[CT †]]. 2

The proof is by induction on i, using Lemmas 6.1 and 6.2,
and then fixpoint induction for [[CT †]]. It follows the pattern
of the proof of Theorem 7.3 and is given in the full paper.

Next we formalize the indistinguishability relation ∼.
Object states are indistinguishable by L if their L-fields are
equal, and stores are indistinguishable if their L-variables
are equal. In the case of heaps and object states, the relevant
levels are determined by the field declarations in the class
table. By contrast, the levels for stores are determined by
parameter and local variable declarations, hence the depen-
dence is explicit in the notation ∼∆. It is straightforward to
show that each of these is an equivalence relation.

Definition 4 (Indistinguishable by L)

• For s, s′ ∈ [[state C ]], define s ∼ s′ iff
∀f ∈ fields C . let (T, κ) = stype(f, C) in (κ = L ⇒
sf = s′f).

• For h, h′ ∈ [[Heap]], define h ∼ h′ iff dom h∩LLoc =
dom h′ ∩ LLoc and ∀` ∈ dom h ∩ LLoc . h` ∼ h′`.

• For η, η′ ∈ [[∆†]], define η ∼∆ η′ iff ∀x ∈
dom ∆ . let (T, κ) = ∆ x in (κ = L ⇒ ηx = η′x). 2

If a command is typable as (com H, κ) it does not assign
to L-variables, and if it is typable as (com κ2, H) it does
not assign to L-fields of objects.

Definition 5 (H-confined method environment)
Method environment µ is H-confined, written Hconf µ,

if the following holds for all C, m and all κ
P ;H
−→κ in

smtypes(m, C). If Q # P and µCm(h, η)Q 6= ⊥ then
h0 ∼ h, where (h0, d) = µCm(h, η)Q. 2

Lemma 6.4 (H-confinement of commands)
Let ∆; P ` S : (com κ1, κ2). Then for all µ, η, h, Q such
that Hconf µ, Q # P , and [[∆† ` S†]]µ(h, η)Q 6= ⊥ we
have

• if κ1 = H and (h0, η0) = [[∆† ` S†]]µ(h, η)Q then
η ∼∆ η0.

• if κ2 = H and (h0, η0) = [[∆† ` S†]]µ(h, η)Q then
h ∼ h0.

Proof: By induction on ∆; P ` S : (com κ1, κ2). Recall
the conventions described at the end of Section 5: level
identifiers in the proof are those in the relevant rules, not
κ1, κ2 as used in the statement of the Lemma.

• if e then S1 else S2: First, assume κ6 = H . Then
by the typing rule, κ1 = H and κ2 = H . Let b =
[[∆† ` e : bool]](h, η). Then if b = true, the result fol-
lows by induction on S1 and if b = false , the result fol-
lows by induction on S2.

Next, assume κ7 = H . Then by the typing rule, κ3 = H

and κ4 = H . Again, the result follows by induction on
S1 if b = true and by induction on S2 if b = false .

• x : = e.m(e): For the store, suppose κ5 = H . Then by
typing, κ = H . That η ∼∆,x :(T,H) [η | x 7→ d0] now
follows by definition ∼∆,x :(T,H). For the heap, sup-
pose κ6 = H . Then we must show h ∼ h0, where
(h0, d0) = µ(loctype `)m(h, [x 7→ d, self 7→ `])Q, and
` = [[∆† ` e : D]](h, η) and d = [[∆† ` e : U ]](h, η). Be-
cause κ6 = H , we have by the typing rule, κ1 = H .

Moreover, κ
P ′;H
−→κ2 ∈ smtypes(m, (loctype `)). Using
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hypothesis Q # P and the typing rule, we can apply
Lemma 5.1 to get Q # P ′. So we can use assumption
Hconf µ to get h ∼ h0.

• enable P ′ in S and test P ′ then S1 else S2: By in-
duction, justified by the same reasoning as in the proof
of Lemma 6.2. 2

Lemma 6.5 (H-confinement of method environments)
If annotated class table CT satisfies the security typing
rules then Hconf [[CT †]] and also Hconf µi for each µi in
the approximation chain defining [[CT †]]. 2

The proof is by induction on i, using Lemma 6.4, and then
fixpoint induction.

7. Noninterference

This section proves the main result: if a class table is
accepted by the security typing rules then the method envi-
ronment that it denotes is safe.

A method meaning is safe, i.e., noninterfering, provided
that, for terminating computations, L-indistinguishable ini-
tial heaps and stores lead to L-indistinguishable results.

Definition 6 (Safe method environment)

We define safe µ iff for all C, m, all κ
P ;κ2

−→κ in
smtypes(m, C), and all h, h′, η, η′, Q we have:

if h ∼ h′, η ∼∆ η′, Q # P, ok h, ok h′, ok ∆ η, ok ∆ η′

and µCm(h, η)Q 6= ⊥ 6= µCm(h′, η′)Q
then h0 ∼ h′

0 and (κ = L ⇒ d = d′)
where ∆ = x : (T , κ), self : (C, level C)

(h0, d) = µCm(h, η)Q
(h′

0, d
′) = µCm(h′, η′)Q

If an expression can be typed ∆ ` e : (T, L) then its
meaning is the same in two L-indistinguishable states, pro-
vided that it diverges in neither state.

Lemma 7.1 (Safe expressions)
Suppose ∆ ` e : (T, L). Suppose that h ∼ h′, η ∼∆ η′,

ok h, ok h′, ok ∆ η, ok ∆ η′, and [[∆† ` e : T ]](h, η) 6=
⊥ 6= [[∆† ` e : T ]](h′, η′). Then [[∆† ` e : T ]](h, η) =
[[∆† ` e : T ]](h′, η′).

Proof: In this proof and subsequent ones, we extend the
convention described at the end of Section 5. When com-
paring semantics for a pair of states (h, η) and (h′, η′),
we use corresponding primes on identifiers in the seman-
tic definitions. For example, the semantic definition of
[[∆† ` x : = e]]µ(h, η)P involves value d denoted by e in
state (h, η), so we write d′ for the corresponding value for
[[∆† ` x : = e]]µ(h′, η′)P .

The proof is by induction on e. We consider the case
e.f : By typing, κ1 = L = κ2. Because κ2 = L we
can use induction on e; this yields that there is ` with
[[∆† ` e : C]](h, η) = ` = [[∆† ` e : C]](h′, η′), as we only
consider the case that both semantics are non-⊥. For the
same reason, ` is in the domain of both h and h′. By
κ2 = L and Lemma 6.1 we have ` ∈ LLoc so, by assump-
tion h ∼ h′, we get h` ∼ h′`; this implies h`f = h′`f

because field f has label κ1 = L. 2

Lemma 7.2 (Safe commands)
Suppose ∆; P ` S : (com κ1, κ2). Suppose also ok µ,

ok h, ok h′, ok ∆ η, ok ∆ η′, Q # P , safe µ, Hconf µ,
η ∼∆ η′, h ∼ h′, and [[∆† ` S†]]µ(h, η)Q 6= ⊥ 6=
[[∆† ` S†]]µ(h′, η′)Q. Then η0 ∼∆ η′

0 and h0 ∼ h′
0,

where (h0, η0) = [[∆† ` S†]]µ(h, η)Q and (h′
0, η

′
0) =

[[∆† ` S†]]µ(h′, η′)Q.

Proof: We show η0 ∼∆ η′
0 and h0 ∼ h′

0 by induction on S.
The most interesting case is method call.

• x : = e.m(e): Let η0 = [η | x 7→ d0] and η′
0 = [η′ |

x 7→ d′0]. We show η0 ∼∆,x :(T,κ) η′
0 and h0 ∼ h′

0 by
cases on κ3. If κ3 = H then it is possible that ` 6= `′

and thus the two calls can have different behavior. But
by the typing constraint κ3 ≤ κ we have κ = H and
thus η0 ∼∆,x :(T,κ) η′

0 follows by definition ∼∆,x :(T,κ).
Also, by the typing constraint κ3 ≤ κ1 we have κ1 = H .
By Lemma 5.1 we get Q#P ′. Thus we can use Hconf µ

to obtain h0 ∼ h ∼ h′ ∼ h′
0.

It remains to consider the case κ3 = L. In
this case, we have ` = `′ by Lemma 7.1.
Now let ∆1 = x : (T , κ), self : (loctype `, level `), and
η1 = [x 7→ d, self 7→ `], and η′

1 = [x 7→ d
′
, self 7→ `′].

We claim that ok ∆1 η1 and ok ∆1 η′
1 and η1 ∼∆1

η′
1.

Then, because Q # P ′, we get the results η0 ∼∆,x :(T,κ)

η′
0 and h0 ∼ h′

0 by safe µ.

It remains to prove the claims. We give the argument for
the case that x is a single identifier, as the generalization
is obvious but awkward to put into words.

For η1 ∼∆1
η′
1, note that since ` = `′ it suf-

fices to deal with d, d′ regardless of whether level ` =
L. If κ = L then we need d = d′. Now
κ = L implies κ4 = L by typing, and then we get
d = d′ by Lemma 7.1 on e; moreover Lemma 6.1
yields ok (x : (T , κ)) [x 7→ d]. Thus ok ∆1 η1 because
ok (self : (loctype `, level `)) [self 7→ `] holds for any `.
We have ok ∆1 η′

1 mutatis mutandis.

• if e then S1 else S2: We proceed by cases on level κ5

of the guard e. Suppose κ5 = L. Then by Lemma 7.1
for e, b = b′. If b = true, the result follows by induction
on S1 and if b = false , the result follows by induction
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on S2. Consider the other case, κ5 = H . By typing,
κ6 = H = κ7 and κ1 = κ2 = κ3 = κ4 = H . Let
(h0, η0) = [[∆† ` if e then S1 else S2]]µ(h, η)Q and
(h′

0, η
′
0) = [[∆† ` if e then S1 else S2]]µ(h′, η′)Q. By

H-confinement Lemma 6.4 we have η ∼∆ η0, η′ ∼∆ η′
0,

h ∼ h0, and h′ ∼ h′
0. Using assumptions η ∼∆ η′ and

h ∼ h′ we get η0 ∼∆ η′
0 and h0 ∼ h′

0 by transitivity.

• x : = new B : For the store, we must show [η |
x 7→ `] ∼∆,x :(D1,κ1) [η′ | x 7→ `′]. By assumption
η ∼∆,x :(D1,κ1) η′ it is enough to deal with x; that
is, if κ1 = L we need ` = `′. By the typing rule,
κ1 = L implies level B = L. Thus, by h ∼ h′, we
have dom h∩ locs B = dom h′ ∩ locs B; then ` = `′ by
parametricity of the allocator (Definition 1).

Finally, we get h0 ∼ h′
0 as follows. If either ` or `′

is in LLoc then level B = L so by parametricity of the
allocator we get ` = `′, satisfying the domain condition
for h0 ∼ h′

0. For the range, i.e., h ` ∼ h′ `, the result
holds because the new object states are identical.

• enable P ′ in S and test P ′ then S1 else S2: By in-
duction, justified by the same reasoning as in the proof
of Lemma 6.2. 2

Theorem 7.3 (Noninterfering programs)
If annotated class table CT satisfies the security typing

rules then its meaning [[CT †]] is safe.

Proof: Because [[CT †]] is defined as the least upper bound
of an approximation chain, we first show safe µi for all i,
by induction on i. Then the result follows by fixpoint in-
duction.

We have safe µ0 because µ0Cm(h, η)Q is ⊥.
Suppose safe µi, to show safe µi+1. We must show

the safety property of µi+1Cm for each C, m and each

κ
P ;κ3

−→κ4 ∈ smtypes(m, C). There are two cases, depend-
ing on whether m is declared or inherited.

Suppose m has declaration M = T m(T x){S} in C.
Let ∆ = x : (T , κ), self : (C, level C), result : (T, κ4).

By Lemmas 6.3 and 6.5 we have ok µi and Hconf µi.
Assume that ok h, ok h′, ok ∆ η and ok ∆ η′. Suppose also
that h ∼ h′, η ∼∆ η′, Q # P and µi+1Cm(h, η)Q 6=
⊥ 6= µi+1Cm(h′, η′)Q. Let Q1 = Q ∩ Auth C and let
(h0, η0) = [[(x : T , self : C, result : T ) ` S†]]µi(h, η)Q1 (if
the outcome is ⊥ there is nothing more to prove). Now Q1#
P so by Lemma 6.2, L-confinement of commands, we have
ok ∆ η0, ok ∆ η′

0, ok h0, and ok h′
0. And, by Lemma 7.2,

safety for commands, we have h0 ∼ h′
0 and η0 ∼∆ η′

0. It
remains to show that if the result level κ4 for m is L we
have d = d′, where d (respectively d′) is η0 result (resp.
η′
0 result). This follows from η0 ∼∆ η′

0 by definition of ∼∆

and ∆ result = (T, κ4) = (T, L). This concludes the proof
of safety of µi+1Cm for m declared in C.

Suppose m is inherited in C from superclass
B. Towards proving safety of µj+1Cm, let
∆C = x : (T , κ), self : (C, level C) and ∆B =
x : (T , κ), self : (B, level B). Suppose Q # P , ok h,
ok h′, ok ∆C η and ok ∆C η′. Suppose also that h ∼ h′

and η ∼∆C
η′. We claim that ok ∆B η, ok ∆B η′, and

η ∼∆B
η′. Then, because smtypes C = smtypes B (by

Definition 2 annotated class table), the safety property for
µj+1Cm follows from the same for µj+1Bm with respect

to κ
P ;κ3

−→κ4 ∈ smtypes(m, C).
Note that the last step goes through because the safety

property (Definition 6) quantifies over all Q disjoint from
P , without regard to the permissions of C and B. Note
also that we are using a secondary induction on inheritance
chains, so we may use the safety property for µj+1Bm to
prove it for µj+1Cm.

For the claim, we only need to consider self, as oth-
erwise ∆C and ∆B are the same. For self, ok ∆B η re-
quires level B = L ⇒ η self ∈ LLoc. From C ≤ B

we get level B ≤ level C by the typing rule for classes.
Moreover, since m is inherited from C the rule requires
level B = level C so we are done. 2

8. Discussion

We have given a static analysis for secure information
flow that accounts for calls to the trusted computing base
that can be made by both trusted and untrusted callers. Our
analysis allows correct use of access control to ensure that
confidential information is returned only if the caller has
been given access. This improves on previous static anal-
yses, including the predecessor paper [4], where a system
call is given a fixed security level.

Our analysis is justified by a noninterference result. This
shows that even strong noninterference conditions which
disallow declassification may be useful and admit practi-
cal static checking, once access control is taken into ac-
count. We only take a step in this direction, demonstrating
the idea in the context of a non-trivial language but using a
language-centric access control mechanism devised primar-
ily for protecting trusted programs from untrusted mobile
code.

For practical deployment of programs using stack in-
spection for access control, interface specifications need to
express expected or recommended policies. Our method
typings suggest a way to do so.

Stoughton [23] compares access control and information
flow in a simple imperative language with semaphores. No
formal results are proven, nor is there a static analysis for
information flow. Rushby [20] proves (and mechanically
checks) results on noninterference for an access control
mechanism that amounts to assigning levels to variables.
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The SLam calculus is a framework where access control and
information flow coexist, but the noninterference result is
restricted to information flow [12]. Access control in SLam
consists of labels which are checked for compatibility by
typing rules; there is no runtime significance. Similar re-
marks apply to Pottier and Conchon’s work [17] and that of
Hennessy and Riely [13].

Skalka, Smith and Pottier [22, 19] give a static analysis
for access checks that never fail, which could serve as ba-
sis for program optimizations, and such optimizations are
explored by Fournet and Gordon [8].

An important implementation question is which security
annotations can be left implicit, to be inferred by a type re-
construction algorithm. In this paper we have not addressed
type reconstruction, but we expect that techniques from Pot-
tier et al. can be adapted [17, 18]. For the language of
[4] without access control, our student Sun Qi has devel-
oped and implemented an inference algorithm and work is
currently underway to incorporate level polymorphism and
modular specification of libraries.

Modularity issues are addressed in the Jif system [16],
which also incorporates the selective declassification mech-
anism of Myers and Liskov [15]. This uses dynamically
changing permissions; our approach may offer a way to for-
malize the security goals achieved by their mechanisms.
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